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Background: Predicting long-term survival in intensive care unit patients with

intracerebral hemorrhage (ICH) is crucial. This study aimed to develop a

platelet-to-white blood cell ratio (PWR) incorporated nomogram for long-term

survival prediction.

Methods: A retrospective analysis was conducted on 1,728 ICH patients in

the MIMIC-IV 2.2 database. The independent prognostic value of PWR for 1-

year mortality was assessed. A nomogram was developed using LASSO and Cox

regression to predict 1-year survival, incorporating PWR and other factors. The

performance of the nomogram was evaluated through calibration curves, area

under the curve, Delong test, net reclassification index, integrated discrimination

improvement, and decision curve analysis.

Results: The nomogram, which included age, weight, Glasgow Coma Scale

(GCS) score, mechanical ventilation, glucose, red blood cell (RBC) count, blood

urea nitrogen (BUN), and PWR, showed good predictive performance for 1-year

survival. The C-index was 0.736 (95% CI = 0.716–0.756) for the training set and

0.766 (95% CI = 0.735–0.797) for the testing set. Higher age and ventilation

increased mortality risk, while higher weight, GCS score, RBC count, and PWR

decreased risk. The nomogram outperformed conventional scores.

Conclusions: A nomogram incorporating PWR as a prognostic factor accurately

predicts long-term survival in ICH patients. However, validation in large-scale

multicenter studies and further exploration of biomarkers are needed.

KEYWORDS

intracerebral hemorrhage, Medical Information Mart for Intensive Care-IV database

(MIMIC-IV database), nomogram, platelet, white blood cell

Introduction

Intracerebral hemorrhage (ICH) accounts for about 15% of all strokes and imposes a

significant global burden in terms of disability-adjusted life years, often leading to various

levels of functional impairment (1). Unlike ischemic strokes, there are currently no effective

clinical treatments to prevent neuronal damage or promote neural repair for ICH (2, 3).

Therefore, it is essential to fully understand the severity of ICH prognosis early on and

identify risk factors that lead to poor outcomes in ICH patients to prepare for prevention

and treatment.
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Evaluating disease severity through scoring systems is beneficial

for assessing patient prognosis and adjusting treatment plans.

Many ICH scoring systems have been developed to date, primarily

combining basic patient information with parameters obtained

from computed tomography (CT) and neurological examinations

(4, 5). It is widely accepted that the pathophysiological process

of ICH consists of two stages: primary injury and more complex

secondary injury. Inflammation is closely related to the progression

of secondary injury and directly affects treatment outcomes (6).

Current research suggests that inflammation induced by ICH

manifests as changes in peripheral blood immune cells (7), with

many inflammation markers related to disease progression, such

as platelets, white blood cell (WBC) count, and neutrophils,

easily obtainable through routine laboratory tests. Moreover, ratios

of certain variables, such as the neutrophil-to-lymphocyte ratio

(NLR), provide more stable predictive performance compared to

single variables and have found widespread application in clinical

settings (8).

The platelet-to-white blood cell ratio (PWR), a newly

discovered inflammatory biomarker similar to NLR, has shown

excellent predictive performance in ischemic stroke patients,

although its role as an independent prognostic factor in ICH

patients remains to be confirmed (9–11). Given its unique

characteristics, PWR reflects both inflammation and coagulation

processes, which are key factors in the pathophysiology of ICH.

Unlike other indicators such as NLR, PWR provides a more

comprehensive view by combining information on platelet function

and immune response, making it a robust indicator of patient

status. Additionally, PWR is easily obtainable through routine

laboratory tests, making it a practical and accessible marker

for clinical use. Incorporating these readily available laboratory

markers into scoring systems may help create more convenient and

accurate prediction models (12). Additionally, while many scoring

systems have been developed, most only predict in-hospital or one-

month mortality rates, with few studies focusing on longer-term

outcomes such as 1-year prognoses (5).

In this study, we first examined the role of the PWR

in predicting ICH mortality. To more accurately assess the

prognosis of ICH patients, we developed a prediction model

incorporating PWR using the lasso method and multivariate

regression analyses and constructed corresponding nomograms for

predicting 3-month, 6-month, and 1-year survival. By validating

the nomograms, we evaluated the accuracy and reliability of this

model in predicting ICH survival. This study aims to provide

clinicians with a more effective tool for assessing the prognosis of

hemorrhagic stroke patients, thereby enabling the development of

more appropriate treatment plans.

