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Dongliang Lv 1†, Peng Feng 1†, Xueying Guan 1, Zhaona Liu 1, 
Dongfang Li 1, Cunshui Xue 1*, Bo Bai 1* and Christian Hölscher 2

1 Second Hospital, Shanxi Medical University, Taiyuan, China, 2 Henan Academy of Innovations in 
Medical Science, Brain Institute, Zhengzhou, China

Parkinson’s disease (PD) is a chronic, progressive neurological disorder primarily 
affecting motor control, clinically characterized by resting tremor, bradykinesia, 
rigidity, and other symptoms that significantly diminish the quality of life. Currently, 
available treatments only alleviate symptoms without halting or delaying disease 
progression. There is a significant association between PD and type 2 diabetes 
mellitus (T2DM), possibly due to shared pathological mechanisms such as insulin 
resistance, chronic inflammation, and mitochondrial dysfunction. PD is caused by 
a deficiency of dopamine, a neurotransmitter in the brain that plays a critical role in 
the control of movement. Glucose metabolism and energy metabolism disorders 
also play an important role in the pathogenesis of PD. This review investigates the 
neuroprotective mechanisms of glucagon-like peptide-1 (GLP-1) and its receptor 
agonists, offering novel insights into potential therapeutic strategies for PD. GLP-1 
class drugs, primarily used in diabetes management, show promise in addressing 
PD’s underlying pathophysiological mechanisms, including energy metabolism and 
neuroprotection. These drugs can cross the blood–brain barrier, improve insulin 
resistance, stabilize mitochondrial function, and enhance neuronal survival and 
function. Additionally, they exhibit significant anti-inflammatory and antioxidative 
stress effects, which are crucial in neurodegenerative diseases like PD. Research 
indicates that GLP-1 receptor agonists could improve both motor and cognitive 
symptoms in PD patients, marking a potential breakthrough in PD treatment and 
prevention. Further exploration of GLP-1’s molecular mechanisms in PD could 
provide new preventive and therapeutic approaches, especially for PD patients with 
concurrent T2DM. By targeting both metabolic and neurodegenerative pathways, 
GLP-1 receptor agonists represent a multifaceted approach to PD treatment, 
offering hope for better disease management and improved patient outcomes.
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1 Introduction

Parkinson’s disease (PD) is one of the most disabling diseases globally (1). The etiology of 
PD is multifactorial. Currently, diagnosis is mainly based on its characteristic symptoms and 
signs, such as resting tremor, bradykinesia, and rigidity, which significantly reduce the patient’s 
quality of life. Although there are some medications and therapies available to alleviate the 
symptoms of PD, there is no cure for the disease. As PD progresses, patients eventually become 
severely disabled due to loss of motor control, imposing a heavy social burden (2–5). According 
to statistics, approximately 9.4 million people worldwide had PD in 2020, and the incidence 
is rising with global aging, especially in high-income and some middle-income countries (6, 7).

Type 2 diabetes mellitus (T2DM) is considered one of the risk factors for PD (8). 
Epidemiological studies have found that patients with T2DM have a significantly increased risk 
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of developing PD (9–11). This association may be  due to shared 
pathological mechanisms, including insulin resistance, chronic 
inflammation, and mitochondrial dysfunction (12). Additionally, 
abnormal insulin signaling pathways in T2DM patients may lead to 
neurodegeneration, increasing the risk of PD. Some experimental studies 
have also shown that diabetes medications, such as insulin sensitizers, 
may have protective effects on PD patients, further supporting the link 
between the two diseases. Currently, studies have found impaired insulin 
signaling and desensitization of insulin receptors in the brains of PD 
patients (13, 14). These phenomena have a complex relationship with the 
pathogenesis of Parkinson’s disease, as the onset of Parkinson’s disease is 
closely related to disturbances in glucose metabolism and energy 
conversion disorders. From these perspectives, research on diabetes 
medications may provide more possibilities for PD treatment.

2 Dopaminergic neurotransmission in 
PD pathogenesis

The dopaminergic neurotransmission in PD pathogenesis involves 
the loss and apoptosis of dopaminergic neurons in the brain, as well as 
a reduction in dopamine levels, leading to an absolute deficiency of 
dopamine (15). The exact cause of PD is not fully understood, but 
research suggests it may involve a combination of genetic and 
environmental factors. Most patients with Parkinson’s disease are over 
60 years old, but there are cases where it appears at a younger age, 
known as early-onset PD. Dopamine (DA) is a crucial neurotransmitter. 
PD actually involves dysfunction in dopamine metabolism in many 
parts and regions of the brain, including synthesis, secretion, transport, 
reuptake, elimination, and receptor binding of DA (16). In dopaminergic 
neurons, tyrosine undergoes conversion to L-DOPA through the action 
of tyrosine hydroxylase (TH). Subsequently, L-DOPA is decarboxylated 
by aromatic L-amino acid decarboxylase (AADC) to produce DA. Most 
DA is transported to synaptic vesicle storage pools by vesicular 
monoamine transporter 2 (VMAT2) on the synaptic vesicle membrane, 
with a very low cytoplasmic DA concentration (17). When a nerve 
impulse reaches the synapse, it triggers the release of DA from synaptic 
vesicles into the synaptic cleft. Once released, DA binds to and activates 
dopamine receptors located on the postsynaptic membrane. The 
dopamine transporter (DAT) controls the extracellular concentration 
of DA, maintaining DA balance and regulating neurotransmitter 
signaling intensity. The more DAT, the stronger the ability to reuptake 
DA into the presynaptic membrane (18). DAT dysfunction can lead to 
dopamine system imbalance, causing related neurological diseases such 
as depression, attention deficit hyperactivity disorder, and cognitive 
impairment. Basic and clinical experiments have shown that reducing 
neurotransmitter reuptake by using transporter inhibitors, increasing 

