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Background: Myasthenia Gravis (MG) is an autoimmune disease that causes 
muscle weakness in 80% of patients, most of whom test positive for anti-
acetylcholine receptor (AChR) antibodies (AChR-Abs). Predicting and improving 
treatment outcomes are necessary due to varying responses, ranging from 
complete relief to minimal improvement.

Objective: Our study aims to develop and validate an interpretable machine 
learning (ML) model that integrates systemic inflammation indices with 
traditional clinical indicators. The goal is to predict the short-term prognosis 
(after 6  months of treatment) of AChR-Ab+ generalized myasthenia gravis 
(GMG) patients to guide personalized treatment strategies.

Methods: We performed a retrospective analysis on 202 AChR-Ab+ GMG patients, 
dividing them into training and external validation cohorts. The primary outcome 
of this study was the Myasthenia Gravis Foundation of America (MGFA) post-
intervention status assessed after 6  months of treatment initiation. Prognoses 
were classified as “unchanged or worse” for a poor outcome and “improved or 
better” for a good outcome. Accordingly, patients were categorized into “good 
outcome” or “poor outcome” groups. In the training cohort, we developed and 
internally validated various ML models using systemic inflammation indices, 
clinical indicators, or a combination of both. We  then carried out external 
validation with the designated cohort. Additionally, we  assessed the feature 
importance of our most effective model using the Shapley Additive Explanations 
(SHAP) method.

Results: In our study of 202 patients, 28.7% (58 individuals) experienced poor 
outcomes after 6  months of standard therapy. We  identified 11 significant 
predictors, encompassing both systemic inflammation indexes and clinical 
metrics. The extreme gradient boosting (XGBoost) model demonstrated the best 
performance, achieving an area under the receiver operating characteristic (ROC) 
curve (AUC) of 0.944. This was higher than that achieved by logistic regression 
(Logit) (AUC: 0.882), random forest (RF) (AUC: 0.917), support vector machines 
(SVM) (AUC: 0.872). Further refinement through SHAP analysis highlighted five 
critical determinants—two clinical indicators and three inflammation indexes—
as crucial for assessing short-term prognosis in AChR-Ab+ GMG patients.
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Conclusion: Our analysis confirms that the XGBoost model, integrating clinical 
indicators with systemic inflammation indexes, effectively predicts short-
term prognosis in AChR-Ab+ GMG patients. This approach enhances clinical 
decision-making and improves patient outcomes.
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short-term prognosis, generalized myasthenia gravis, systemic inflammation index, 
machine learning, prognosis

Introduction

Myasthenia gravis (MG) is an autoimmune disorder marked by 
autoantibody disruptions at neuromuscular junctions, affecting 
ocular, bulbar, limb, respiratory, and axial muscles. Its clinical diversity 
allows categorization into subgroups based on symptoms, antibody 
specificity, and onset age (1). Approximately 80% of patients with MG 
develop generalized weakness (2), and among these, 85% test positive 
for anti-acetylcholine receptor (AChR) antibodies (3). These anti-
AChR antibody-positive (AChR-Ab+) generalized myasthenia gravis 
(GMG) patients constitute the majority of MG cases and are central 
to trials exploring new immunotherapies. Treatment responses in MG 
vary significantly, from complete symptom relief to minimal 
improvement or even progression (4). Unfortunately, a notable 
portion of patients show suboptimal responses (5), highlighting the 
urgent need to predict poor treatment outcome to improve 
therapeutic strategies.

Previous studies have associated traditional clinical characteristics 
such as disease duration, quantitative myasthenia gravis (QMG) score, 
and gender with short-term outcome in AChR-Ab+ GMG patients (6, 
7). However, these indicators fail to capture the full range of predictive 
data available. Given that inflammation is a central element in MG 
pathogenesis (8, 9), exploring systemic inflammation markers—such 
as the neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte 
ratio (PLR), lymphocyte to monocyte ratio (LMR), and systemic 
immune-inflammation index (SII)—could be valuable (10). These 
markers are recognized as significant biomarkers in autoimmune 
diseases (11–13) and may illuminate the dynamics of AChR-Ab+ 
GMG. Nevertheless, the intricate and often nonlinear relationships 
between comprehensive medical data and clinical outcome create 
significant analytical challenges, diminishing the effectiveness of 
linear models such as logistic regression (Logit) for accurate 
predictions. In this context, the use of machine learning (ML)—a 
branch of artificial intelligence celebrated for its unmatched ability to 
unravel complex patterns in large and intricate datasets—is crucial for 
developing a robust predictive model (14). Common ML classifiers, 
including support vector machines (SVM) and extreme gradient 
boosting (XGBoost), have shown versatile applications in various 
fields such as oncology (15), cardiology (16), and MG (17). Despite 
this, research remains sparse on ML models that combine systemic 
inflammation indices with traditional clinical indicators to predict 
short-term prognosis in AChR-Ab+ GMG patients.

Although Liang et al. (6) and Zhao et al. (7) developed a predictive 
model for short-term prognosis in patients with AChR-Ab+ GMG, 
their work primarily focused on clinical characteristics with less 
emphasis on the systemic inflammation index. Furthermore, their 

reliance on traditional linear models instead of more advanced ML 
techniques compromised the precision of their predictions. In this 
context, our study aims to develop and validate an interpretable ML 
model that integrates systemic inflammation indices with traditional 
clinical indicators. Our goal is to predict the short-term prognosis of 
AChR-Ab+ GMG patients to guide personalized treatment strategies.