Abbreviations: ICH, Intracerebral Hemorrhage; PWR, Platelet-to-White Blood

Cell Ratio; GCS, Glasgow Coma Scale; BUN, Blood Urea Nitrogen; RBC,

Red Blood Cell; APSIII, Acute Physiology Score III; OASIS, Oxford Acute

Severity of Illness Score; ROC, Receiver Operating Characteristic; NRI, Net

Reclassification Improvement; IDI, Integrated Discrimination Improvement;

DCA, Decision Curve Analysis; MIMIC-IV, Medical Information Mart for

Intensive Care IV; ICU, Intensive Care Unit; LASSO, Least Absolute Shrinkage

and Selection Operator; IL-6, Interleukin-6; TNF-α, Tumor Necrosis Factor-

alpha; NETs, Neutrophil Extracellular Traps; CT, Computed Tomography.

FIGURE 1

The study participant flow diagram.

Methods

Data source

We obtained patient data from the publicly available Medical

Information Mart for Intensive Care (MIMIC-IV, Version 2.2)

database (13). Developed by the Massachusetts Institute of

Technology Lab for Computational Physiology, MIMIC-IV

provides comprehensive data on 315,460 inpatients from 2008

to 2019. As all personal information has been deidentified using

random codes to replace patient identification, ethical approval or

informed consent was not required to access the database, ensuring

patient privacy. The authors (Jiake Xu and Wei Chen) have been

authorized to access the database.

Patients selection

The inclusion criteria for this study comprised patients with

ICH, identified using ICD-9 codes 431, and ICD-10 codes I61-

I62. Samples were excluded if patients were younger than 18 years

old or stayed in the hospital for <24 h. For patients admitted to

the hospital more than once, only the initial admission data were

used. Further details regarding the selection process are provided

in Figure 1.

Data extraction

Structured Query Language (SQL) with DBeaver (version

22.3.4) was used to extract baseline characteristics, comorbidities,

laboratory variables, and other data within the first 24 h after

intensive care unit (ICU) admission from the MIMIC-IV 2.2

database. Baseline characteristics included age, gender, weight,

ethnicity, and whether the patient smokes or has alcohol abuse
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issues. Severity at admission was measured by the Glasgow

Coma Scale (GCS), Acute Physiology Score III (APSIII), and

Oxford Acute Severity of Illness Score (OASIS). Comorbidities

included heart disease, chronic pulmonary disease, rheumatic

disease, diabetes, renal disease, malignant cancer, liver disease, and

hypertension. The maximum values for the first 24 h of laboratory

variables were collected after admission, including hemoglobin,

platelet count, WBC, red blood cell (RBC) count, blood urea

nitrogen (BUN), creatinine, glucose, prothrombin time (PT),

and activated partial thromboplastin time (APTT). For patients

with available imaging data, hematoma volume, presence of

intraventricular hemorrhage, and hematoma origin were extracted

to calculate the ICH Score. The PWR is defined as the ratio of

platelet count to WBC. For missing data in continuous variables,

the random forest imputation method was used to fill in the gaps.

Variables with missing values ≥20% were excluded.

Outcome

The primary outcome in this study was 1-year survival.

Secondary outcomes included 3- and 6-month survival.

Statistical methods

Data processing and analysis were conducted using R software

(4.2.2). Descriptive statistics were utilized to summarize continuous

variables. The Mann-Whitney test was applied to non-normally

distributed continuous variables, while the Chi-square test was

employed for binary data. Patients were randomly divided 7:3

into a training set and a testing set. In the training set, logistic

regression was used to evaluate the predictive value of PWR as an

independent predictor of survival and ICU-related complications

in patients with ICH. The optimal cutoff value of PWR was

identified using receiver operating characteristic (ROC) curves.

Variable selection was performed using LASSO regression, and a

multivariable Cox regressionmodel was used to create a nomogram

of independent predictors. The model’s performance was assessed

using calibration curves, area under the curve (AUC), Delong test,

net reclassification improvement (NRI), integrated discrimination

improvement (IDI), decision curve analysis (DCA), and Kaplan-

Meier curves in both the training and testing sets.

Results

Population and baseline characteristics

In the MIMIC-IV version 2.2 database, a total of 2,914 ICH

cases were identified among patients aged 18 years and older.