the neurotransmitter content in the central synaptic cleft, is effective for 
treating neurological diseases (19). The degradation of free DA in 
dopaminergic neurons can proceed through two parallel pathways. In 
the first pathway, DA is deaminated by monoamine oxidase (MAO) to 
form 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is then 
oxidized by aldehyde dehydrogenase (ALDH) to form 
3,4-dihydroxyphenylacetic acid (DOPAC). Finally, DOPAC undergoes 
methylation by catechol-O-methyltransferase (COMT) to form 
homovanillic acid (HVA). In the second pathway, DA is first converted 
to 3-methoxytyramine (3-MT) by COMT, and then sequentially acted 
upon by MAO and ALDH to eventually produce HVA (20, 21). 
Disruption of DA homeostasis leads to a reduction in DA, exacerbating 
PD symptoms, which is the basic mechanism of PD pathogenesis.

3 PD pathogenesis and glucose 
metabolism and energy conversion 
disorders

The pathogenesis of PD is linked to disturbances in glucose 
metabolism and energy conversion disorders. PD is closely related to 
energy metabolism imbalances in the dopamine system. PD patients 
generally have lower energy metabolism levels and lower efficiency of 
energy conversion in the body. A study found that the basal metabolic 
rate of PD patients was significantly reduced, indicating a lower level 
of energy consumption. Additionally, motor dysfunction in PD 
patients leads to reduced physical activity, further affecting energy 
consumption and metabolism (22). These findings suggest the 
presence of energy conversion disorders in PD patients, which may 
be closely related to the pathophysiological mechanisms of the disease. 
Current research has shown that mild cognitive impairment in 
Parkinson’s patients is associated with brain energy metabolism (23). 
The function of the dopamine system is highly complex, and the 
processes of dopamine synthesis, secretion, transport, reuptake, 
elimination, and receptor binding are all closely related to energy 
metabolism. Mitochondrial dysfunction, insulin resistance, and 
glucose metabolism abnormalities collectively lead to insufficient 
energy supply and neuronal damage, with insulin resistance and 
mitochondrial dysfunction being key pathways affecting energy 
metabolism imbalance in PD patients.

3.1 PD and insulin resistance

Insulin resistance (IR) is usually considered a systemic response 
or reduced sensitivity to insulin effects. IR is not only a marker of 
T2DM but also a significant factor leading to PD. Compared to 
age-matched controls, insulin resistance in the brains of PD patients 
is independent of peripheral insulin resistance and manifests as severe 
abnormalities in brain insulin signal transduction. Patients with PD 
primarily exhibit a significant loss of insulin receptor mRNA in the 
substantia nigra pars compacta, increased insulin IR, and reduced 
activation of molecules such as insulin receptor substrate 1 (IRS1) and 
protein kinase B (Akt) within the insulin metabolic pathway (24). On 
one hand, IR leads to abnormal glucose uptake and oxidation, reduced 
glycogen synthesis, and decreased ability to inhibit lipid metabolism, 
resulting in glucose metabolism imbalance. Glucose homeostasis 
abnormalities can lead to chronic hyperglycemia, causing oxidative 
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stress. Oxidative stress activates microglia and reactive astrocytes, 
leading to inflammation and subsequent cellular damage (25). In 
summary, brain IR in PD ultimately leads to dopaminergic cell 
damage by affecting energy metabolism. On the other hand, the major 
pathological changes in PD include abnormal protein aggregation, 
neuroglial dysfunction, oxidative stress, glutamate toxicity, calcium 
overload, and mitochondrial dysfunction. Abnormalities in energy 
metabolism may underlie the vulnerability of dopaminergic neurons 
in the substantia nigra of PD patients (26). Mitochondrial dysfunction, 
improper protein processing, and oxidative stress are direct 
consequences of metabolic abnormalities; oxidative stress, calcium, 
and glutamate toxicity overload may also lead to energy deficiencies, 
forming a vicious cycle with α-synuclein accumulation.

Under normal circumstances, insulin maintains the NAD(+)/
NADH ratio by activating the phosphoinositide 3-kinase/protein 
kinase B (PI3K/AKT) pathway and inhibiting the forkhead box 
protein O1/heme oxygenase 1 (Foxo1/Hmox1) pathway, thereby 
mediating the activation of the sirtuin 1/peroxisome proliferator-
activated receptor-gamma coactivator 1-alpha (SIRT1/PGC-1α) 
pathway and regulating mitochondrial physiological functions (27). 
Additionally, another downstream substrate of the insulin-induced 
PI3K/AKT pathway is serine phosphorylation at the 133rd position of 
CREB, which increases mitochondrial membrane potential, 
hexokinase activity, NAD(P)H redox state, and intracellular ATP 
levels (28). When insulin resistance occurs, mitochondrial-related 
protein levels change, mitochondrial membrane potential decreases, 
calcium homeostasis is disrupted (29), and reactive oxygen species 
(ROS) production increases, leading to cell death. Normal insulin 
function is closely related to mitochondrial function and dynamic 
balance, and insulin resistance directly leads to mitochondrial 
dysfunction. Therefore, IR is a new effective target for systemic PD 
treatment, especially in the brain (30).

