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Background: Spinal Ependymoma (SP-EP) is the most commonly occurring 
tumor affecting the spinal cord. Prompt diagnosis and treatment can significantly 
enhance prognostic outcomes for patients. In this study, we  conducted a 
comprehensive analysis of RNA sequencing data, along with associated clinical 
information, from patients diagnosed with SP-EP. The aim was to identify key 
genes that are characteristic of the disease and develop a survival-related 
nomogram.

Methods: We first accessed the Gene Expression Integrated Database (GEO) 
to acquire the microarray dataset pertaining to SP-EP. This dataset was then 
processed to identify differentially expressed genes (DEGs) between SP-EP 
samples and normal controls. Furthermore, machine learning techniques and the 
CIBERSORT algorithm were employed to extract immune characteristic genes 
specific to SP-EP patients, thereby enhancing the characterization of target 
genes. Next, we  retrieved comprehensive information on patients diagnosed 
with SP-EP between 2000 and 2020 from the Surveillance, Epidemiology, 
and End Results Database (SEER). Using this data, we screened for predictive 
factors that have a significant impact on patient outcomes. A nomogram 
was constructed to visualize the predicted overall survival (OS) rates of these 
patients at 3, 5, and 8  years post-diagnosis. Finally, to assess the reliability and 
clinical utility of our predictive model, we  evaluated it using various metrics 
including the consistency index (C-index), time-dependent receiver operating 
characteristic (ROC) curves, area under the curve (AUC), calibration curves, and 
decision curve analysis (DCA).

Results: A total of 5,151 DEGs were identified between the SP-EP sample and 
the normal sample. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways revealed that these DEGs were 
primarily involved in cellular processes, including cell cycle regulation and 
cell sensitivity mechanisms. Furthermore, immune infiltration analysis was 
utilized to identify the core gene CELF4. Regarding the survival rates of patients 
with SP-EP, the 3-year, 5-year, and 8-year survival rates were 72.5, 57.0, and 
40.8%, respectively. Diagnostic age (p  <  0.001), gender (p  <  0.001), and surgical 
approach (p  <  0.005) were identified as independent prognostic factors for OS. 
Additionally, a nomogram model was constructed based on these prognostic 
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factors, demonstrating good consistency between predicted and actual results 
in the study’s validation process. Notably, the study also demonstrated that 
more extensive surgical resection could extend patients’ OS.

Conclusion: Through bioinformatics analysis of microarray datasets, 
we  identified CELF4 as a central gene associated with immune infiltration 
among DEGs. Previous studies have demonstrated that CELF4 may play a 
pivotal role in the pathogenesis of SP-EP. Furthermore, this study developed and 
validated a prognostic prediction model in the form of a nomogram utilizing 
the SEER database, enabling clinicians to accurately assess treatment risks and 
benefits, thereby enhancing personalized therapeutic strategies and prognosis 
predictions.
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1 Introduction

SP-EP is a rare primary tumor of the central nervous system, 
typically arising from ependymoma cells in the spinal cord’s central 
canal. Its incidence peaks in adults aged 40–45 years (1, 2). Based on the 
WHO grading system, SP-EP is categorized into grades I-III, reflecting 
differences in cell heterogeneity and proliferative activity. Notably, the 
2022 WHO diagnostic criteria for ependymoma saw mucinous papillary 
ependymoma elevated to grade II, with the anaplastic subtype no longer 
classified. Instead, specific subtypes are described histopathologically (3, 
4). Clinical manifestations of SP-EP vary depending on tumor location, 
size, and growth rate, causing significant physical and mental distress to 
patients (5, 6). Surgical resection remains the primary treatment aiming 
for maximum safety. Guidelines recommend adjuvant radiotherapy 
(RT) for grade II primary SP-EP and all grade III cases post-surgery. 
However, the use of radiotherapy is controversial, and optimal dosing 
and prognostic benefits remain undetermined (7, 8). Systemic 
chemotherapy’s role in treating SP-EP is limited, with minimal lasting 
efficacy. Its impact on progression-free survival is also restricted. 
Therefore, chemotherapy is typically reserved as an adjuvant for 
recurrent cases where resection or radiotherapy is not feasible (9, 10).