We focused on 1,728 patients with ICH after excluding duplicate

records, multiple admissions, and short hospital/ICU stays. These

patients were then randomly divided into the training set (n =

1,212) and testing set (n = 516). The study flow diagram is shown

in Figure 1, and the baseline characteristics of the training set

and testing set patients are detailed in the supporting material

(Supplementary Table 1). Among the patients in the training

set, a total of 708 patients survived (Supplementary Table 2).

Factors such as older age, certain medical conditions, and ICU-

related complications (including infection, kidney failure, and

hydrocephalus) were associated with higher mortality rates in

the training set. Additionally, significant differences in laboratory

indicators, including the PWR, were observed between the survival

and non-survival groups.

PWR as an independent prognostic factor

The results in Table 1 show the relationship between PWR and

the mortality and complications of ICH patients after adjusting

for all relevant covariates (including age, weight, ethnicity, gender,

underlying diseases, and laboratory indicators). After adjusting

for logistic regression, PWR showed significant associations with

3-month, 6-month, and 1-year mortality rates, as well as the

development of hydrocephalus, nosocomial infections, and kidney

failure. For 1-year mortality, ROC analysis indicated that PWR

had a C-index of 0.6 and an AUC of 0.603 (95% CI, 0.571–

0.636), with a sensitivity of 39.1% and a specificity of 80.93% at

an optimal cutoff value of 14.846 (Supplementary Figure 1). Based

on the cutoff value, the 1,212 patients were divided into a low

PWR group (PWR ≤ 14.846, n = 327) and a high PWR group

(PWR > 14.846, n = 885), as shown in Supplementary Table 3.

Compared with patients with PWR > 14.846, patients in the PWR

≤ 14.846 group had a significantly longer ICU stay (4.88 vs. 3.62

days, p < 0.001) and faced higher 1-year mortality (58.7 vs. 35.3%,

p < 0.001).

Construction of nomogram

In this study, we used LASSO analysis to identify the most

valuable predictive variables, employing the Lambda.1se strategy

to determine the optimal Lambda value (Supplementary Figure 2).

We selected nine potential predictor variables based on significant

TABLE 1 Comparison of unadjusted and risk-adjusted outcomes by PWR

status.

Outcomes Unadjusted p-value Adjustment p-value

OR (95% CI) OR (95% CI)

Mortality

3M mortality 0.958 (0.944, 0.972) <0.001 0.967 (0.951, 0.983) <0.001

6M mortality 0.963 (0.949, 0.976) <0.001 0.970 (0.955, 0.985) <0.001

1 Y mortality 0.974 (0.961, 0.986) <0.001 0.98 (0.966, 0.995) 0.008

Complication

Cerebral

edema

0.986 (0.974, 0.998) 0.02 0.987 (0.975, 1.00) 0.056

Hydrocephalus 0.967 (0.949, 0.985) <0.001 0.979 (0.959, 0.998) 0.034

Nosocomial

infections

0.965 (0.952, 0.977) <0.001 0.981 (0.968, 0.995) 0.006

Kidney failure 0.945 (0.925, 0.966) <0.001 0.957(0.933, 0.980) <0.001
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coefficient estimates from the LASSO regression analysis,

indicating a strong association with the response variable.

Two of these variables represented different age groups, which

we combined to reduce the number of input variables to

eight for the final model. These variables included weight,

GCS, mechanical ventilation, RBC, BUN, glucose, PWR,

and age. We performed Cox regression analysis using the

backward method to identify the most significant predictors

of the outcome variable for 1-year survival in patients

(Table 2). Based on these results, we constructed a clinical

prediction model and presented it as a nomogram to evaluate

patient survival rates (Figure 2), with an example shown in

Supplementary Figure 3.

TABLE 2 Cox regression analysis of significant predictors for 1-year

survival in patients.

Variables HR 95% CI p-value

Age group (59–80) 2.390 1.809–3.157 <0.001

Age group (>80) 3.854 2.879–5.160 <0.001

Weight 0.991 0.986–0.997 0.001

GCS 0.911 0.887–0.935 <0.001

Mechanical Ventilation 1.734 1.421–2.115 <0.001

RBC 0.790 0.681–0.917 0.002

BUN 1.006 1.002–1.010 0.003

Glucose 1.029 1.009–1.049 0.004

PWR 0.583 0.483–0.703 <0.001

GCS, GlasgowComa Scale; PWR, platelet-to-white blood cell ratio; BUN, blood urea nitrogen;

RBC, red blood cell.