Methods

Ethics approval

This retrospective study adhered to the Declaration of Helsinki 
principles and was approved by the Ethics Committee of Nanjing 
Jiangbei Hospital (No. 2024062). Informed consent was obtained from 
all participants or their relatives.

Patient selection

From January 2016 to December 2023, 566 MG patients were 
screened at Nanjing Jiangbei Hospital, the Affiliated Brain Hospital of 
Nanjing Medical University, and the Affiliated Hospital of Xuzhou 
Medical University. The inclusion criteria for our study included onset 
symptoms compatible with GMG, seropositivity for anti-AChR 
antibody, a follow-up period exceeding 6 months post-diagnosis, and 
patients aged over 18 years. The exclusion criteria encompassed 
symptoms confined to extraocular muscles, the presence of 
hyperthyroidism, systemic lupus erythematosus, or other immune 
diseases, and incomplete or missing medical records. After thorough 
screening, 202 GMG patients were enrolled in our study. To prevent 
overfitting in the predictive model, 141 patients from January 2016 to 
May 2020 were involved in the training cohort and 61 patients from 
June 2020 to December 2023 were assigned to the external verification 
cohort (Figure  1). For treatment, 109 patients were administered 
prednisone acetate, and 143 received tacrolimus, with 50 of these also 
taking a combination of prednisone acetate tablets and tacrolimus 
capsules. All patients were prescribed pyridostigmine.

Outcome measures

The primary outcome of this study was the Myasthenia Gravis 
Foundation of America (MGFA) post-intervention status assessed 
after 6 months of treatment. Prognoses were classified as “unchanged 
or worse” for poor outcome and “improved or better” for good 
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outcome. This outcome measure, which is widely used in clinical and 
research settings, demonstrates the robustness and recognized utility 
of the MGFA post-intervention status in evaluating treatment 
effectiveness for MG (18).

Data collection

To comprehensively evaluate treatment efficacy predictors in 
AChR-Ab+ GMG patients, we  analyzed a range of clinical and 
systemic inflammation indicators. Clinical features assessed included 
age at onset, gender, body mass index (BMI), systolic and diastolic 
blood pressures (SBP and DBP), scores from the Myasthenia Gravis 
Foundation of America (MGFA), Quantitative Myasthenia Gravis 
(QMG), Myasthenia Gravis-Activity of Daily Living (MG-ADL), and 
the 15-item Myasthenia Gravis Quality of Life questionnaire 
(MG-QoL). We  also considered thymectomy, thymoma presence, 
autoimmune disease comorbidity, disease duration, anti-AChR 
antibody titers, and hemoglobin (Hb) levels. Systemic inflammation 
was evaluated using white blood cell count (WBC), neutrophil, 
lymphocyte, platelet, monocyte, neutrophil-to-lymphocyte ratio 
(NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte 
ratio (LMR), and the systemic immune-inflammation index (SII), 
calculated using the formula (platelets * neutrophils)/lymphocytes. 
The disease duration was defined as the time from the onset of MG 
symptoms to the patient’s first hospital visit.

Data preprocessing

Before developing the prediction model, we undertook a crucial 
data preprocessing phase to ensure the process’s fairness. This phase 
involved normalizing all data, covering both clinical features and 
systemic inflammation index. We applied Z-score normalization to 
continuous variables to standardize them to a mean of zero and a 

standard deviation of one. Categorical variables were converted to 
binary format, assigned values of “0” or “1.”

Selection of features

To maintain a straightforward model, we applied student’s t-test, 
Mann–Whitney U test, and chi-square test to identify variables that 
significantly differed between the groups with good and poor 
outcomes. We  then employed the least absolute shrinkage and 
selection operator (LASSO) regression with five-fold cross-validation 
for dimensionality reduction. Finally, variables with non-zero 
coefficients were analyzed using multivariable logistic regression to 
identify independent risk factors, thus constructing a ML model.

Derivation and internal validation of ML 
models

To evaluate the short-term prognosis risk in AChR-Ab+ GMG 
patients, we utilized four established ML classifiers: Logit, random forest 
(RF), SVM, and XGBoost. Logit, a linear method, is essential for binary 
classification due to its straightforwardness and ease of interpretation, 
establishing it as a fundamental model (19). RF, developed from decision 
trees, is employed in classification models. It operates by each decision 
tree in the ensemble classifying the input data independently. Then, RF 
aggregates these predictions to determine the most common outcome. 
This method uses multiple decision tree models, leveraging varied data 
samples from the dataset to enhance prediction accuracy (20). SVM 
exemplifies kernel-based techniques due to its proficiency in identifying 
high-dimensional patterns. This robust classification algorithm focuses 
on establishing an efficient class-separating hyperplane, enhancing 
performance in complex datasets with numerous features (21). Finally, 
XGBoost, a tree-based gradient boosting algorithm that constructs an 
ensemble of weak decision trees to form a robust model, is known for 

FIGURE 1

Flowchart for patient selection and cohort distribution in developing and validating predictive models for AChR-Ab+ GMG patients. GMG, generalized 
myasthenia gravis; AChR, acetylcholine receptor; Ab, antibody; MG, myasthenia gravis; SHAP, Shapley Additive Explanations.
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its strong resistance to overfitting (22). It is notably flexible, managing 
diverse data types and formats without extensive feature engineering. 
Additionally, XGBoost excels in structured data problems, often 
surpassing other algorithms in predictive accuracy (23).