3.2 PD and mitochondrial dysfunction

Mitochondria are the most common organelles in eukaryotic 
cells, generating energy through cellular oxidative phosphorylation, 
converting adenosine diphosphate (ADP) to adenosine triphosphate 
(ATP), and providing energy for neurons. Mitochondria play a crucial 
role in electron transport and oxidative phosphorylation (31). 
Increasing evidence suggests that mitochondrial dysfunction is central 
to many neurodegenerative diseases, such as PD, Alzheimer’s disease 
(AD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease 
(HD) (32–37).

During oxidative phosphorylation, the ROS produced by normally 
functioning cells must be kept at low levels. Mitochondrial dysfunction 
is a central feature of PD pathogenesis, especially through interference 
with Complex I and Complex II of the electron transport chain (ETC). 
This dysfunction leads to reduced ATP production and increased ROS 
formation, which results in oxidative stress and neuronal damage. 
Studies have shown that Complex I activity is diminished in both 
post-mortem brain tissue and peripheral blood cells of PD patients 
(38, 39). A new preclinical study at Northwestern University’s Feinberg 
School of Medicine found that disrupting complex I  function in 
mouse dopaminergic neurons led to progressive PD-related motor 
deficits, with loss of dopamine release in the substantia nigra being 
critical for motor deficits (40).

Previous studies have shown that mitochondrial dysfunction 
related to PD can be  caused by various factors, including 
mitochondrial bio-genetic defects, increased ROS production, 
mitophagy defects, transport disorders, electron transport chain 
dysfunction, mitochondrial dynamics changes, and mitochondrial 
calcium imbalance. If this dysfunction is not promptly blocked, it will 
eventually lead to cell damage and death (41). Substantia nigra-striatal 
neurons have higher energy demands than other cells, making them 
more susceptible to mitochondrial dysfunction (42). Some studies 
have shown reduced expression of major components of the electron 
transport chain in the striatum, frontal cortex, and substantia nigra of 
PD patients (43). The mitochondrial oxidative phosphorylation 
system comprises the ETC and ATP synthase, with mitochondrial 
respiratory chain complex I (CI) being a crucial component located 
on the inner mitochondrial membrane. Complex I dysfunction is 
considered a major factor in PD pathogenesis (44). ROS in cells 
mainly originate from mitochondrial complexes I and III (45). ETC 
abnormalities lead to significant loss of mitochondrial bioenergetic 
function and oxidative stress, increasing neurons’ susceptibility to 
excitotoxic damage, leading to PD (46). MPP+, a metabolite of MPTP, 
is a complex I  inhibitor. When MPP+ enters cells, it inhibits 
mitochondrial complex I  enzyme and NADH–ubiquinone 
oxidoreductase, causing ROS formation and mitochondrial electron 
leakage (47). MPP + -induced oxidative stress promotes α-synuclein 
accumulation and misfolding in the brain, leading to neurotoxicity 
(48). These findings illustrate the role of mitochondrial defects in 
increasing oxidative stress and reducing ATP synthesis, which leads 
to increased neuronal vulnerability. Toxins like MPP+ and rotenone, 
which inhibit Complex I, cause a buildup of ROS, reinforcing the 
connection between ETC dysfunction and disease progression in PD.

Changes in mitochondrial dynamics include the highly dynamic 
process of fission-fusion. Mitochondrial fission is controlled by 
dynamin-related protein 1 (Drp1) and mitochondrial fission protein 
1 (FIS1). When mitochondria signal for mitosis, Drp1 translocates 
from the cytoplasm to the outer mitochondrial membrane, interacts 
with FIS1, and forms a spiral structure around the mitochondria to 
split them (49). Compared to fission, mitochondrial fusion is regulated 
by mitochondrial fusion proteins 1/2 (Mfn1/2) and optic atrophy 1 
(OPA1), which control the fusion of the inner mitochondrial 
membrane (IMM) and outer mitochondrial membrane (OMM), 
respectively (50). Mitochondrial fission is associated with apoptosis 
(51), and increased fission can lead to mitochondrial fragmentation, 
reduced membrane potential, and decreased ATP production. 
Mitochondrial fusion complements the exchange of proteins, 
respiratory chain complexes, and mitochondrial DNA (mtDNA). 
Impaired fusion leads to increased mutation rates and genome loss, 
resulting in deficiencies in oxidative phosphorylation (OXPHOS) and 
significantly elevated reactive ROS (52), causing insufficient energy 
uptake and death of dopaminergic neurons. These findings highlight 
the role of mitochondrial dysfunction in PD and suggest that targeting 
mitochondrial pathways may provide neuroprotection.

The relationship between energy metabolism abnormalities, 
dopamine neurotransmission impairment, and insulin resistance is 
complex and multifaceted. PD patient’s exhibit reduced energy 
metabolism due to mitochondrial dysfunction, which leads to 
decreased dopamine synthesis and increased oxidative stress. Insulin 
resistance further exacerbates this dysfunction by impairing glucose 
metabolism, resulting in an energy deficit for neurons (53, 54). Studies 
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have shown that insulin resistance in the brain contributes to 
dopaminergic neuron vulnerability, promoting oxidative stress, 
mitochondrial dysfunction, and protein aggregation (55). In this 
respect the complex relationship is similar to that shown in Figure 1.
On the other hand, energy conversion disorders may exacerbate 
glucose metabolism disorders. Inefficient energy metabolism affects 
insulin sensitivity and insulin-like growth factor function, impacting 
blood glucose regulation. Therefore, in-depth research into the 
relationship between energy metabolism abnormalities, dopamine 
neurotrasmettitorial impairment, and insulin resistance will help us 
better understand the PD pathogenesis. Additionally, apart from IR 
being a new effective target for systemic PD treatment, studies on 
T2DM have found that ROS production and mitochondrial damage 
in muscle tissues of hyperglycemic mice can be  normalized with 
antioxidant treatment and blood glucose control (56), suggesting that 
T2DM treatment strategies could provide new insights and strategies 
for future PD research and treatment.

