
Frontiers in Neurology 01 frontiersin.org

Causal associations of ischemic 
stroke, metabolic factors, and 
related medications with epilepsy: 
a Mendelian randomization study
Wencai Wang , Menghao Liu , Fengling Liu , Zun Wang , Wei Ye  
and Xianfeng Li *

The Second Affiliated Hospital of Harbin Medical University, Harbin, China

Background: Earlier researches have demonstrated that ischemic stroke, 
metabolic factors, and associated medications may influence the risk of epilepsy. 
Nevertheless, the causality between these elements and epilepsy remains 
inconclusive. This study aims to examine whether ischemic stroke, metabolic 
factors, and related medications affect the overall risk of epilepsy.

Methods: We used single nucleotide polymorphisms associated with ischemic 
stroke, hypothyroidism, hypertension, blood glucose levels, high cholesterol, 
serum 25-Hydroxyvitamin D levels, testosterone, HMG CoA reductase inhibitors, 
and beta-blocking agents as instrumental variables in a Mendelian randomization 
technique to investigate causality with epilepsy. Multiple sensitivity methods 
were performed to evaluate pleiotropy and heterogeneity.

Results: The IVW analysis revealed positive associations between ischemic 
stroke (OR  =  1.29; p  =  0.020), hypothyroidism (OR  =  1.05; p  =  0.048), high 
blood pressure (OR  =  1.10; p  =  0.028), high cholesterol (OR  =  1.10; p  =  0.024), 
HMG CoA reductase inhibitors (OR  =  1.19; p  =  0.003), beta-blocking agents 
(OR  =  1.20; p  =  0.006), and the risk of epilepsy. Conversely, blood glucose levels 
(OR  =  0.79; p  =  0.009), serum 25-Hydroxyvitamin D levels (OR  =  0.75; p  =  0.020), 
and testosterone (OR  =  0.62; p  =  0.019) exhibited negative associations with the 
risk of epilepsy. Sensitivity analyses confirmed the robustness of these findings 
(p >  0.05).

Conclusion: Our research suggests that ischemic stroke, hypothyroidism, high 
blood pressure, high cholesterol, HMG CoA reductase inhibitors, and beta-
blockers may increase the risk of epilepsy, whereas serum 25-Hydroxyvitamin D 
levels and blood glucose levels may reduce the risk.
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Introduction

Epilepsy is a common neurological condition caused by highly synchronized neuronal 
discharges (1). Its etiology is complex, encompassing structural, genetic, infectious, metabolic, 
immunological, and other unknown factors (2, 3). The disorder significantly impacts global 
physical health, particularly among infants and the elderly, leading to 13 million injuries and 
disabilities annually (4). Therefore, identifying the underlying causes is crucial for the effective 
management of epilepsy.
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Numerous studies have shown that ischemic stroke (5), and 
metabolic factors such as hypothyroidism (6), hypertension (7, 8), 
blood glucose levels (9), high cholesterol (10), serum 
25-Hydroxyvitamin D levels(25(OH)D) (11), and testosterone (12) are 
associated with the development of epilepsy. Additionally, certain 
medications, including HMG CoA reductase inhibitors(HMGCR) 
(13) and β-blockers (14) have been discovered to raise the risk of 
epilepsy. However, the causal relationship between these hazard 
elements and epilepsy remains unclear, as most previous studies were 
observational and yielded inconsistent findings.

Mendelian randomization (MR) is an epidemiological 
technique that uses genome-wide association study (GWAS) data 
to investigate the causality between different phenotypes and 
diseases (15). Consequently, in our research, we employed MR to 
assess the underlying association between these hazard elements 
and epilepsy. Additionally, reverse MR analyses were performed to 
determine the causality of epilepsy on the association between 
these risk factors.