Bioinformatics analysis, a powerful tool, uncovers potential 
molecular markers of disease by comparing gene expression patterns 
between patients and healthy controls (11). Nowadays, in-depth 
transcriptome bioinformatics analysis offers a fresh perspective in 
searching for diagnostic markers, prognostic indicators, and 
therapeutic targets. Nomogram, as a tool for comprehensive analysis 
and visual representation of prognostic risk factors, enable more 
accurate risk quantification. Notably, nomogram have been extensively 
utilized in prognostic assessments of intracranial mass lesions, 
including meningiomas, gliomas, and central lymphoma (12–14). 
However, due to limited data availability, there is currently no clinical 
prediction model tailored for SP-EP in practical application. Therefore, 
developing a novel model for this patient group is imperative. The 
GEO database1 serves as a widely accessed gene sequencing resource, 
enabling us to retrieve SP-EP-specific genetic information. 

1 https://www.ncbi.nlm.nih.gov/geo/

Furthermore, the SEER database2 represents a reliable and extensive 
online platform for collecting cancer statistics in the US population.

2 Materials and methods

2.1 Data collection and analysis

In this study, RNA sequencing data from 14 SP-EP patients were 
retrieved from two chips in the GEO database: GSE66354 and 
GSE50161. To eliminate potential batch effects, the Combat method 
was applied to preprocess all RNA seq data. Subsequently, the 
annotation library “hgu133plus2.db” was utilized to map probe sets to 
their respective gene symbol identifiers. Probe sets annotated to the 
same gene symbol identifier were then aggregated using their average 
values (15). For the GSE54934 dataset, the “limma” package in R 
software was employed to identify DEGs between tumor samples and 
normal samples (16). DEGs were selected using a cutoff criterion of 
|log2FC| > 1 and an adjusted p-value (P adj) < 0.05 (15, 17). This 
approach allowed us to filter out significant DEGs for further analysis.

2.2 Functional enrichment analysis

To identify DEGs between two subgroups and understand their 
functional clustering, the “clusterProfiler” package in R software is 
utilized. This package performs statistical analysis and visualization of 
gene set functional clustering, providing insights into the biological 
roles of the identified DEGs (18). Furthermore, KEGG pathway 
enrichment analysis is conducted using the “clusterProfiler” package 
to investigate the main metabolic and signaling pathways associated 
with the DEGs (19). This analysis helps to identify the key biological 
processes and interactions underlying the observed gene expression 
differences. Gene Ontology (GO) is a comprehensive ontology in 
bioinformatics, encompassing three core domains: biological 
processes (BP), cellular components (CC), and molecular functions 

2 https://seer.cancer.gov/
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(MF) (20). Through KEGG pathway annotation and analysis of DEGs, 
the primary metabolic and signaling pathways associated with these 
genes can be identified (21). A significance threshold of p < 0.05 is 
adopted for enrichment analysis.

2.3 Utilizing machine learning techniques 
to identify disease-specific characteristic 
genes

To search for disease characteristic genes among differentially 
expressed genes, we initially employed the LASSO regression method. 
This approach utilized the “glmnet” package in R software to filter the 
expression levels of differentially expressed genes. Cross-validation 
was then conducted to identify the gene with the minimum error as 
the disease characteristic gene. Furthermore, we also screened disease 
characteristic genes using the SVM-RFE method. This involved 
filtering differential gene expression through the “e1071,” “kernlab,” 
and “caret” packages in R software. Similarly, cross-validation was 
employed to determine the gene with the lowest error as the disease 
characteristic gene. Finally, we intersected the disease characteristic 
genes identified by both methods and generated a VENN diagram to 
select the final set of disease characteristic genes.