Our predictive models were based on clinical features, systemic 
inflammation index, and their combination, each forming a unique 
analytical base. During the training phase, to prevent overfitting, 
we implemented a triple-repeated five-fold cross-validation method. 
In this approach, each of the five iterations selects a unique fold as the 
internal testing set, while the remaining four folds serve as the internal 
training set. Additionally, this entire process is repeated three times to 
enhance accuracy further. The cumulative average of these three 
repetitions provides a reliable estimate of error rate (24). For the RF 
classifier, we configured 500 trees with node splitting based on the 
square root of the total features. In SVM, we selected a radial basis 
function (RBF) kernel, effectively handling non-linear data, and fine-
tuned its hyperparameters—adjusting the cost parameter through a 
grid search of [0.1, 1, 10] and the gamma parameter at [0.001, 0.01, 
0.1]. For XGBoost, we  meticulously chose parameters to balance 
model complexity and accuracy, setting a learning rate of 0.02, a 
maximum tree depth of 4, and deploying an ensemble of 600 trees.

Following model development, each was subjected to 
comprehensive internal validation, evaluating its discrimination, 
calibration, and clinical utility. The optimal model was chosen based 
on its superior discrimination, strong calibration, and practical value 
in a clinical setting.

External validation and interpretability of 
ML models

To ensure the robustness of our models, we performed external 
validation. This rigorous assessment confirmed their discriminative 
ability, calibration, and clinical applicability, providing a 
comprehensive view of their predictive capabilities. Additionally, after 
selecting the optimal predictive models, we explored the individual 
contributions of each variable using the Shapley Additive Explanation 
(SHAP) methodology. SHAP is based on the Shapley value from game 
theory, developed by economist Lloyd Shapley. This method and its 
extensions help in explaining machine learning model outputs 
through optimal credit distribution for local explanations (25). For 
example, Bi et al. (26) applied SHAP to measure the contribution of 
each feature in a model by calculating individual SHAP values for 
training samples. By aggregating these values, they ranked features 
according to their importance in predicting positive outcomes (26). 
SHAP’s interpretability is enhanced by visual plots where each point 
represents a sample, colored to denote the feature’s value—yellow for 
higher values and blue for lower ones, with the intensity of the color 
showing the magnitude of the feature value. We  used the SHAP 
dependence plot to assess the significance of specific features and their 
effects on the model’s output. The SHAP force plot is designed to 
analyze and interpret the prediction outcomes for an individual sample.

Statistical analysis

We employed a customized statistical approach tailored to the 
data type. We applied the chi-square test to categorical variables and 

used the Shapiro–Wilk test to evaluate the distribution of continuous 
variables. This assessment determined the appropriate use of either 
the Mann–Whitney U test or the independent-sample t-test for 
further analysis. To evaluate model performance, we  employed 
receiver operating characteristic (ROC) curve analysis, which 
included metrics such as area under the curve (AUC), precision, 
recall, and F1 score to assess discrimination capability. DeLong’s test 
was used for AUC comparisons. Additionally, model fit was evaluated 
using calibration curve analysis and the Brier score to gauge the 
precision of probability predictions. Decision curve analysis (DCA) 
was conducted to estimate the net benefits of our models across 
various threshold probabilities, emphasizing their clinical value. 
Statistical analyses were carried out using IBM SPSS Statistics (version 
22.0) and Python (version 3.7.1).

Results

Patient characteristics

The recruitment of study participants is illustrated in the flow 
diagram (Figure 1), with 202 out of 566 patients successfully enrolled. 
The poor outcome rates for AChR-Ab+ GMG patients after 6 months 
of standard therapy were similar between groups: 29.1% (41/141) in 
the training cohort and 27.9% (17/61) in the external validation 
cohort, with no statistically significant difference (χ2 = 0.030, p = 0.862). 
Data in Table  1 confirm these findings, showing consistent 
distributions of clinical features and systemic inflammation indices 
across both cohorts, with no significant disparities (all p > 0.05).

Feature selection in the training cohort

Table 2 presents a comparison of clinical features and systemic 
inflammation index levels between patients with good and poor 
outcomes in the training cohort. The analysis reveals that poor 
outcome is associated with being female, having a lower BMI, higher 
QMG scores, longer disease durations, higher anti-AChR antibody 
titers, lower Hb levels, and elevated counts of WBCs, neutrophils, 
NLR, PLR, and SII—all with significant p-values (<0.05). We then 
applied LASSO regression and 10-fold cross-validation to refine the 
variable set, selecting nine variables using 1 standard error’s lambda 
(Figure  2): gender, BMI, QMG score, duration of disease before 
treatment, Hb, WBC, NLR, PLR, and SII. To further mitigate the 
impact of confounding factors, we conducted multivariate logistic 
regression on these variables to assess their roles as independent 
predictors of outcome in AChR-Ab+ GMG patients (Table 3). The 
analysis confirmed that all variables, except WBC, were significant 
independent predictors (all p < 0.05). The results of the correlation 
heatmap (Figure 3) indicate that all variable correlations are below 0.3, 
suggesting no significant correlations or multicollinearity among the 
variables. Finally, the ML model included the following variables: 
gender, BMI, QMG score, duration of disease before treatment, Hb, 
NLR, PLR, and SII. These key parameters underwent Z-score 
normalization to achieve a mean of zero and a standard deviation of 
one. This standardization streamlined their documentation and 
integration into the development of ML prediction models, thereby 
enhancing their predictive accuracy.
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TABLE 1 Comparisons of clinical parameters and systemic inflammation markers between the training and external verification cohorts.