Methods

MR analysis

The flowchart of the MR analyses in this research is described in 
Figure  1. This research rigorously adheres to the STROBE-MR 
guidelines, incorporating the following three key assumptions (16): 
(A) single nucleotide polymorphism (SNP) is associated with ischemic 
stroke, hypothyroidism, hypertension, blood glucose levels, high 
cholesterol, 25(OH)D, testosterone, HMGCR, and β-blockers; (B) 
SNP influences epilepsy solely through ischemic stroke, 
hypothyroidism, hypertension, blood glucose levels, high cholesterol, 
25(OH)D, testosterone, HMGCR, and β-blockers; (C) SNP is not 
linked to confounding factors.

Data source

The data analyzed in the research were sourced from publicly 
available GWAS datasets, eliminating the need for additional moral 
permission. The GWAS pooled statistics encompassed various 
conditions, including epilepsy (n = 407,746), ischemic stroke (34,217 
cases/ 406,111 controls), hypothyroidism (n = 405,357), high blood 
pressure (n = 407,746), blood glucose levels (n = 400,458), high 
cholesterol (n = 407,746), 25(OH)D (n = 417,580), high cholesterol 

FIGURE 1

Research design and Mendelian randomization assumptions.

Abbreviations: 25(OH)D, serum 25-Hydroxyvitamin D levels; HMGCR, HMG CoA 

reductase inhibitors; MR, Mendelian randomization; GWAS, genome-wide 

association study; IVs, instrumental variables; IVW, inverse variance weighting.
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(n = 407,746), HMGCR (73,475 cases/ 216,910 controls), beta blocking 
agents (n = 31,700 cases/ 192,324 controls) from the IEU Open GWAS 
project (17).1 The GWAS dataset for Testosterone is sourced from the 
UK Biobank (Table 1).

Selection of instrumental variables

We employed the following guidelines for selecting appropriate 
SNPs as IVs (18). Initially, a p-value significance threshold of 5 × 10–8 
was set for SNPs. Subsequently, SNPs were pruned for linkage 
disequilibrium based on criteria of r2 < 0.001 and kb = 10,000. Next, the 
F-statistic was computed to evaluate the strength of the IVs, with SNPs 
having F-statistic values below 10 considered weak IVs and thus 
eliminated (Supplementary Table S1). Lastly, palindromic SNPs were 
excluded. Additionally, PhenoScanner was utilized to eliminate SNPs 
associated with confounding factors (19).

Statistical analysis

We principal employed the inverse variance weighting (IVW) 
approach to analyze the causality between exposure risk and epilepsy. 
Significance was determined when p < 0.05. Additionally, supplementary 
techniques comprising the simple mode, MR-Egger, weighted median, 
and weighted mode were utilized. Heterogeneity was evaluated using 
Cochrane’s Q-test, while multiple validity analyses were performed 
utilizing MR-Egger and MR-PRESSO, with significance set at p < 0.05 for 
indicating heterogeneity and horizontal pleiotropy. All statistical analyses 
were performed utilizing the ‘TwoSampleMR’ package in R 4.3.2.

Results

The IVW analysis indicated that ischemic stroke (OR = 1.29, 95% CI 
1.04–1.60; p = 0.020), hypothyroidism (OR = 1.05, 95% CI 1.00–1.11; 
p = 0.048), high blood pressure (OR = 1.10, 95% CI 1.01–1.19; p = 0.028), 
high cholesterol (OR = 1.10, 95% CI 1.01–1.20; p = 0.024), HMGCR 