2.4 Immune infiltration analysis of chips: a 
methodological perspective

Utilizing R software (version 4.3.1), along with the CIBERSORT 
algorithm, we conducted an analysis of the previously obtained and 
corrected gene expression matrix from the joint chip. This analysis 
aimed to identify genes with a significance level of p < 0.05 and to 
assess the proportion of 22 distinct species present in each sample. 
Furthermore, the CIBERSORT algorithm was employed to quantify 
the proportion of infiltrating immune cells. Additionally, the “limma” 
package within R software was leveraged to compare the ratios 
between high-risk and low-risk groups.

2.5 Research design and data collection

The SEER research data is accessible for public utilization by 
registered users, and the committee has exempted the necessity for 
informed consent, thereby eliminating the requirement for patient 
consent (license number: 13950, November 2021). Leveraging the 
SEER database, which was released in April 2024, we identified 
1,696 patients diagnosed with SP-EP. The data retrieval process was 
facilitated by the SEER*Stat software, specifically version 8.4.3. To 
pinpoint patients with SP-EP, we utilized the primary tumor site 
code (C72.0), as stipulated in the third edition of the International 
Classification of Diseases for Oncology. Additionally, the 
histological code (ICD-O-3:9391/3) specific to ependymoma was 
employed for further classification. During our selection process, 
we  excluded patients with the following characteristics: (1) 
unknown race and marital status, (2) unspecified tumor size 
(codes: 000/990/991/994/995/999), and (4) undetermined 
radiation therapy status. Consequently, as illustrated in Figure 1, 

826 cases were ultimately included in our subsequent research and 
were randomly allocated to the training and validation sets in a 
7:3 ratio.

2.6 Variable selection and research design

Clinical information is derived from the SEER database, 
encompassing various patient characteristics such as age at diagnosis, 
gender (male or female), racial categories (white, black, or other), 
marital status (married, unmarried, or unknown), tumor dimensions, 
tumor count (single or multiple), surgical intervention details, 
radiation therapy status (received or not received), and chemotherapy 
administration (administered or not administered). The X-tile 
program is utilized to categorize patients based on age into two 
groups: those aged ≤64 years and those >64 years. Tumor size is 
categorized using the median value as the cutoff. Surgical resection 
extents are classified into three categories: non-surgical resection, 
biopsy/STR, and total resection. The primary endpoint for 
measurement is OS. The conclusion of the follow-up period is set as 
December 31, 2020.

2.7 Construction and validation of 
nomograms

Using the cph() function in the RMS package of R language 
software, we  constructed a predictive model that relies on 
independent prognostic factors to forecast the 1-year, 2-year, and 
3-year OS rates among patients with SP-EP. Subsequently, 
we employed the plot() functions to generate corresponding survival 
prediction nomograms and visualize the prediction model. To 
identify independent prognostic variables, univariate and multivariate 
Cox regression analysis was conducted on the training dataset. The 
significant variables derived from this analysis were then utilized to 
develop nomograms for predicting the OS of SP-EP. To assess the 
performance of the nomograms, we  utilized various evaluation 
methods. Specifically, the calibration curve was used to demonstrate 
the accuracy of nomogram predictions. Additionally, the time-
dependent ROC curve and AUC were calculated to evaluate the 
nomograms’ ability to discriminate between different patient groups 
over time. Finally, to confirm the robustness of our findings, the 
nomograms were tested on the validation dataset and 
reanalyzed accordingly.