Variables Training cohort 
(N =  141)

External verification 
cohort (N =  61)

p-value

Clinical parameters

  Age at onset, year, median (IQR) 61.00 (50.00, 74.00) 59.00 (49.00, 75.00) 0.853c

  Gender, n (%) 0.775b

   Female 81 (57.4) 33 (54.1)

   Male 60 (42.6) 28 (45.9)

  BMI, kg/m2, median (IQR) 24.10 (22.60, 32.30) 25.90 (22.90, 32.90) 0.759c

  SBP, mm Hg, mean ± SD 122.88 ± 19.51 121.48 ± 18.58 0.634a

  DBP, mm Hg, median (IQR) 79.00 (69.00, 88.00) 79.00 (69.00, 88.00) 0.940c

  MGFA classification, n (%) 0.885b

   II 85 (60.3) 39 (63.9)

   III 48 (34.0) 19 (31.1)

   IV 8 (5.7) 3 (4.9)

  QMG score, median (IQR) 10.00 (8.00, 13.00) 10.00 (8.00, 14.00) 0.632c

  MG-ADL score, median (IQR) 6.00 (3.00, 9.00) 6.00 (2.00, 8.00) 0.485c

  MG-QoL score, median (IQR) 15.00 (9.00, 22.00) 14.00 (8.00, 20.00) 0.343c

  Thymectomy, n (%) 0.992b

   No 115 (81.6) 49 (80.3)

   Yes 26 (18.4) 12 (19.7)

  Thymoma, n (%) 0.759b

   No 104 (73.8) 43 (70.5)

   Yes 37 (26.2) 18 (29.5)

  Autoimmune disease 0.725b

   No 120 (85.1) 50 (82.0)

   Yes 21 (14.9) 11 (18.0)

  Disease duration, month, median (IQR) 7.80 (5.00, 10.80) 6.90 (3.60, 10.40) 0.298c

  Anti-AChR Abs titer, nmol/L, median (IQR) 8.00 (5.00, 11.00) 9.00 (7.00, 12.00) 0.405c

  Pyridostigmine dosage, mg/day, median (IQR) 180.00 (180.00, 180.00) 180.00 (180.00, 180.00) 0.526c

  Hb, g/L, median (IQR) 137.00 (128.00, 156.00) 144.00 (120.00, 158.00) 0.188c

Systemic inflammation markers

  WBC, 109/L, median (IQR) 10.21 (6.99, 12.56) 10.00 (7.31, 12.36) 0.838c

  Neutrophil, 109/L, median (IQR) 6.58 (4.44, 9.69) 6.86 (5.26, 10.72) 0.453c

  Lymphocyte, 109/L, median (IQR) 2.43 (1.77, 2.90) 2.54 (2.06, 2.95) 0.311c

  Platelet, 109/L, median (IQR) 260.80 (205.06, 357.12) 264.00 (195.98, 371.74) 0.978c

  Monocyte, 109/L, median (IQR) 0.58 (0.42, 0.79) 0.61 (0.43, 0.87) 0.820c

  NLR, median (IQR) 3.00 (2.00, 4.30) 3.10 (2.10, 4.20) 0.826c

  PLR, median (IQR) 120.70 (93.30, 143.50) 105.90 (89.60, 140.70) 0.197c

LMR, median (IQR) 4.00 (2.80, 5.90) 4.30 (3.20, 5.50) 0.614c

  SII, median (IQR) 767.75 (525.91, 1161.60) 772.98 (446.12, 1234.82) 0.920c

IQR, inter-quartile range; BMI, body mass index; SBP, systolic blood pressure; SD, standard deviation; DBP, diastolic blood pressure; MGFA, Myasthenia Gravis Foundation of America; QMG, 
quantitative myasthenia gravis; MG-ADL, myasthenia gravis-activity of daily living; MG-QoL, 15-item Myasthenia Gravis Quality of Life questionnaire; AChR, acetylcholine receptor; Abs, 
antibodies; Hb, hemoglobin; WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; SII, systemic immune-
inflammation index.
aFor independent sample t-test.
bFor chi-square test.
cFor Mann–Whitney U-test.
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TABLE 2 Comparison of clinical parameters and systemic inflammation markers in patients with good and poor outcomes.