1 https://gwas.mrcieu.ac.uk/

(OR = 1.19, 95% CI 1.06–1.33; p  = 0.003), and beta-blocking agents 
(OR = 1.20, 95% CI 1.06–1.38; p = 0.006) are associated with an increased 
risk of epilepsy. Conversely, blood glucose levels (OR = 0.79, 95% CI 
0.66–0.94; p = 0.009), 25(OH)D (OR = 0.75, 95% CI 0.59–0.95; p = 0.020), 
and testosterone (OR = 0.62, 95% CI 0.42–0.92; p = 0.019) exhibited 
negatively related to the risk of epilepsy (Figure 2). However, the IVW 
analysis indicated that no causal association between age (p = 0.737), sex 
(p = 0.231), and epilepsy. Sensitivity analyses confirmed the robustness 
of these results. The results of the MR sensitivity analysis are presented 
in Table 2. During the heterogeneity test, all p-values derived from 
Cochrane’s Q statistic were found to be greater than 0.05, indicating a 
lack of heterogeneity among the SNPs. Additionally, the MR-Egger 
regression intercept, used to assess horizontal pleiotropy, did not indicate 
the presence of pleiotropy. The MR-PRESSO results also confirmed the 
absence of significant horizontal pleiotropy outliers (p > 0.05). Leave-
one-out analysis did not suggest that any individual SNPs had a 
significant impact on the overall results. Detailed results of the leave-
one-out analysis and single forest plots are shown in 
Supplementary Figures S1–S2. As depicted in the scatter plot in 
Figure  3, no evidence of horizontal pleiotropy was detected in the 
MR-Egger regression (p > 0.05). The funnel plot in Figure 4 showed no 
apparent bias, further confirming the robustness of our findings. 
However, according to Supplementary Table S2, the p value for IVW 
was >0.05 or each method showed an inconsistent direction, thus reverse 
MR analysis showed no causal relationship between epilepsy and these 
several risk factors. Additionally, sensitivity analyses confirmed the 
robustness of our findings (Supplementary Table S3).

Discussion

Our MR study investigated the causal association between nine 
previously identified risk factors and epilepsy. The study revealed that 
ischemic stroke, hypothyroidism, high cholesterol, hypoglycemia, 
high blood pressure, HMGCR usage, and beta-blockers usage are 
related to an increased risk of epilepsy. Conversely, higher levels of 
25(OH)D and testosterone were found to be  associated with a 
decreased risk of epilepsy. Future attention should be  given to 
screening for epileptogenesis risk in the management of patients with 
ischemic stroke, hypothyroidism, high cholesterol, hypoglycemia, 
hypertension, low levels of 25(OH)D and testosterone, and those on 
long-term HMGCR inhibitors and β-blockers. Regular screening and 

TABLE 1 Characteristics of genome-wide association study (GWAS) data.

Type Traits Source GWAS ID Ancestry Sample size

Outcome Epilepsy IEU ebi-a-GCST90013945 European 407,746

Exposure Ischemic stroke IEU ebi-a-GCST005843 European 34,217 cases/ 406,111 controls

Exposure Hypothyroidism or myxoedema IEU ebi-a-GCST90013893 European 405,357

Exposure High blood pressure IEU ebi-a-GCST90013966 European 407,746

Exposure Blood glucose levels IEU ebi-a-GCST90025986 European 400,458

Exposure High cholesterol IEU ebi-a-GCST90013932 European 407,746

Exposure Serum 25-Hydroxyvitamin D levels IEU ebi-a-GCST90000614 European 417,580

Exposure Testosterone UK Biobank ukb-d-30850_irnt European 13,585,069 SNPs

Exposure HMG CoA reductase inhibitors IEU ebi-a-GCST90018989 European 73,475 cases/ 216,910 controls

Exposure beta blocking agents IEU ebi-a-GCST90018986 European 31,700 cases/ 192,324 controls
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monitoring may be  necessary to facilitate early detection and 
intervention, potentially improving the overall prognosis for 
these patients.

The heightened risk of epilepsy following ischemic stroke has 
been documented in numerous prior cohort studies (20, 21). 

Nevertheless, establishing a causality between ischemic stroke and 
epilepsy still challenging due to the susceptibility of observational 
studies to other confounding factors and reverse causation. Our 
MR study revealed that each standard unit increase in ischemic 
stroke elevated the risk of epileptogenesis by 29%, aligning with 

FIGURE 2

Forest plots of the causal relationship of ischemic stroke, metabolic factors, and related medications with epilepsy in the result of IVW in the MR 
analysis.
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findings from previous research. The onset of seizures shortly after 
ischemic stroke may be attributed to localized ionic displacement 
and the release of elevated levels of excitotoxic neurotransmitters 
in ischemic injury sites. Conversely, epilepsy that emerges 
gradually during later stages may stem from potentially permanent 
lesions resulting from sustained neuronal excitability seizures 
(22–24).