2.8 Clinical correlation

Perform DCA to evaluate the clinical utility of nomograms for 
practical clinical applications. The optimal critical value for each 
patient’s risk score is determined using the ROC curve. After 
calculating the risk score, patients in the training and validation 
cohorts are classified into high-risk and low-risk groups. To evaluate 
survival differences, we employed K-M survival curves to analyze OS 
differences between these groups. Additionally, we  examined the 
influence of various surgical conditions on survival times between 
high-risk and low-risk patients.
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2.9 Statistical analysis

We apply χ2. We verify the clinical variables between the training 
set and validation set and conduct univariate and multivariate Cox 
proportional hazards regression analysis to identify independent 
predictors of survival specifically within the training set. The 
consistency index (C-index) serves as a metric to assess the 
authenticity and reliability of the model represented by the nomogram. 
A calibration chart is constructed to assess the agreement between 
predicted and observed values. DCA is used to analyze the 
effectiveness of commonly used nomograms and prognostic indicators 
in clinical practice. Kaplan Meier method and logarithmic rank test 
are utilized for survival analysis. All statistical analyses were conducted 
using R software (version 4.3.1). The R packages used in this study 
include “rms,” “survival,” “surveyor,” and “ggDCA.” All statistical 
significance in this study was determined using a p < 0.05.

3 Results

3.1 RNA-seq gene differential analysis

To delve into the pathogenic core genes of SP-EP, we first retrieved 
mRNA expression profiles of SP-EP and normal tissues from GEO 
(GSE50161 and GSE66354). Subsequently, we filtered and identified 
DEGs for comparison with normal tissues. Our analysis revealed a 
total of 5,151 DEGs, of which 2,679 genes were upregulated 
(log2 FC > 1) and 2,472 genes were downregulated (log2 FC < −1). This 
finding is illustrated in Figure 2.

3.2 Functional enrichment analysis

To delve deeper into the functions of the 5,151 DEGs in SP-EP, 
statistical analysis and visualization of their functional clustering were 
conducted using the “clusterprofile” package in R software. Table 1 

presents the top 5 GO items of DEGs, sorted by p-values. From the BP 
analysis, it emerged that these DEGs primarily participate in processes 
such as chromosome segregation, nuclear chromosome segregation, 
sister chromatid segregation, mitotic sister chromatid segregation, and 
mitotic nuclear division. In the CC analysis, they were significantly 
associated with spindle, mitotic spindle, chromosome centromeric 
region, chromosomal region, and condensed chromosome. 
Furthermore, the MF analysis revealed that the DEGs are primarily 
involved in microtubule binding, tubulin binding, microtubule motor 
activity, cytoskeletal motor activity, and CXCR chemokine receptor 
binding. To gain additional insights into the crucial pathways of these 
DEGs, we conducted a KEGG pathway analysis. The results, depicted 
in Figure 3 and Table 2, revealed that the top 10 enriched KEGG 
pathways, ranked by p-values, primarily encompassed Cell cycle, 
Cellular senescence, Oocyte meiosis, Motor proteins, IL-17 signaling 
pathway, Viral protein interaction with cytokine and cytokine 
receptor, Progesterone-mediated oocyte maturation, p53 signaling 
pathway, and Human T-cell leukemia virus 1 infection.

3.3 Machine learning method for obtaining 
disease characteristic genes

We applied LASSO regression to filter differential gene expression 
using the R software “glmnet” package. Seven genes with the lowest 
error values were selected as disease characteristic genes, and relevant 
visualization graphs were drawn (Figures  4A,B). The vertical axis 
represents the error size, the horizontal axis represents the number of 
genes, and gene errors were ranked from high too low to obtain 
UNC13C, CNTNAP4, SYN1, CELF4, CYP4X1, SEC14L5, and 
CLEC2L. Furthermore, we utilized the SVM-RFE method to screen 
disease characteristic genes, employing the R software packages 
“e1071,” “kernlab,” and “caret” to filter differential gene expression. 
We employed cross-validation to identify the disease characteristic 
genes with minimal error and conducted visual analysis (Figure 4C). 
The vertical axis represents the error size, and the horizontal axis 

FIGURE 1

Participant inclusion and exclusion flowchart. SEER, Surveillance, Epidemiology, and End Result Program; ICD-0-3, International Classification of 
Disease for Oncology, Third Edition.

https://doi.org/10.3389/fneur.2024.1454061
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Fu et al. 10.3389/fneur.2024.1454061