4 Glucagon-like peptide-1

Incretins are polypeptide hormones secreted by enteroendocrine 
cells that promote insulin secretion. GLP-1 and glucose-dependent 
insulinotropic polypeptide (GIP) are the primary members (57). 
Enteroendocrine L-cells secrete GLP-1 in response to various nutrients 
after food intake, releasing it into the bloodstream. GLP-1 binds to its 
specific receptor (GLP1R), promoting insulin release. Additionally, 
GLP-1 activates related intracellular signaling pathways, promoting 
β-cell regeneration, inhibiting β-cell apoptosis, and improving β-cell 
function, thereby lowering blood glucose levels, with its effects being 
glucose concentration-dependent (58, 59). When blood glucose levels 
return to normal, the incretin effect diminishes, maintaining blood 
glucose at normal levels with high safety (60, 61). T2DM patients often 
suffer from comorbid conditions such as cardiovascular disease, and 
GLP-1 not only has a good glucose-lowering effect but also has 
protective effects on the cardiovascular system, kidneys, and other 
tissues (62, 63). GIP, a sister incretin hormone to GLP-1, also plays a 
role in glucose homeostasis.

In recent years, research has discovered the potential effects of 
GLP-1 and its analogs on the nervous system, particularly in relation 
to the blood–brain barrier (BBB). Firstly, GLP-1 and its analogs can 
cross the BBB (64, 65). GLP-1 receptors are widely distributed in the 
central nervous system, especially in regions related to appetite 

regulation, memory, and learning, including the hippocampus, 
hypothalamus, and brainstem. By activating these receptors, GLP-1 
exerts various biological effects in the central nervous system, 
including promoting neuroprotection and neurogenesis. Secondly, 
GLP-1 and its analogs protect BBB integrity. The BBB is a critical 
structure maintaining central nervous system homeostasis, blocks 
harmful substances from entering the brain while permitting essential 
nutrients to pass through. Studies have shown that GLP-1 reduces 
BBB permeability, decreases inflammation, and enhances structural 
stability, protecting the brain from external harmful substances. 
Moreover, the anti-inflammatory and antioxidant effects of GLP-1 also 
help protect the BBB (66–68). In neurodegenerative diseases such as 
PD and AD, BBB dysfunction is a common pathological feature. 
Clinical trials have tested the effects of GLP-1R agonists in patients 
with PD, AD, or diabetes-related memory impairment, showing 
significant improvement in these patients’ conditions (69). GLP-1 may 
help improve BBB function in these diseases by reducing oxidative 
stress and inflammation.

The neuroprotective effects of GLP-1R agonists may be closely 
related to their impact on insulin resistance and glucose metabolism. 
Insulin resistance and glucose metabolism disorders are not only 
associated with metabolic diseases like diabetes but also closely linked 
to the onset and progression of neurodegenerative diseases. GLP-1R 
agonists, by regulating insulin release and lowering blood glucose 
levels, may help improve insulin resistance and glucose metabolism 
disorders, indirectly protecting the nervous system from damage.

In summary, GLP-1 not only plays an important role in peripheral 
glucose regulation but also crosses the BBB, protecting and regulating 
BBB function through various mechanisms. Further research may 
provide new insights and methods for the application of GLP-1 and 
its analogs in treating neurological diseases.

5 Research on the neuroprotective 
effects of GLP-1

GLP-1 has neuroprotective properties and growth factor-like, 
promoting mitosis, cell growth, and differentiation, blocking 
pre-apoptotic processes, protecting neurons from oxidative stress and 
endoplasmic reticulum stress, and promoting endothelial cell 
proliferation and angiogenesis. Currently, its neuroprotective effects 
on neurodegenerative diseases such as AD and PD have been widely 
studied. In some animal and clinical trials, GLP-1 analogs (Exendin-4, 

FIGURE 1

The interplay between energy metabolism abnormalities, dopamine neurotrasmettitorial impairment, PD pathogenesis and insulin resistance.
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Liraglutide) have been shown to have neuroprotective effects on PD 
and AD (70–72). Additionally, another major member of incretins, 
GIP, and its analogs have also demonstrated neuroprotective effects in 
disease animal models and can enhance the effects of GLP-1. GIP 
analogs (D-Ala2-GIP) can directly regulate neurotransmitter release 
and promote hippocampal stem cell proliferation, showing varying 
degrees of neuroprotective effects in AD and PD mouse models 
(73, 74).