Nomogram evaluation

We assessed the predictive model using calibration curves. The

curves for 3, 6 months, and 1 year closely matched the 45-degree

line, demonstrating high accuracy and reliability of the model’s

predicted survival probabilities compared to observed survival rates

(Figures 3A, B). The C-index for the 1-year survival rate was

calculated for both the training and testing sets, yielding 0.736

(95% CI = 0.716–0.756) for the training set and 0.766 (95% CI =

0.735–0.797) for the testing set.

We then used ROC, Delong tests, NRI, and IDI to compare

the nomogram with traditional scoring systems. In the training

set, the AUCs for the nomogram, APSIII, and OASIS scores

for the 3-, 6-month, and 1-year survival rates were as follows:

nomogram, 0.794, 0.793, and 0.793; APSIII, 0.733, 0.732, and

0.726; and OASIS, 0.735, 0.723, and 0.710. In the testing set,

the AUCs for the nomogram, APSIII, and OASIS scores for the

3-, 6-month, and 1-year survival rates were: nomogram, 0.811,

0.797, and 0.794; APSIII, 0.741, 0.716, and 0.705; and OASIS,

0.766, 0.734, and 0.727. The nomogram consistently outperformed

APSIII and OASIS scores, as indicated by higher AUC values

(Figures 3C–H). The DeLong test confirmed the nomogram’s

superiority over APSIII and OASIS with statistically significant

differences (p < 0.001) in both the training and testing sets.

Specifically, the categorical NRI for the nomogram compared to

APSIII was 0.351 (95% CI: 0.269–0.423) in the training set and

0.419 (95% CI: 0.315–0.527) in the testing set, showing significant

improvements in the ability to correctly classify patients into risk

categories. Similarly, the continuousNRI was 0.543 (95%CI: 0.455–

0.649) in the training set and 0.564 (95% CI: 0.438–0.713) in

the testing set, reflecting the nomogram’s enhanced discriminative

performance. The IDI values for the nomogram compared to

FIGURE 2

The nomogram for patients with ICH. GCS, Glasgow Coma Scale; PWR, platelet-to-white blood cell ratio; BUN, blood urea nitrogen; RBC, red blood

cell.
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FIGURE 3

Evaluation of the nomogram. (A, B) Calibration curves of Nomogram in the training set and testing set, respectively. (C–E) The ROC curves of

3-month, 6-month, and 1-year in the training set, respectively. (F–H) The ROC curves of 3-month, 6-month, and 1-year in the testing set,

respectively.

APSIII were 0.103 (95% CI: 0.074–0.147, p < 0.001) in the training

set and 0.132 (95% CI: 0.075–0.201, p < 0.001) in the testing

set, further confirming the superior ability of the nomogram to

differentiate between survival and non-survival. When compared

to OASIS, the nomogram also showed significant improvements

in both NRI and IDI metrics (Table 3 and Supplementary Table 4).

Regarding the traditional ICH score, only 124 patients had

complete imaging data available. In this imaging testing dataset,

the Delong test confirmed that the nomogram performed as well

as the traditional ICH score (p > 0.05; Supplementary Table 5;

Supplementary Figures 4A, B).

Clinical application of nomograms

When assessing clinical utility, DCA was used to compare

the clinical benefits of the nomogram with APSIII and OASIS

scores (Figure 4). Compared to APSIII and OASIS scores, the

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2024.1464216
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2024.1464216

nomogram provided better predictive ability when the threshold

probability was between 5 and 90% in the training set and threshold

probability >5% in the testing set (3-month: training set 5–75%,

testing set 5–70%; 6-month: training set 5–90%, testing set >5%).

The Kaplan-Meier curves also indicated that the nomogram could

effectively identify low-risk, medium-risk, and high-risk patients

(Figure 5).

Discussion

There Numerous studies have focused on predicting mortality

rates for patients with ICH in the ICU, primarily concentrating

on in-hospital or 30-day survival, but long-term survival is also

significant (14). In this study, we developed and validated a

nomogram for predicting long-term survival after ICU discharge

in ICH patients.

We adjusted for known predictors of mortality after ICH

and identified PWR as an independent prognostic factor for

3-, 6-month, and 1-year mortality in ICH patients, as well

as for concurrent infection, kidney injury, brain edema, and

hydrocephalus during ICU stay. Using LASSO and multivariate

COX regression, we identified eight independent prognostic factors

for 1-year survival: PWR, age, weight, GCS score, mechanical

ventilation, glucose, RBC, and BUN. These variables were then

used to construct a nomogram for assessing long-term survival in

ICH patients.