Frontiers in Neurology 05 frontiersin.org

FIGURE 2

Differentially expressed genes. (A) The heatmap of DEGs in GSE50161 was generated using R software, with expression profiles above the mean 
depicted in yellow and those below in green. (B) Similarly, a heatmap for DEGs in GSE66354 was created through R software. (C) A volcano plot was 
constructed to visualize the differentially expressed genes in GSE50161, log FC: log2 fold change. (D) A volcano plot was also generated for the 
differentially expressed genes in GSE66354. (E) A Venn diagram illustrates the intersection of DEGs between GSE50161 and GSE66354 databases.

TABLE 1 GO enrichment analysis of DEGs in SP-EP.

Category Term Count Gene ratio p-value

BP Chromosome segregation 34 34/99 2.43E-31

BP Nuclear chromosome segregation 30 30/99 6.47E-30

BP Sister chromatid segregation 27 27/99 1.56E-29

BP Mitotic sister chromatid segregation 25 25/99 9.75E-29

BP Mitotic nuclear division 28 28/99 1.23E-28

CC Spindle 24 24/100 1.07E-18

CC Mitotic spindle 18 18/100 1.68E-18

CC Chromosome, centromeric region 20 20/100 1.85E-18

CC Chromosomal region 23 23/100 2.91E-18

CC Condensed chromosome 20 20/100 9.95E-18

MF Microtubule binding 14 14/97 1.56E-10

MF Tubulin binding 14 14/97 1.09E-08

MF Microtubule motor activity 7 7/97 6.54E-08

MF Cytoskeletal motor activity 7 7/97 2.03E-06

MF CXCR chemokine receptor binding 4 4/97 2.06E-06
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TABLE 2 KEGG enrichment analysis of DEGs in SP-EP.

Category Term Count Gene ratio p-value

hsa04110 Cell cycle 12 12/58 3.21E-10

hsa04218 Cellular senescence 7 7/58 7.04E-05

hsa04114 Oocyte meiosis 6 6/58 0.000215

hsa04814 Motor proteins 7 7/58 0.000265

hsa04657 IL-17 signaling pathway 5 5/58 0.000377

hsa04061 Viral protein interaction with cytokine and cytokine receptor 5 5/58 0.000501

hsa04914 Progesterone-mediated oocyte maturation 5 5/58 0.000549

hsa04115 p53 signaling pathway 4 4/58 0.001491

hsa05166 Human T-cell leukemia virus 1 infection 6 6/58 0.003364

FIGURE 4

Mechanical Learning Method for Identifying Disease-Specific Genes. 
(A) LASSO Coefficient Curve Depicting Prognostic DEGs. (B) Cross-
Validation for Selecting Optimal Regularization Parameters (λ). 
(C) SVM-RFE Diagram. (D) VENN Diagram.

represents the number of genes. Thirty-one genes with minimal error 
expressions were identified. The intersection of the disease 
characteristic genes obtained from both methods was taken, and a 
Venn diagram was drawn (Figure  4D) to obtain SYN1, CELF4, 
and CYP4X1.

3.4 Immune infiltration analysis

Based on 22 immune-related gene sets, we  conducted immune 
infiltration analysis, which revealed the subtypes of immune cells, their 
corresponding abundances, and variations in the proportions of various 
immune cells across tumor samples. As depicted in Figures 5A,B, the 
proportions of Macrophages M2, CD4+ memory resting T cells, 
Eosinophils, Monocytes, and Neutrophils were comparatively high in 
SP-EP tumor tissue, whereas the proportions of other immune cell types 
were relatively low. To further investigate the association between three 
key genes and immune cell infiltration, patients were stratified into 
high-and low-risk groups. The results are presented in 
Figures  5C–E. Notably, a significant difference was observed in the 
proportions of follicular helper T cells and Monocytes between the two 
groups in the context of CELF4 (p < 0.05). However, no significant 
differences were detected for SYN1 and CYP4X1 (p > 0.05).