Variable Good outcome (n =  100) Poor outcome (n =  41) p-value

Clinical parameters

  Age at onset, year, median (IQR) 59.00 (49.00, 74.00) 65.00 (52.00, 73.00) 0.529c

  Gender, n (%) 0.003b

   Female 49 (49.0) 32 (78.0)

   Male 51 (51.0) 9 (22.0)

  BMI, kg/m2, median (IQR) 26.55 (23.75, 32.73) 21.60 (20.70, 32.40) 0.048c

  SBP, mm Hg, mean ± SD 123.07 ± 20.32 122.41 ± 17.58 0.857a

  DBP, mm Hg, median (IQR) 79.00 (69.00, 88.00) 77.00 (68.00, 85.00) 0.706c

  MGFA classification, n (%) 0.758b

  II 62 (62.0) 23 (56.1)

  III 33 (33.0) 15 (36.6)

  IV 5 (5.0) 3 (7.3)

  QMG score, median (IQR) 8.00 (7.00, 13.00) 12.00 (10.00, 14.00) <0.001c

  MG-ADL score, median (IQR) 6.00 (3.00, 9.00) 4.00 (3.00, 8.00) 0.145c

  MG-QoL score, median (IQR) 16.50 (9.00, 23.25) 15.00 (9.00, 18.00) 0.148c

  Thymectomy, n (%) 0.354b

   No 84 (84.0) 31 (75.6)

   Yes 16 (16.0) 10 (24.4)

  Thymoma, n (%) 0.463b

   No 76 (76.0) 28 (68.3)

   Yes 24 (24.0) 13 (31.7)

  Autoimmune disease 0.212b

   No 88 (88.0) 32 (78.0)

   Yes 12 (12.0) 9 (22.0)

  Disease duration, month, median (IQR) 6.85 (4.70, 8.83) 12.80 (7.30, 15.20) <0.001c

  Anti-AChR Abs titer, nmol/L, median (IQR) 7.00 (3.75, 10.00) 9.00 (5.00, 14.00) 0.023c

  Pyridostigmine dosage, mg/day, median (IQR) 180.00 (180.00, 180.00) 180.00 (180.00, 180.00) 0.246c

  Hb, g/L, median (IQR) 141.00 (133.75, 160.00) 115.00 (110.00, 157.00) 0.001c

Systemic inflammation markers

  WBC, 109/L, median (IQR) 9.66 (7.00, 11.79) 11.69 (6.84, 17.24) 0.018c

  Neutrophil, 109/L, median (IQR) 6.05 (4.21, 8.82) 8.35 (5.46, 11.54) 0.010c

  Lymphocyte, 109/L, median (IQR) 2.54 (1.72, 2.94) 2.30 (1.85, 2.72) 0.191c

  Platelet, 109/L, median (IQR) 245.39 (197.39, 352.89) 280.37 (232.32, 375.65) 0.109c

  Monocyte, 109/L, median (IQR) 0.60 (0.44, 0.89) 0.54 (0.38, 0.72) 0.102c

  NLR, median (IQR) 2.80 (1.98, 4.10) 4.30 (2.50, 5.50) 0.001c

  PLR, median (IQR) 114.55 (89.35, 141.52) 137.00 (102.70, 155.80) 0.004c

  LMR, median (IQR) 4.00 (2.77, 5.50) 4.10 (2.90, 6.10) 0.138c

  SII, median (IQR) 666.48 (468.51, 987.05) 1206.57 (729.81, 1524.60) <0.001c

IQR, inter-quartile range; BMI, body mass index; SBP, systolic blood pressure; SD, standard deviation; DBP, diastolic blood pressure; MGFA, Myasthenia Gravis Foundation of America; QMG, 
quantitative myasthenia gravis; MG-ADL, myasthenia gravis-activity of daily living; MG-QoL, 15-item Myasthenia Gravis Quality of Life questionnaire; AChR, acetylcholine receptor; Abs, 
antibodies; Hb, hemoglobin; WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; SII, systemic immune-
inflammation index.
aFor independent sample t-test.
bFor chi-square test.
cFor Mann–Whitney U-test.
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Comparing models for predicting poor 
outcome risk

In our comprehensive analysis of predictive models for poor 
outcomes in AChR-Ab+ GMG patients, we  assessed four ML 
classifiers: Logit, SVM, RF, and XGBoost. These classifiers were tested 
against three sets of predictors: clinical indicators, systemic 
inflammation indices, and their combination. Table  4 details the 
performance comparison of these models, while Figures 4–6 display 
the ROC curves, calibration plots, and DCA. Our findings indicate 
that models integrating both sets of predictors achieved better 
discriminative ability (AUC: 0.872–0.944) compared to those using 
solely clinical indicators (AUC: 0.772–0.831) or systemic inflammation 
measures (AUC: 0.792–0.855), with statistical significance confirmed 
by DeLong’s test (p < 0.05).

Among the models that combined clinical indicators and systemic 
inflammation indices, XGBoost emerged as the most effective, 
achieving the highest AUC of 0.944 with superior calibration, especially 
above the 75% threshold. Performance was uniformly validated across 
all models in DCA. The performance of XGBoost was consistently 
strong across all key metrics, including precision, recall, F1 score, and 
Brier score. These results establish XGBoost as the optimal model for 
predicting poor outcome risk in AChR-Ab+ GMG patients.