Metabolic disorders have been identified as a significant factor in 
epileptogenesis (25). Thyroid hormones not only regulate energy 
metabolism but also play roles in neuronal survival, differentiation, 
and central nervous system energy expenditure. Several studies have 
demonstrated links between thyroid function and neurological 
disorders like dementia and depression (26). Moreover, thyroid 
hormones play an essential role in the pathophysiology of epilepsy (6). 
Our research indicates that hypothyroidism elevates epilepsy risk. 
Primarily, insufficient thyroid hormones due to hypothyroidism can 
slow neuronal metabolism and disrupt neurotransmitter synthesis and 
release (27, 28). Secondly, hypothyroidism can cause electrolyte 
imbalances like hyponatremia, which affect brain electrical activity 
and raise seizure risk (29–31). Prolonged hypothyroidism may also 
induce structural changes in specific brain regions, such as white 
matter damage, further increasing seizure susceptibility (32, 33).

A longitudinal study indicates that high blood pressure escalates 
the risk of late-onset epilepsy by 2 to 2.5 times, consistent with our MR 
analysis findings (7). Hypertension can trigger seizures through both 
direct and indirect pathways. The renin-angiotensin system may serve 
as a pivotal link between hypertension and epilepsy (34). Elevated 
blood pressure might contribute to cerebrovascular diseases such as 
cerebral infarction and hemorrhage, leading to brain damage, 
ischemic and hypoxic dysfunction, white matter lesions, and 
disruption of normal neuronal function, consequently heightening 

seizure susceptibility (35, 36). Furthermore, hypertension-induced 
systemic and localized inflammatory responses, along with oxidative 
stress products, can damage neurons and alter neuronal excitability, 
potentially inducing seizures (37, 38).

Prior studies consistently indicate that chronic glucose 
metabolism disorders frequently correlate with long-term 
epileptogenesis (39). Our research suggests that hypoglycemia 
increases the risk of epilepsy. The human brain heavily depends on 
glucose for energy, extracting sufficient amounts from the bloodstream 
to sustain normal functions. Persistent hypoglycemia triggers 
neuronal necrosis due to oxygen deprivation, subsequently leading to 
abnormal discharges capable of inducing seizures (40–43).

Disorders in brain cholesterol metabolism have been related to 
various neurological conditions like Parkinson’s disease, 
Alzheimer’s disease, and epilepsy (44–46). Our research indicates 
that each standard unit increase in cholesterol elevates epilepsy risk 
by 10 percent. Cholesterol might indirectly trigger epilepsy by 
impacting blood vessels, leading to cerebrovascular diseases and 
subsequently epilepsy. Excessive cholesterol accumulation, a 
crucial brain component, can not only increase membrane viscosity 
and decrease extrasynaptic neurotransmitter receptor mobility but 
also directly regulate numerous voltage-dependent and ligand-
gated ion channels, thus heightening excitotoxicity and focal 
neuronal death (47). This process may contribute to neurological 
complications following prolonged epilepsy. Additionally, 
neurosteroids have been proposed to influence the clinical course 
of epileptic disorders by modulating neurotransmission (48, 49).

The relationship between vitamin D deficiency and epilepsy has 
been extensively researched (50). Researches have indicated that 
correcting vitamin D deficiency can lead to improvements in seizures 
(51). While previous MR analyses have not identified a causality 

TABLE 2 MR sensitivity analysis results.