FIGURE 3

Analysis of the top 5 enriched GO and top 10 KEGG pathways in DEGs. (A) GO enrichment analysis. (B) KEGG enrichment pathway analysis. Node size 
represents the proportion of genes; The node color represents the p-value.
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3.5 Clinical characteristics of patients

Our study encompassed 826 patients diagnosed with SP-EP in 
the SEER database spanning the years 2000–2020. Of these 
patients, the training set comprised 578 individuals (70%) and the 
validation set consisted of 248 individuals (30%). In terms of age 
distribution, the majority of patients (87.3%) fell within the young 
age bracket of ≤64 years, with 12.7% belonging to the elderly 
group (>64 years). Regarding gender, 47.2% were male and 52.8% 
were female. Notably, young women under 64 years of age 
constituted the primary affected group, accounting for 45.9 and 
46.5% in the training and validation sets, respectively. In terms of 
tumor characteristics, male patients exhibited an average tumor 
size of 34.6 mm, whereas female patients had an average tumor 
size of 27.9 mm. When it came to treatment options, surgical 
intervention was the most preferred method, with 78.3% of 
patients opting for it. Radiotherapy followed as the second most 
common choice, accounting for 16.3% of patients. Chemical drug 
treatment, however, was chosen by only a minuscule proportion 
of 0.4%, and none of these patients underwent either surgery or 
radiation therapy. It is important to mention that sequential 
variables related to surgery, radiotherapy, and chemotherapy are 
not recorded in the SEER database. Similarly, detailed information 
about the drugs used in chemotherapy is also unavailable. For a 
comprehensive overview of the clinical data, please refer to 
Table 3.

3.6 Variable selection

In this study, the optimal cutoff value for continuous variables 
was determined using X-Tile software (version 3.6.1). The patient’s 
age was categorized into two groups: ≤ 64 years old and > 64 years old, 
as depicted in Figure  6. To assess the interaction among various 
covariates, relevant factors with p < 0.05  in both univariate and 
multivariate Cox proportional risk models were combined to identify 
independent prognostic factors. The findings revealed that age 
(p < 0.001), gender (p < 0.001), and surgical method (p < 0.005) served 
as independent predictors of prognosis, as summarized in Table 4. 
Notably, younger age, female gender, and complete surgical resection 
were factors that significantly contributed to improved overall 
survival (OS) in patients with SP-EP.

3.7 Nomogram validation

Based on Cox univariate/multivariate regression analysis, 
we constructed prognostic models for 3-year, 5-year, and 8-year 
overall survival (OS) in SP-EP patients. The results, visualized in 
Figure  7 as nomogram, reveal that age is the most significant 
prognostic factor, followed by surgical methods and gender 
differences. Each factor level is assigned a grade score, enabling 
visual calculation through the nomogram. Summing the scores 
across all factors provides the corresponding OS value. In both the 

FIGURE 5

Immune infiltration analysis based on 22 immune related gene sets. (A) Representing 22 subtypes of immune cells, each bar chart abundance 
represents the proportion of immune cells in each sample, and different colors represent each subtype. (B) Differences in the proportion of 22 
subtypes of immune cells. (C–E) Comparative analysis of the proportion of immune infiltrating cells between the high-risk and low-risk groups of 
CELF4, SYN1, and CYP4X1 (*p  <  0.05).
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TABLE 3 Patient characteristics and socio-demographic.