Assessing ML model using an external 
verification cohort

The external verification cohort was utilized to evaluate the 
predictive accuracy of the XGBoost model for poor outcome, 
employing ROC, calibration, and DCA analyses (Figure 7). Although 
there was a slight decrease in performance relative to the training 
cohort, the XGBoost model maintained a strong discriminative ability, 
with an AUC of 0.908 (Figure 7A). The calibration curve demonstrated 
high agreement between the predicted risks and observed outcome 
(Figure  7B). Furthermore, the DCA curve confirmed the model’s 

effectiveness by showing significant net benefits (Figure 7C). These 
findings underscore the XGBoost model’s robustness and clinical 
value as a predictive tool for assessing poor outcome risk.

Interpretation of the model

SHAP analysis was employed to elucidate the impact of individual 
features in the XGBoost model, quantifying the influence of each by 
calculating their absolute mean SHAP values. This approach ranked 
features by importance, revealing two clinical indicators and three 
systemic inflammation indices as the top five contributors (Figure 8). The 
SHAP summary plot (Figure 8A) is derived from estimates, allocating a 
specific data point to each feature for every patient. In this visualization, 
yellow signifies higher values and blue denotes lower ones. The SHAP 
values are displayed along the horizontal axis, where larger shapes 
highlight features with greater importance in forecasting the short-term 
prognosis of AChR-Ab+ GMG patients. The importance bar chart 
(Figure 8B) outlines the impact of each variable on prognosis prediction. 
In summary, ranked by decreasing significance, the key features are: SII, 
NLR, disease duration, PLR, QMG score, BMI, gender, Hb.

Figure 9 presents SHAP dependence plots for each of the eight 
factors, elucidating their influence on the outcomes of the XGBoost 
model. Positive SHAP values indicate a higher risk of poor outcomes 
in AChR-Ab+ GMG patients. Our findings associate poor outcomes 
with several factors: increased SII, NLR, and PLR; longer disease 
duration prior to treatment; elevated QMG scores; female gender; 
lower BMI; and decreased Hb levels.

In predictive modeling, the SHAP force plot clearly demonstrates 
how certain features affect individual patient outcomes (Figure 10). 
Yellow areas show features increasing the likelihood of poor outcomes 
in AChR-Ab+ GMG patients, while red areas show features decreasing 
this likelihood. The wider the color region, the more significant the 
impact. The value f(x) sums up the SHAP values for each patient, with 
the base value representing the average SHAP value across all patients. 
The upper panel illustrates an accurate prediction of a poor outcome, 

FIGURE 2

LASSO regression analysis for feature selection. (A) Coefficient profiles for 11 variables. (B) Determination of the optimal penalty coefficient lambda 
using five-fold cross-validation. The plot shows partial likelihood deviance against log (lambda), where lambda serves as the tuning parameter. Red 
dots represent average deviance values per model at each lambda, with error bars for standard error. Optimal values are marked with dotted vertical 
lines based on minimum criteria and the 1-SE rule.
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FIGURE 3

Correlation heatmap of variables.

attributed to factors such as female gender and higher SII values 
(Figure  10A). The lower panel, in contrast, accurately identifies a 
patient likely to experience a good outcome, based on a lower QMG 
score and male gender, and others (Figure 10B). Using XGBoost, this 
approach effectively differentiates between patients at risk for poor or 
good outcomes, providing customized risk assessments.

Discussion

MG is an autoimmune disease that affects various muscles, 
leading to generalized weakness in 80% of patients, most of whom 
test positive for anti-AChR-Abs (2, 3). Inflammation is key in MG, 
enhancing inflammatory factors, activating B cells, and producing 

TABLE 3 Validation of variables in LASSO regression using multivariable logistic analysis.

Variables LASSO regression Multivariable logistics regression

Coefficients Lambda.1se OR (95% CI) p-value

Clinical parameters

  Gender −0.6244961 0.0477387 0.209 (0.060–0.637) 0.009

  BMI −0.0149277 0.932 (0.656–0.998) 0.036

  QMG score 0.15498217 1.397 (1.147–1.758) 0.002

  Disease duration 0.04346586 1.104 (1.031–1.198) 0.009

  Hb −0.0126869 0.975 (0.949–0.999) 0.048

Systemic inflammation markers

  WBC 0.01484227 1.055 (0.974–1.151) 0.196

  NLR 0.28073891 2.161 (1.206–4.141) 0.013

  PLR 0.01192355 1.038 (1.015–1.065) 0.002

  SII 0.0117102 1.999 (1.098–2.001) 0.003

Lambda.1se, among all lambda values, the lambda value of the simplest model within a variance of the mean value of the minimum target parameter is obtained; LASSO, least absolute 
shrinkage and selection operator; OR, odds ratio; CI; confidence interval; BMI, body mass index; QMG, quantitative myasthenia gravis; Hb, hemoglobin; WBC, white blood cell; NLR, 
neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index.

https://doi.org/10.3389/fneur.2024.1459555
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2024.1459555

Frontiers in Neurology 09 frontiersin.org

autoantibodies (8, 9, 27). Due to varied treatment responses, precise 
predictive models are essential. Current models fail in accuracy as 
they overlook systemic inflammation and use traditional linear 
approaches instead of advanced ML techniques (6, 7). To address 
this deficiency, our study developed predictive models using four 
ML classifiers, incorporating clinical features, the systemic 
inflammation index, or a combination of both. Our analysis 
identified the XGBoost model, integrating both clinical features and 
the systemic inflammation index, as the most effective for predicting 
short-term prognosis. Notably, integrating SHAP analysis enhanced 
the interpretability of the XGBoost model, clarifying the influence 
of the systemic inflammation index in prognosis. This research 
signifies a substantial advancement in using ML to integrate clinical 
indicators with the systemic inflammation index for accurate short-
term prognosis assessments. Early prediction of treatment response 
facilitates tailored treatment strategies, potentially offering more 

intensive or alternative therapies to high-risk patients. Such 
strategies are likely to increase therapeutic success, slow disease 
progression, reduce hospital stays, and enhance patient quality 
of life.