.Given the correlation between PD and glucose metabolism 
disorders and energy conversion disorders, researchers have 
increasingly focused on the neuroprotective effects of GLP-1.GLP-1 
receptor agonists provide neuroprotection through multiple pathways, 
including improving insulin sensitivity, reducing oxidative stress, and 
enhancing mitochondrial function, as shown in Figure 2. These drugs 
activate key signaling pathways, such as PI3K/Akt and AMPK, which 
enhance mitochondrial biogenesis and promote neuronal survival. In 
patients with PD and coexisting type 2 diabetes, GLP-1 receptor 
agonists offer dual therapeutic benefits, addressing both metabolic and 
neurodegenerative mechanisms. This dual-action makes GLP-1 
receptor agonists (GLP-1 Ras) a promising treatment strategy for PD.

The neuroprotective effects of GLP-1 receptor agonists (RAs) 
such as liraglutide and exendin-4 have been demonstrated in 
numerous clinical trials related to diabetic neurological 
complications, including stroke and cognitive impairment (75–78). 
Several clinical trials have evaluated the efficacy of GLP-1 RAs in 
PD. A open-label trial tested exenatide as a potential treatment for 
PD in a non-randomized, open-label study with 45 patients. Patients 

were administered exenatide for 48 weeks, followed by a 12-week 
washout period. The trial showed that patients treated with 
exenatide exhibited significant improvements in motor function 
(measured by the UPDRS motor score) that persisted even after 
stopping the drug. The study also indicated potential neuroprotective 
effects, with no significant progression of PD during the trial (79). 
And then leveraging the neuroprotective properties of GLP-1 
receptor agonists, researchers initiated a Phase II clinical trial to 
evaluate exenatide therapy for PD. In this trial, at 60 weeks, the 
exenatide group showed a significant improvement in MDS-UPDRS 
Part III scores compared to the placebo group among the 62 
recruited patients (80). In another Phase II clinical trial also using 
exenatide, 60 patients participated, with 29 in the placebo group and 
31 in the exenatide group. Compared to the placebo group, patients 
receiving exenatide treatment exhibited increased tyrosine 
phosphorylation of insulin receptor substrate 1 at both 48 and 
60 weeks. This study suggests that using neuron-derived 
extracellular vesicles (EVs) extracted and enriched from peripheral 
blood samples as biomarkers has potential for assessing molecular 
responses to therapeutic interventions in clinical trials for 
neurological diseases. The results indicate that exenatide treatment 
may be associated with enhanced brain insulin signaling pathways. 
More importantly, PD patients demonstrated motor improvements 
even after stopping the medication (81, 82). The Cochrane 
systematic review by Mulvaney et  al. (83) reported significant 
improvements in motor function, as well as potential reductions in 
non-motor symptoms in PD patients treated with exenatide (83). 

FIGURE 2

GLP-1 (glucagon-like peptide-1) plays a vital role in neuroprotection and regeneration through multiple mechanisms. It promotes the expression of 
NGF and BDNF, activates the PI3K/Akt signaling pathway, and reduces neuroinflammation, thereby facilitating nerve regeneration. GLP-1 also enhances 
mitochondrial activity by activating AMPK, increasing the expression of genes involved in mitochondrial biogenesis, and reducing the activation of 
mitochondrial apoptotic pathways. It reduces oxidative stress by decreasing ROS production and upregulating antioxidant enzymes. Additionally, GLP-
1 inhibits the NF-κB signaling pathway and reduces the activation of microglia and astrocytes, thereby mitigating inflammatory responses. Furthermore, 
GLP-1 significantly decreases cell apoptosis by regulating the expression of Bcl-2 family proteins and inhibiting apoptotic signaling pathways. These 
combined mechanisms enable GLP-1 to play a vital protective role in maintaining the health and function of the nervous system.
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Additionally, a study by Kalinderi et  al. (84) highlighted the 
neuroprotective potential of GLP-1 RAs, particularly in reducing 
protein aggregation and improving mitochondrial function. These 
findings suggest that GLP-1 receptor agonists may slow disease 
progression through multiple mechanisms, including improved 
insulin sensitivity and energy metabolism (84). A recent phase 2 
clinical trial testing the GLP-1 class drug lixisenatide showed clear 
improvements in PD patients in MDS-UPDRS Part III scores and 
stopped disease progression (85). There are still phase 3 trials of 
drugs such as exenatide in PD that are either ongoing or are 
analyzing data (86).

In other respects, a retrospective cohort study aimed to assess the 
neurological and psychiatric outcomes of semaglutide compared to 
other antidiabetic drugs (sitagliptin, empagliflozin, and glipizide) over 
12 months in patients with type 2 diabetes (T2DM). The study used 
electronic health records (EHRs) from the TriNetX US Collaborative 
Network, covering over 100 million patients. Propensity-score 
matching was applied to control for baseline differences between 
cohorts, ensuring comparability. The analysis focused on 22 
neurological and psychiatric outcomes, including cognitive deficits, 
dementia, parkinsonism, psychosis, and substance misuse. Cox 
regression analysis was used to compare the risks between semaglutide 
and the comparator drugs. The study found that semaglutide use was 
not associated with an increased risk of neurological or psychiatric 
conditions compared to the other antidiabetic drugs. Notably, 
semaglutide was associated with a reduced risk of cognitive deficits 
and dementia compared to sitagliptin and glipizide, though no 
significant difference was found when compared to empagliflozin. 
Semaglutide also showed a lower risk of nicotine misuse across 
comparisons, though results varied with statistical correction. These 
findings suggest potential neuroprotective benefits of semaglutide, 
especially regarding cognitive health, and call for further research to 
validate its use in treating cognitive deficits and substance misuse in 
patients with T2DM (87). In summary, an increasing number of 
clinical studies support that GLP-1 RAs can improve the clinical and 
pathological changes in PD, providing long-term benefits for patients’ 
cognitive and motor symptoms. Therefore, we speculate that applying 
incretin-based medications in PD models can promote insulin 
secretion, improve peripheral and central insulin resistance, stabilize 
mitochondrial function, enhance energy metabolism, and exert 
neuroprotective effects that stabilize dopamine homeostasis (88). The 
specific mechanisms and long-term effects of GLP-1 class drugs in PD 
are worthy of further clinical trials.