Nomograms are widely used in clinical diagnosis and prognosis

assessment. APSIII and OASIS are commonly used severity scores

in the ICU, incorporating laboratory indicators within 24 h of

ICU admission (15). One study demonstrated that higher acute

physiology scores upon admission are independently associated

with 1-year survival after ICU discharge and can serve as predictive

scores for long-term prognosis in ICU patients (16). The ICH score,

the most widely used clinical short-term prediction scale for ICH,

has been validated for assessing 1-year mortality and functional

outcomes following acute ICH (17, 18). Therefore, APSIII, OASIS,

and ICH scores were chosen for comparison.

The effectiveness of the nomogram was confirmed through

calibration curves, AUC, Delong test, NRI, IDI, and DCA.

Previous studies have shown that NRI, IDI, and DCA are reliable

measures for assessing predictive models (19–21). Our findings

align with this, demonstrating that the new nomogram improves

risk stratification and aids clinicians in targeting treatments

more effectively. The categorical NRI values confirm that the

nomogram enhances patient risk classification compared to

traditional scoring systems, enabling better identification of high-

risk patients. Additionally, the continuous NRI and IDI further

support the nomogram’s predictive performance, enhancing its

ability to distinguish between survival and non-survival outcomes.

These improvements underscore the nomogram’s clinical utility, as

demonstrated by DCA, which highlights its practical benefits for

risk assessment and decision-making.

This study is the first to examine the relationship between

PWR and 3-, 6-month, and 1-year mortality risk in ICU patients

with ICH. The model constructed with PWR demonstrates

better variable usability and predictive performance compared to

commonly used scoring systems. By providing a quick and reliable

method for assessing patient prognosis, the nomogram can be

easily integrated into daily clinical workflows, helping clinicians

prioritize resources, decide on intervention intensity, and engage

inmore informed discussions with patients and their families about

expected outcomes.

Age is an independent prognostic factor for in-hospital and

long-term mortality in ICH patients, as confirmed by most studies

(22). Our study found that older patients face a higher 1-year

mortality risk, with patients aged 58–80 and over 80 having a 139.0

and 285.4% higher risk, respectively, compared to those under

58. Weight is closely linked to mortality rates in ICH patients.

Previous studies have shown that underweight patients have a

higher mortality risk, while overweight or obese patients have a

reduced long-term mortality risk (23, 24). These findings suggest

that patients’ obesity status should be considered as an indicator of

metabolic reserve capacity and viability. In our study, every 1-unit

increase in weight resulted in a 0.9% decrease in 1-year mortality

risk, indicating that patients with higher weight had a relatively

lower mortality risk.

Consistent with other studies, we found that GCS scores

and the need for mechanical ventilation during the ICU stay

were prognostic factors for ICH patient mortality. GCS scores

have strong predictive value for both short-term and long-term

mortality in ICH patients (25, 26). Our study revealed that for

every one-point increase in GCS score, the 1-year mortality risk

decreased by 8.9%, indicating that patients with higher GCS scores

had a relatively lower mortality risk. Mechanical ventilation is

often necessary for ICH patients in the ICU to manage respiratory

rhythm abnormalities and maintain appropriate oxygenation and

carbon dioxide levels. However, patients on mechanical ventilation

may have higher rates of infection and mortality (27, 28). Our

study confirms that ICH patients requiring mechanical ventilation

have a 73.4% higher 1-year mortality risk than those who do not.

This emphasizes the importance of carefully considering the timing

and indications of mechanical ventilation as a prognostic factor for

long-term mortality after ICH.

In our nomogram, we incorporated laboratory indicators such

as glucose, BUN, RBC count, and PWR, which are straightforward

and readily obtainable. Higher levels of BUN and blood glucose

correlate with poorer prognosis. BUN, a byproduct of protein

metabolism, serves as a clinical biomarker of kidney function.

Recent studies have demonstrated that elevated BUN levels are

linked to poor outcomes in various diseases (29, 30). Similarly, high

blood glucose levels have been connected to unfavorable functional

outcomes following ICH (31). In our nomogram, abnormal blood

glucose levels in ICH patients are a risk factor for 1-year mortality,

with each one-unit increase in blood glucose increasing the risk

of 1-year mortality by 2.9%. This suggests that elevated blood

glucose levels within the first 24 h are associated with a higher

mortality risk.