In our study, we selected ML models due to their proficiency in 
analyzing complex non-linear relationships between variables and 
outcomes, a capability that exceeds that of conventional linear models 
(28). We utilized four ML models to assess clinical indicators, the 
systemic inflammation index, and their integration. The models that 
combined both data types demonstrated superior efficacy in 
predicting short-term prognosis, likely because they capture a broader 
array of factors that directly influence outcomes. This comprehensive 
methodology significantly improved predictive accuracy.

Among the ML models we evaluated, XGBoost proved to be the 
most effective. It utilized clinical indicators and the systemic 
inflammation index to deliver high accuracy, a performance that was 

TABLE 4 Performance of ML classifiers in predicting poor outcome risk in AChR-Ab+ GMG using clinical data, systemic inflammation markers, and 
combined datasets.

Data type ML classifier AUC Precision Recall F1 score Brier score

Clinical parameters Logit 0.772 0.602 0.432 0.503 0.042

SVM 0.831 0.702 0.503 0.624 0.033

RF 0.819 0.671 0.591 0.626 0.019

XGBoost 0.824 0.582 0.633 0.732 0.025

Systemic inflammation 

markers

Logit 0.804 0.725 0.723 0.725 0.028

SVM 0.792 0.641 0.714 0.799 0.009

RF 0.855 0.835 0.726 0.772 0.010

XGBoost 0.854 0.836 0.816 0.771 0.011

Combined clinical 

parameters and systemic 

inflammation markers

Logit 0.882 0.859 0.826 0.842 0.009

SVM 0.872 0.801 0.823 0.842 0.010

RF 0.917 0.912 0.821 0.899 0.015

XGBoost 0.944 0.925 0.861 0.927 0.003

ML, machine learning; AChR-Ab+, acetylcholine receptor antibody-positive; GMG, generalized myasthenia gravis; AUC, area under the curve; Logit, logistic regression; SVM, support vector 
machine; RF, random forest; XGBoost, extreme gradient boosting.

FIGURE 4

Comparative performance of ML classifiers (Logit, SVM, RF, XGBoost) on clinical data: (A) ROC curves, (B) calibration plots, and (C) DCA. They achieved 
ROC-AUCs of 0.772, 0.831, 0.819, and 0.824, respectively. ML, machine learning; ROC, receiver operating characteristic; AUC, area under the curve; 
DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting.
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FIGURE 6

Comparative performance of ML classifiers (Logit, SVM, RF, XGBoost) on combined clinical data and systemic inflammation index: (A) ROC curves, 
(B) calibration plots, and (C) DCA. They achieved ROC-AUCs of 0.882, 0.872, 0.917, and 0.944, respectively. ML, machine learning; ROC, receiver 
operating characteristic; AUC, area under the curve; DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine; RF, random 
forest; XGBoost, extreme gradient boosting.

FIGURE 7

Assessing the predictive performance of the optimal ML model using an external verification cohort: (A) ROC curve (AUC  =  0.908), (B) calibration curve, 
and (C) DCA. ML, machine learning; ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis.

FIGURE 5

Comparative performance of ML classifiers (Logit, SVM, RF, XGBoost) on systemic inflammation index: (A) ROC curves, (B) calibration plots, and 
(C) DCA. They achieved ROC-AUCs of 0.804, 0.792, 0.855, and 0.854, respectively. ML, machine learning; ROC, receiver operating characteristic; AUC, 
area under the curve; DCA, decision curve analysis; Logit, logistic regression; SVM, support vector machine; RF, random forest; XGBoost, extreme 
gradient boosting.
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consistent even during external validation. Indeed, previous studies 
have developed ML techniques to predict short-term clinical outcome 
in MG patients. For example, Zhong et al. (17) analyzed clinical and 
other characteristics of MG patients with diverse antibody types 
using an ML model to predict their short-term outcomes. Our 
research specifically targets AChR-Ab+ GMG patients, with a focus 
on evaluating the systemic inflammation index to enhance prediction 
accuracy. To enhance the interpretability of this complex ML model, 
we employed SHAP analysis. The SHAP feature importance map 
visually represents the impact of each feature on a model’s output. It 
displays the SHAP values for each feature, indicating their range and 
the positive or negative effect on the model. High SHAP values 
correlate with significant influence (29). Each point in the plot 
corresponds to a sample, with bar graphs showing SHAP value 
distributions. The color of these bars reflects feature values within the 

sample. The position of each bar graph on the plot reveals the feature’s 
influence direction: leftward shifts indicate negative impacts, while 
rightward shifts suggest positive effects. This tool aids in identifying 
critical features for optimizing model performance and guiding 
feature selection (30, 31). The five most important predictors of 
short-term prognosis on the SHAP feature importance map include 
two clinical indicators and three related to the systemic inflammation 
index. Inflammatory mediators such as interleukins, interferons, and 
chemokines from inflammatory cells play a key role in modulating 
the immune response. Studies indicate that macrophages and 
monocytes in MG release cytokines, initiating inflammatory cascades 
that activate the immune system (32, 33). Supporting evidence 
includes detection of neuromuscular antigens like AChRs, germinal 
centers, elevated Tfh cell counts in the thymus, changes in 
microRNAs, and specific IFN signaling in thymic epithelial cell 