5.1 GLP-1’s role in improving energy 
metabolism

GLP-1 RAs play a vital role in enhancing energy metabolism by 
boosting mitochondrial function and regulating glucose and lipid 
metabolism. Activation of the PI3K/Akt and AMPK signaling 
pathways leads to increased mitochondrial biogenesis and enhanced 
energy production, which is particularly important in 
neurodegenerative conditions like PD (89–91). GLP-1 RAs also 
improve glucose uptake and utilization, ensuring energy stability even 
in metabolically challenged neurons (92). This protective effect 
reduces mitochondrial dysfunction, a key driver of 
neurodegeneration (93).

5.2 GLP-1’s antioxidative stress effects

GLP-1 RAs have robust antioxidative properties, primarily through 
the activation of the Nrf2 pathway, which upregulates antioxidant 
enzymes like superoxide dismutase (SOD) and catalase. These enzymes 
reduce the levels of reactive oxygen species (ROS), mitigating oxidative 
stress in neurons (94–96). By activating AMPK, GLP-1 RAs improve 
mitochondrial function, further reducing ROS production and 
preventing oxidative stress-induced apoptosis (97). This antioxidative 
action is crucial for protecting neurons in PD, where oxidative damage 
is a significant contributor to disease progression (98).

5.3 GLP-1’s anti-inflammatory effects

GLP-1 receptor agonists significantly reduce inflammation by 
modulating immune cell activity and suppressing the release of 
pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β (99–
101). These cytokines play a major role in neuroinflammation, which 
exacerbates neuronal damage in neurodegenerative diseases like 
PD. Additionally, GLP-1 RAs inhibit the NF-κB pathway, which is 
central to the regulation of inflammatory responses (102, 103). By 
dampening inflammation and modulating microglial activity, GLP-1 
RAs create a neuroprotective environment that supports 
neuronal survival.

5.4 GLP-1’s anti-apoptotic effects

GLP-1 RAs exhibit strong anti-apoptotic effects by activating the 
PI3K/Akt pathway, which promotes cell survival by inhibiting 
pro-apoptotic factors such as Bax and caspase-3, while upregulating 
anti-apoptotic proteins like Bcl-2 (104–106). In addition, GLP-1 RAs 
protect against mitochondrial dysfunction, preventing the release of 
cytochrome c and stabilizing mitochondrial membranes, thereby 
inhibiting apoptosis. This mitochondrial protection is especially 
critical in PD, where neuronal loss is driven by apoptotic processes.

5.5 GLP-1’s role in promoting neurogenesis

GLP-1 RAs have been shown to promote neurogenesis by 
stimulating the proliferation of neural progenitor cells (NPCs) and 
supporting their differentiation into functional neurons. This process 
is mediated through the PI3K/Akt pathway, which enhances 
neurogenesis and promotes neuronal survival. GLP-1 RAs also 
modulate the brain’s microenvironment by reducing 
neuroinflammation, allowing for more efficient neurogenesis. 
Additionally, these agents increase the expression of neurotrophic 
factors such as brain-derived neurotrophic factor (BDNF) and nerve 
growth factor (NGF), which support the survival and maturation of 
new neurons (107).

5.6 Protein aggregation

α-Synuclein aggregation is a hallmark of PD, forming Lewy bodies 
that contribute to neuronal death, particularly in dopaminergic 
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neurons in the substantia nigra. Misfolded α-synuclein proteins 
accumulate, leading to mitochondrial dysfunction, oxidative stress, 
and inflammation, all of which drive neurodegeneration (108). Given 
that α-synuclein aggregation plays such a central role in PD pathology, 
any intervention that can reduce or prevent this process offers a 
potential disease-modifying treatment. GLP-1 receptor agonists are 
showing promise in this area, which elevates their potential beyond 
symptomatic relief to a more foundational disease-
modifying approach.

Preclinical models, particularly those using MPTP-induced PD 
models in rodents, have demonstrated that GLP-1 RAs can reduce the 
accumulation of α-synuclein. For example, in studies with exendin-4, 
researchers observed reduced α-synuclein aggregation and improved 
neuronal survival in the substantia nigra. These findings are 
encouraging as they indicate that GLP-1 RAs can intervene in one of 
the root causes of PD neurodegeneration. In clinical studies, while the 
direct effects on α-synuclein aggregation in humans are still being 
investigated, improvements in motor function, cognitive abilities, and 
general neuronal health have been observed, suggesting that GLP-1 
RAs are impacting these pathological processes.

6 Research on other GLP-1 related 
drugs

Currently, research on the neuroprotective effects of GLP-1/GIP 
dual receptor agonists in PD is continuously advancing. Studies have 
shown that the first-generation dual receptor agonist (DA-JC1) has 
neuroprotective effects on MPTP-induced PD mice. Results indicate 
that DA-JC1 reduces neuroinflammation by inhibiting the 
proliferation of astrocytes and microglia in the substantia nigra, and 
mitigates the damage of toxic substances MPTP to midbrain 
dopaminergic neurons and fibers by promoting the expression of 
BDNF, phosphorylation of Akt in the PI3K/Akt signaling pathway, 
downregulating the pro-apoptotic protein Bax, and upregulating the 
anti-apoptotic protein Bcl2 (109, 110).