Exposures Analytical 
method

OR(95%CI) Q Q_pval egger_
intercept_P

MR-PRESSO_P

Ischemic stroke
MR Egger 2.27(0.70,7.40) 13.92 0.685

IVW 1.29(1.04,1.60) 12.84 0.685 0.355 0.705

Hypothyroidism or 

myxoedema

MR Egger 1.12(1.00,1.25) 94.49 0.883

IVW 1.05(1.00,1.11) 95.91 0.876 0.235 0.879

High blood pressure
MR Egger 1.26(1.00,1.60) 173.35 0.914

IVW 1.10(1.01,1.19) 174.85 0.909 0.221 0.909

Blood glucose levels
MR Egger 0.83(0.63,1.11) 97.19 0.504

IVW 0.79(0.66,0.94) 97.48 0.524 0.591 0.539

High cholesterol
MR Egger 1.16(1.01,1.34) 60.34 0.464

IVW 1.10(1.01,1.20) 61.18 0.469 0.362 0.487

Serum 25-Hydroxyvitamin 

D levels

MR Egger 0.96(0.64,1.43) 87.86 0.484

IVW 0.75(0.59,0.95) 90.07 0.448 0.141 0.468

Testosterone
MR Egger 0.63(0.32,1.24) 81.56 0.256

IVW 0.62(0.42,0.92) 81.56 0.283 0.962 0.293

HMG CoA reductase 

inhibitors

MR Egger 1.29(1.06,1.56) 106.62 0.048

IVW 1.19(1.06,1.33) 107.98 0.047 0.305 0.058

Beta blocking agents
MR Egger 1.65(1.08,2.51) 44.70 0.861

IVW 1.20(1.06,1.38) 47.00 0.825 0.135 0.823
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between 25(OH)D and epilepsy, our MR analysis suggests that each 
standard unit increase in 25(OH)D reduces seizure risk by 25% (52). 
Vitamin D, a steroid hormone, plays an important role in regulating 
calcium homeostasis, neuroprotection, and brain function and 
development. The activated form of vitamin D, 25(OH)D, is primarily 
implicated in seizures. The predominant mechanism in current 
seizure research involves an unbalance between GABAergic inhibitory 
signaling and glutamatergic excitatory signaling at the synapse. 
Activation of voltage-gated calcium channels is vital for neuronal 
processes like neurotransmitter release, excitation, and synaptic 
transmission. Deficiency in 25(OH)D decreases the expression of 
these channels, leading to increased calcium ions in neurons and 
subsequent production of nitric oxide (NO)-dependent neuronal 
nitric oxide synthase, resulting in oxidative stress damage to the 
neuronal endoplasmic reticulum (53). Therefore, 25(OH)D may 
confer neuroprotection by reducing hyperexcitability in epileptic 
patients through improvements in calcium and magnesium levels and 
by attenuating oxidative damage to cells via NO inhibition (54–56).

The association between sex steroid hormones and epilepsy is a 
topic of significant interest and has undergone extensive study (12). 
Nevertheless, the causality between hormones and epilepsy still 
somewhat ambiguous. Our MR analysis revealed that each standard 
deviation decrease in testosterone levels decreased the risk of epilepsy 
by 38%, lending crucial theoretical support to previous studies exploring 
testosterone therapy for epilepsy (57). There are several mechanisms 
through which testosterone may exert its antiepileptic effects. Firstly, 

testosterone exhibits neuroprotective properties and can modulate 
neural activity by reducing glutamate release and enhancing GABA 
function (58). Secondly, testosterone has been shown to mitigate 
neuroinflammation, thereby reducing the frequency and severity of 
seizures (59). Additionally, testosterone can influence neuronal 
excitability by modulating ion channel function, enhancing neuronal 
membrane stability, and decreasing the likelihood of neuronal discharge 
(60). Reduction of oxidative stress may also facilitate to the 
antiepileptogenic effects of testosterone (61). Finally, testosterone may 
reduce seizure risk by affecting neurotransmitter balance in the brain, 
thereby preserving normal neuronal function (62).