FIGURE 8

SHAP analysis of XGBoost model for predicting short-term prognosis. (A) Summary plot and (B) feature importance ranking. SHAP, Shapley Additive 
Explanations; XGBoost, extreme gradient boosting; SII, systemic immune-inflammation index; QMG, quantitative myasthenia gravis; NLR, neutrophil to 
lymphocyte ratio; PLR, platelet to lymphocyte ratio; BMI, body mass index; Hb, hemoglobin.

https://doi.org/10.3389/fneur.2024.1459555
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2024.1459555

Frontiers in Neurology 12 frontiersin.org

FIGURE 9

SHAP dependency plot of the XGboost model. SHAP, Shapley Additive Explanations; XGBoost, extreme gradient boosting; SII, systemic immune-
inflammation index; NLR, neutrophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; QMG, quantitative myasthenia gravis; BMI, body mass 
index; Hb, hemoglobin.

subpopulations in MG patients with thymoma (34, 35). The detection 
of circulating inflammatory indexes is easy to conduct and cost-
effective. Based on the information above, we specifically focused on 
the circulating inflammatory markers in our study, predicting the 
short-term prognosis of AChR-Ab+ GMG patients, a focus that is 
rare in previous study. In our study, we observed that elevated levels 
of three key systemic inflammation indices—NLR, PLR, and SII—
correlated with poor outcomes in patients with AChR-Ab+ GMG. The 
robustness of these indices against physiological, pathological, and 
physical variations makes them more effective than individual 
metrics such as neutrophils, lymphocytes, monocytes, or platelets 
(36, 37). Among these, the SII particularly stands out as it 

encapsulates the dynamic interplay and potential synergy among 
platelets, neutrophils, and lymphocytes (38). Consequently, compared 
to other markers like NLR and PLR, the SII potentially offers a more 
objective representation of the interactions between inflammatory 
and immune responses. Moreover, our model indicates that higher 
QMG scores and prolonged disease duration are associated with 
poorer treatment responses, aligning with the established correlation 
between these factors and increased disease severity and chronicity. 
This finding is consistent with prior research (6, 7), underscoring the 
importance of early and aggressive intervention in patients with 
severe symptoms or a lengthy disease history to enhance treatment 
outcomes. Using SHAP, XGBoost offered clear insights into how 
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different factors affect outcomes, proving crucial for screening risks 
of poor outcomes. Integrating ML into this screening process holds 
promise for enabling clinicians to initiate early interventions that 
improve outcomes for AChR-Ab+ GMG patients.

This ML model could transform management practices in 
several ways according to our study. First, for patients with a higher 
systemic inflammation index, the model improves patient-
physician communication by alerting about potential poor 
outcomes, which also allows clinicians to better prepare and 
proactively manage care. Second, it aids early-career clinicians by 
facilitating referrals for patients predicted to have poor outcomes 
to more specialized and experienced clinicians, thus reducing the 
risks associated with inexperience. Finally, other clinicians can 
input clinical features and systemic inflammation indices into our 
XGBoost ML models to obtain precise clinical predictions. The 
model also provides a SHAP force plot that illustrates the impact of 
each variable on the outcomes, enhancing diagnostic accuracy 
and understanding.

Our study yielded promising results, yet two limitations should 
be noted. Initially, it was limited to three institutions in the same 
region and involved only 202 patients, possibly reflecting regional 
biases and the constraints of a modest sample size, which may affect 
the generalizability of the findings. Furthermore, the exclusion of 
patients without comprehensive clinical records and the 
retrospective design of the study may further contribute to selection 
bias. Despite these issues, our research highlights the capability of 

ML models that integrate clinical indicators and the systemic 
inflammation index to predict the short-term prognosis of 
AChR-Ab+ GMG patients. Future research should adopt larger-
scale, multi-center, prospective studies to enhance the model’s 
reliability and extend its applicability.

In conclusion, the XGBoost model excels in predicting the short-
term prognosis of AChR-Ab+ GMG patients by integrating clinical 
indicators with the systemic inflammation index. This ML model 
enables precise risk assessment, aiding clinicians in informed decision-
making and improving patient outcomes.
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FIGURE 10

SHAP force plots illustrating individual prediction results: (A) for a patient with a poor outcome; (B) for a patient with a good outcome. SHAP, Shapley 
Additive Explanations; SII, systemic immune-inflammation index; QMG, quantitative myasthenia gravis; NLR, neutrophil to lymphocyte ratio; PLR, 
platelet to lymphocyte ratio; BMI, body mass index; Hb, hemoglobin.
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