.An experiment applied a second-generation novel GLP-1/GIP 
dual receptor agonist, DA3-CH, to an MPTP-induced Parkinson’s 
mouse model and compared its neuroprotective effects with the 
GLP-1 single receptor agonist, liraglutide. DA-JC1 was confirmed to 
have neuroprotective effects in the MPTP-induced PD mouse model; 
however, it did not show superior effects compared to Liraglutide. 
Based on this, the experiment used another new dual receptor agonist. 
The results showed that both DA3-CH and Liraglutide could reduce 
MPTP-induced neuroinflammatory responses, inhibit the 
proliferation of microglia and astrocytes, and DA3-CH had 
significantly better effects than Liraglutide, as shown in Figure 3 (111).

In another study comparing the neuroprotective effects of two 
other novel GLP-1/GIP dual receptor agonists (DA-JC4, DA-CH5) 
with the GLP-1 single receptor agonist liraglutide and the first-
generation GLP-1/GIP dual receptor agonist DA-JC1  in MPTP-
induced PD mice, the results concluded that the new dual receptor 
agonists have clear neuroprotective effects (112). They showed better 
effects in improving mouse motor function scores, promoting the 
repair and regeneration of synapses or dopaminergic neurons (TH+, 
GDNF, synaptophysin), and inhibiting neuroinflammatory responses 
(IBA-1, IL-2) compared to liraglutide and DA-JC1, highlighting the 
advantage of targeting more sites. Figure 4 illustrates some of the 

findings. Comparative studies between the two GLP-1/GIP dual 
receptor agonists showed that DA-CH5 had better effects in promoting 
TH+ expression and reducing IL-2 and TNF expression than DA-JC4, 
with no significant differences in other comparisons. This indicates 
that DA-CH5 has a greater comprehensive advantage and more 
optimal target sites, making it more likely to be used clinically in the 
future compared to DA-JC4 and DA-JC1.

Due to the influence of renal clearance and dipeptidyl peptidase-4 
(DPP-4), GLP-1 has a short natural half-life in the human body, about 
1–2 min (113). Therefore, developing DPP-4 inhibitors or GLP-1 
analogs has become a primary means of enhancing GLP-1 efficiency 
in the body. Most incretin-based drugs are based on GLP-1. Approved 
drugs for diabetes treatment, including GLP-1 or GIP analogs and 
their receptor agonists, have been widely used in neurodegenerative 
disease research, such as Exenatide and Liraglutide. These analogs are 
eight times more potent than endogenous GLP-1 (114). Research on 
multi-receptor agonists of incretins may further develop the 
neuroprotective effects of GLP-1 and related drugs.

7 Discussion

Current research suggests a close relationship between glucose 
metabolism disorders and energy conversion disorders and PD 
pathogenesis. On one hand, IR leads to abnormal glucose uptake and 
oxidation, reduced glycogen synthesis, decreased lipid metabolism 
inhibition, resulting in glucose metabolism imbalance. Glucose 
homeostasis abnormalities can cause chronic hyperglycemia, 
triggering oxidative stress. Oxidative stress activates microglia and 
reactive astrocytes, inducing inflammation, leading to cellular damage. 
This chronic inflammatory state further exacerbates neuronal damage 
and death, creating a vicious cycle. On the other hand, major 
pathological changes in PD include abnormal mitochondrial 
dysfunction, protein aggregation, oxidative stress, glutamate toxicity, 
calcium overload, and neuroglial dysfunction. Mitochondrial 
dysfunction, improper protein processing, and oxidative stress are 
direct consequences of metabolic abnormalities; oxidative stress, 
calcium overload, and glutamate toxicity may also lead to energy 
deficiencies, forming a vicious cycle with α-synuclein accumulation. 
Autopsy results of PD patients reveal a significant loss of dopaminergic 
neurons in the substantia nigra pars compacta, while the olfactory 
bulb and ventral tegmental area are less affected. This may be due to 
the higher oxidative stress levels and basal metabolic rate of 
dopaminergic neurons in the substantia nigra pars compacta. In 
conclusion, research findings suggest that energy metabolism 
abnormalities may be the cause of the vulnerability of dopaminergic 
neurons in the substantia nigra of PD patients. Therefore, studying the 
impact of glucose metabolism disorders and energy conversion 
disorders on dopamine homeostasis may bring new progress in 
exploring the etiology of PD.