Many drugs have the potential to induce epilepsy, yet this type 
of epilepsy is often overlooked by clinicians. The mechanisms 
behind drug-induced seizures are diverse and may include direct 
effects on the central nervous system, electrolyte imbalances, 
metabolic disturbances, and more (63). HMGCR, an important 
statin, has primarily been associated with anticonvulsant effects in 
previous studies. However, our research revealed that HMGCR may 
actually increase the risk of epilepsy, possibly due to its ability to 
induce hypokalemia, a known seizure trigger (64). Additionally, 
HMGCR might interact with other antiepileptic medications, 
affecting their efficacy (65). HMGCR inhibitors may influence the 
plasma concentration of certain antiepileptic drugs by competing 
for their metabolic pathways, potentially altering their efficacy or 
increasing the risk of adverse effects. Additionally, HMGCR 
inhibitors might indirectly affect neuronal membrane stability by 

FIGURE 3

Scatter plots for the causal relationship of ischemic stroke, metabolic factors, and related medications with epilepsy. (A) ischemic stroke; 
(B) Hypothyroidism; (C) High blood pressure; (D) Blood glucose levels; (E) High cholesterol; (F) Serum 25  −  Hydroxyvitamin D levels; (G) Testosterone; 
(H) HMG CoA reductase inhibitors; (I) beta blocking agents.
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altering cholesterol metabolism, which could influence the seizure 
threshold. Moreover, the anti-inflammatory effects of statins may 
interact synergistically or antagonistically with the actions of specific 
antiepileptic drugs. Moreover, HMGCR may cross the blood–brain 
barrier and directly influence the central nervous system, potentially 
leading to seizures (66, 67). Past reports have also documented cases 
of seizures induced by beta receptor antagonists (68). Hypoglycemic 
seizures are a commonly reported serious adverse effect of 
propranolol (69). Our MR analysis demonstrated that each standard 
unit increase in beta-blocking agent administration raised the risk 
of epileptogenesis by 20%. Consequently, we  propose that beta-
blocking agents can induce epilepsy by inducing hypoglycemia and 
interfering with the efficacy of other antiepileptic drugs. Beta-
blockers may potentially impact the efficacy of antiepileptic drugs 
by reducing sympathetic nervous system activity and altering 
neurotransmitter balance in the brain. In certain cases, beta-blockers 
may indirectly influence the metabolism and clearance of 
antiepileptic drugs by affecting blood flow to the liver or kidneys. 
These changes could lead to lower plasma concentrations of the 
antiepileptic drugs, thereby reducing their effectiveness. Beta-
blockers cause hypoglycemia probably through direct inhibition of 
hepatic production of glucose and release of glucagon. In addition, 
by attenuating the counter-regulatory effects of adrenaline, thereby 
promoting sympathetic-induced glycogenolysis and reducing 
gluconeogenesis. However, an analysis showed differences between 
short- and long-half-life beta blockers (particularly nadolol) and 

non-selective and selective beta blockers in terms of the risk of 
hypoglycemia occurring (70). Studies have shown that the risk of 
hypoglycemia appears to be higher with the use of non-selective beta 
blockers and long-acting beta blockers.

While our MR study offers a thorough examination of the causal 
relationship between various risk factors, including ischemic stroke, 
metabolic factors, and associated medications, with epilepsy, it is vital 
to admit some limitations. Firstly, the predominance of GWAS data 
from European ethnic populations calls for caution when generalizing 
our findings to other ethnic groups. Secondly, due to the aggregated 
nature of our data, we  lacked access to detailed individual-level 
information for further stratified analyses. Additionally, although MR 
minimizes concerns regarding reverse causality and confounding 
factors, there may still exist some residual biases that could potentially 
impact the reliability of our results.

Conclusion

In summary, our study indicates that ischemic stroke, 
hypothyroidism, hypertension, high cholesterol, hypoglycemia, 
HMGCR inhibitors, and β-blockers may elevate the risk of epilepsy, 
whereas high levels of 25(OH)D may decrease the risk. These findings 
offer valuable insights for the tertiary prevention of epilepsy in clinical 
settings and suggest potential avenues for further research into the 
mechanisms underlying epilepsy.

FIGURE 4

Funnel plots for the causal relationship of ischemic stroke, metabolic factors, and related medications with epilepsy. (A) ischemic stroke; 
(B) Hypothyroidism; (C) High blood pressure; (D) Blood glucose levels; (E) High cholesterol; (F) Serum 25  −  Hydroxyvitamin D levels; (G) Testosterone; 
(H) HMG CoA reductase inhibitors; (I) beta blocking agents.
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