Characteristics Training cohort (n  =  578), n (%) Validation cohort (n  =  248), n (%) p-value

Age (n%)

≤64 years 501 (86.7%) 220 (88.7%) 721 (87.3%)

>64 years 77 (13.3%) 28 (11.3%) 105 (12.7%)

Sex (n%)

Male 272 (47.1%) 118 (47.6%) 390 (47.2%)

Female 306 (52.9%) 130 (52.4%) 436 (52.8%)

Race (n%)

White 488 (84.4%) 219 (88.3%) 707 (85.6%)

Black 52 (9.0%) 11 (4.4%) 63 (7.6%)

Other 38 (6.6%) 18 (7.3%) 56 (6.8%)

Marital status (n%)

Single 151 (26.1%) 62 (25.0%) 213 (25.8%)

Married 343 (59.3%) 158 (63.7%) 501 (60.7%)

Others 84 (14.5%) 28 (11.3%) 112 (13.6%)

Size (n%)

<30 mm 353 (61.1%) 160 (64.5%) 513 (62.1%)

≥30 mm 225 (38.9%) 88 (35.5%) 313 (37.9%)

Number (n%)

Single 494 (85.5%) 217 (87.5%) 711 (86.1%)

Multiple 84 (14.5%) 31 (12.5%) 115 (13.9%)

Surgery (n%)

GTR 163 (28.2%) 86 (34.7%) 249 (30.1%)

Biopsy/STR 288 (49.8%) 110 (44.4%) 398 (48.2%)

NO surgery 127 (22.0%) 52 (21.0%) 179 (21.7%)

Radiation (n%)

Yes 99 (17.1%) 36 (14.5%) 135 (16.3%)

No 479 (82.9%) 212 (85.5%) 691 (83.7%)

Chemotherapy (n%)

Yes 2 (0.3%) 1 (0.4%) 3 (0.4%)

No 576 (99.7%) 247 (99.6%) 823 (99.6%)

GTR, total resection; RT, radiotherapy; STR, subtotal resection.

FIGURE 6

Sing X-Tile software to determine the optimal cutoff values for age. (A) Age-Survival Histogram. (B) Age-Survival Kaplan Meier diagram.
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TABLE 4 Univariate and multivariate analyses of characteristics for predicting overall survival (OS) in patients with SP-EP.

Variables Univariate Multivariate

HR 95%CI p-value HR 95%CI p-value

Age (years)

≤64 Ref. Ref.

>64 6.1 3.9–9.5 p < 0.001* 5.2633 2.6847–8.6682 p < 0.001*

Sex

Male Ref. Ref.

Female 0.58 0.38–0.89 p < 0.001* 0.6418 0.3697–1.0803 p < 0.001*

Race

White Ref. Ref.

Black −0.04 0.52–2.5 p = 0.95 1.6197 0.6102–4.2958 p = 0.333

Others −0.04 0.39–2.4 1.6474 0.4935–5.4941 p = 0.417

Marital status

Single Ref. Ref.

Married 0.44 0.51–1.4 p = 0.089 0.4858 0.3800–1.4747 p = 0.552

Divorced/separated/widowed 0.44 0.83–2.9 1.0883 0.4880–2.4275 p = 0.803

Size (mm)

≤30 Ref. Ref.

>30 1.23 0.64–1.5 p = 0.94 1.2460 0.7203–2.1572 p = 0.431

Tumor number

Single Ref. Ref.

Multiple 3.7 2.4–5.7 p = 0.013* 3.3463 1.8936–5.9127 p = 0.093

Surgery

GTR Ref. Ref.

Biopsy/STR 0.84 0.82–2.5 1.3168 0.6426–2.6946 p = 0.452

NO surgery 0.84 1.4–3.9 p = 0.0046* 9.1490 1.3045–4.7786 p < 0.005*

Radiation

Yes Ref. Ref.

No 0.73 0.44–1.2 p = 0.22 7.6595 0.4126–1.422 p = 0.398

Chemotherapy

Yes Ref. Ref.

No 0.2 0.028–1.5 p = 0.11 1.3764 0.0000-Inf p = 0.996

GTR, total resection; RT, radiotherapy; STR: subtotal resection. *p < 0.05; HR, hazard ratio; CI, confidence interval.