Both T2DM and PD share insulin resistance as a contributing 
factor in disease progression. In T2DM, insulin resistance leads to 
poor glucose control, while in PD, insulin resistance within the brain 
can exacerbate neurodegeneration by impairing glucose uptake and 
metabolism. GLP-1 RAs improve insulin sensitivity and glucose 
metabolism, offering benefits for both peripheral metabolic control 
(T2DM) and central glucose metabolism in the brain (PD). By 
targeting insulin resistance, GLP-1 RAs may reduce the toxic effects 
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FIGURE 3

GFAP serves as a marker of astrocyte activation. The data indicate that after MPTP treatment, there is a significant increase in GFAP expression, 
signifying pronounced astrocytic activation and an inflammatory response. However, in the DA3 and liraglutide treatment groups, the expression levels 
of GFAP are significantly decreased compared to the MPTP group (p < 0.01), suggesting that these treatments may exert anti-inflammatory effects by 
reducing astrocyte activation. IBA-1 is a marker of microglial activation. Compared to the control group, MPTP treatment significantly increases the 
expression of IBA-1 (p < 0.01), indicating the activation of microglia. In the DA3 and liraglutide treatment groups, the expression levels of IBA-1 are 
significantly reduced compared to the MPTP group (p < 0.001), demonstrating that these treatments effectively inhibit excessive microglial activation. 
Additionally, the reduction in IBA-1 expression is more pronounced in the DA3 + MPTP group compared to the liraglutide+MPTP group (p < 0.01). 
These findings highlight the potential of DA3 and liraglutide to modulate the expression of inflammatory markers, possibly playing a crucial role in their 
mechanisms of action against neuroinflammation. The reduction in both GFAP and IBA-1 levels suggests effective anti-inflammatory properties, further 
supporting their use in therapeutic strategies aimed at mitigating the pathological features of neurodegenerative diseases such as PD. Figure modified 
from Yuan et al. (111).

https://doi.org/10.3389/fneur.2024.1462240
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lv et al. 10.3389/fneur.2024.1462240

Frontiers in Neurology 09 frontiersin.org

FIGURE 4

The figure presents a quantitative comparison of the number of GDNF-positive cells in the substantia nigra pars compacta across different treatment 
groups and the quantity of IBA-1-positive glial cells in the substantia nigra pars compacta across different treatment groups. A one-way ANOVA 
revealed significant differences between groups (F = 78.736; p = 0.03). Subsequent Tukey post-hoc tests highlighted significant differences: Compared 
to the control group, all treatment groups (MPTP, DA-CH5, and other dual GLP-1/GIP agonist treatment groups) showed a significant increase in the 
number of GDNF-positive cells, demonstrating these treatments’ effectiveness in maintaining or promoting the expression of GDNF. Compared to the 
MPTP-treated group, the DA-CH5 treated group showed the most significant increase in GDNF-positive cells, indicating that DA-CH5 was the most 
effective treatment among those tested. Additionally, the effects of DA-CH5 were more pronounced compared to the liraglutide group, showcasing its 
unique neuroprotective potential. The one-way ANOVA indicated that while the overall differences between groups did not reach traditional levels of 
statistical significance (p = 0.156), trends suggest potential biologically meaningful differences between certain groups. Compared to the control 
group, MPTP treatment significantly increased the number of IBA-1-positive glial cells, indicating an increase in inflammation. In the DA-CH5 treated 
group, the number of IBA-1-positive glial cells was significantly reduced compared to the MPTP group, suggesting anti-inflammatory effects of DA-
CH5. Furthermore, DA-CH5 showed superior performance in reducing IBA-1-positive glial cells compared to the liraglutide group, highlighting its 
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of hyperglycemia on neurons and prevent the chronic inflammation 
associated with both diseases. This dual action of improving systemic 
insulin resistance and acting on brain insulin receptors makes GLP-1 
RAs a unique treatment option for individuals with both conditions. 
At the same time, GLP-1 RAs have shown promise in improving 
cognitive function, not only in diabetes but also in neurodegenerative 
diseases like PD and Alzheimer’s disease. This cognitive benefit is 
especially relevant for T2DM patients with PD, as cognitive decline is 
a common symptom in both conditions.

Meanwhile, new GLP-1/GIP dual receptor agonists have been 
proven effective in neuroprotection and mechanisms in PD, such as 
DA-JC1 (DA1), DA-JC4 (DA4), and DA-CH5 (DA5) in MPTP-
induced PD models. They significantly inhibit apoptosis, anti-
inflammatory responses, protect synaptic function, promote the 
release of neurotrophic factors, and outperform GLP-1 single receptor 
agonists. Additionally, GLP-1 receptor agonists not only play an 
essential role in glucose metabolism and energy conversion but also 
exhibit significant anti-inflammatory and antioxidative stress effects. 
Research shows that GLP-1 effectively reduces neuroinflammation by 
decreasing pro-inflammatory cytokine release and inhibiting 
microglia activation. This anti-inflammatory effect is crucial for 
protecting neurons and slowing the progression of neurodegenerative 
changes. Simultaneously, GLP-1 receptor agonists enhance cellular 
antioxidant capacity by activating antioxidant enzyme systems, 
reducing ROS production, further protecting neurons from oxidative 
stress damage.

More importantly, GLP-1 receptor agonists also show potential in 
promoting neurogenesis. Studies have found that GLP-1 promotes 
neural stem cell proliferation and differentiation, increasing 
dopaminergic neuron generation by activating PI3K/Akt and MAPK/
ERK signaling pathways. This may provide new therapeutic strategies 
for restoring the damaged dopaminergic system in PD patients.

In conclusion, given the unclear etiology of PD in clinical practice, 
further exploration of the molecular mechanisms by which GLP-1 and 
its analogs influence mitochondrial function and dopamine 
homeostasis in PD treatment may provide new insights for preventing 
PD in T2DM patients and offer potential targets for clinical relief and 
treatment of PD. Research on GLP-1 receptor agonists and new 
GLP-1/GIP dual receptor agonists not only reveals their 
neuroprotective potential but also provides new hope for PD 
treatment. By continuing to delve into these mechanisms, we hope to 

develop more effective therapies for PD, improving the quality of life 
for PD patients.
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