RBC-related indicators, such as hemoglobin and red cell

distribution width (RDW), have been linked to post-stroke

mortality, clinical outcomes, and functional recovery (32). Lower

RBC levels might indicate impaired brain oxygenation capacity,

and red blood cell transfusion can improve survival rates in ICH

patients (33). In our study, we included RBC-related indicators,

such as hemoglobin and RBC count, but only RBC count was

included in the final nomogram. Multivariate Cox regression
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TABLE 3 Evaluation of the nomogram for 1-year survival in the training and testing sets.

Test Training set Testing set

Estimate (Z
for DeLong test)

95% CI p-value Estimate (Z
for DeLong test)

95% CI p-value

DeLong test

Nomogram:APS3 4.700 <0.001 4.025 <0.001

Nomogram:OASIS 6.169 <0.001 3.453 <0.001

Categorical NRI

Nomogram:APS3 0.351 0.269–0.423 0.419 0.315–0.527

Nomogram:OASIS 0.279 0.216–0.343 0.206 0.102–0.324

Continuous NRI

Nomogram:APS3 0.543 0.455–0.649 0.564 0.438–0.713

Nomogram:OASIS 0.500 0.388–0.612 0.417 0.219–0.575

IDI

Nomogram:APS3 0.103 0.074–0.147 <0.001 0.132 0.075–0.201 <0.001

Nomogram:OASIS 0.103 0.066–0.141 <0.001 0.121 0.065–0.187 <0.001

FIGURE 4

Decision-curve analysis of nomogram. (A–C) The DCA curves of 3-month, 6-month, and 1-year in the training set, respectively. (D–F) The DCA

curves of 3-month, 6-month, and 1-year in the testing set, respectively.
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FIGURE 5

Kaplan-Meier curves of nomogram. (A) The Kaplan-Meier curves of nomogram in the training set. (B) The Kaplan-Meier curves of nomogram in the

testing set.

analysis showed that for every one-unit increase in RBC count, the

risk of 1-year mortality decreased by 21%. Thus, within a certain

range, a higher red blood cell count is associated with a relatively

lower risk of death.

PWR is a newly identified inflammatory biomarker (11).

Following ICH, white blood cells play a crucial role in the body’s

immune response and inflammatory regulation (34). Higher white

blood cell counts usually indicate a more severe inflammatory

response (35). Lower platelet counts in ICH patients may suggest

reduced coagulation function, leading to a poorer prognosis (36).

PWR, calculated as the ratio of platelet count to white blood cell

count, captures both aspects. A higher PWR value may indicate

a milder inflammatory response and better coagulation function,

making it a useful indicator for predicting the prognosis of ICH.

Patients with PWR >14.846 had a 41.7% lower 1-year mortality

risk compared to those with PWR < 14.846, indicating a better

prognosis for higher PWR values.

In summary, we developed a nomogram that includes PWR

to evaluate its role in predicting the prognosis of ICH patients

after ICU discharge. This nomogram offers clinicians a practical

tool for assessing the survival rates of ICH patients at 3, 6

months, and 1 year. However, there are limitations to our study.

Firstly, the study is based on a single-center retrospective design

with a relatively small sample size, which may introduce patient
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selection bias. Thus, our findings require validation through

larger-scale multicenter studies. Additionally, while we assessed 1-

year mortality, the exact timing (whether during ICU stay or after

discharge) was not recorded. Future studies should differentiate

between these time points to better understand PWR’s long-

term prognostic value. Finally, while our study focused on PWR

and its predictive value for long-term mortality in ICH patients,

there are other emerging biomarkers and pathways that warrant

exploration in future research. Recent studies have highlighted the

potential role of neutrophil extracellular traps (NETs), fibrinogen,

and pro-inflammatory cytokines such as IL-6 and TNF-α in the

progression of ICH (37–39). Incorporating these additional factors

may improve the model’s ability to predict patient prognosis and

guide clinical decision-making.

Conclusion

In conclusion, we established a predictive nomogram to assess

the long-term survival of ICH patients after ICU discharge based

on several clinical and laboratory parameters, including the newly

identified inflammatorymarker PWR. Our study showed that PWR

is a useful indicator for predicting the prognosis of ICH, and our

nomogram achieved good predictive performance compared to

commonly used scales in the ICU.
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