FIGURE 7

The nomograms to predict OS at 3-, 5-, and 8-year with SP-EP. SEER, Surveillance, Epidemiology, and End Result Program; OS, overall survival.
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training and validation sets, the C-index of the OS prediction model 
is 0.741 and 0.747, respectively (Table 5). Additionally, the AUC 
values for 3, 5, and 8 years indicate good discriminability of the 
prediction model (Figure 8). To assess the calibration level of the OS 
prediction models, we employed calibration curve graphs. Both the 
modeling and validation groups demonstrate a high overlap 
between the calibration curve and the standard line (Figure  9), 
indicating a strong correlation between the predicted and observed 
survival rates. Furthermore, we evaluated the clinical applicability 
of the prediction model using DCA (Figure  10). The results 
demonstrate a wide threshold probability range and a high net 

benefit for predicting 3-year, 5-year, and 8-year survival rates in 
SP-EP patients.

4 Discussion

In this study, we retrieved spinal meningioma data from the GEO 
database and conducted a comprehensive analysis of the genetic 
profiles of affected patients. Differential gene analysis revealed a 
significant enrichment of genes primarily associated with chromosome 
segregation, nuclear chromosome segregation, and sister chromatid 
segregation. These genes are intricately involved in cellular processes 
such as cell cycle regulation, cellular sensitivity mechanisms, meiotic 
events in oocytes, motor protein functions, and the IL-17 signaling 
pathway—all of which are closely linked to immunological functions. 
Subsequently, we  identified three core genes: CELF4, SYN1, and 
CYP4X1. Notably, CYP4X1 appears to play a pivotal role in the 
pathogenesis and immune infiltration associated with SP-EP.

TABLE 5 C-index for training and validation sets in OS nomograms.

Training set Validation set

C-index 95%CI C-index 95%CI

OS 0.741 0.747

C-index, concordance index; OS, overall survival; CI, confidence interval.

FIGURE 8

Time-dependent curves (ROC) of the nomogram for 3-, 5-, and 8-year predictions; AUC for predicting OS in the training cohort (A) and validation 
cohort (B).
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CELF4 (CUGBP Elav Like Family Member 4), an RNA-binding 
protein, plays diverse roles in cellular processes such as RNA splicing 
and mRNA stability. Its expression has been shown to influence the 
immune response within the tumor microenvironment. Specifically, 
studies suggest that CELF4 might suppress the anti-tumor immune 
response by regulating immune checkpoint molecules (22, 23). 
Additionally, CELF4 expression has been associated with poor 
prognosis in colorectal cancer, indicating its significance in the 
pathogenesis of this malignancy (24). Immune tumor infiltration is 
crucial in cancer development, metastasis, and immune escape, 
affecting patient prognosis (25–27).

CELF4 is widely expressed, with high levels observed in the 
central nervous system (28). SP-EP, a rare tumor originating from 
ependymal cells, remains understudied regarding the role of CELF4. 
However, insights can be drawn from studies on CELF4’s function 
in other CNS tumors, such as glioblastoma, which suggest its 
involvement in tumor progression and aggressiveness (29–31). The 
exact mechanism underlying CELF4’s influence on tumor immune 

infiltration in SP-EP remains elusive. Based on findings in other 
cancers, it is hypothesized that CELF4 may regulate the expression 
of genes involved in antigen presentation, cytokine signaling, and 
immune cell recruitment within the tumor microenvironment (22, 
32). Future research is warranted to delve deeper into the specific 
role of CELF4 in SP-EP and its intricate interplay with the tumor 
immune response. Studies exploring CELF4 expression levels in 
patients with SP-EP and their correlation with immune cell 
infiltration would be highly valuable. Additionally, functional studies 
aimed at elucidating the precise mechanisms by which CELF4 
regulates immune infiltration in this specific cancer type are 
urgently needed.

In addition, we  conducted an extensive retrospective study 
focusing on the clinical data of SP-EP patients, thereby presenting the 
most recent evidence for their epidemiological analysis. Utilizing the 
SEER database, we  developed clinical prognostic models that 
encompassed 3-year, 5-year, and 8-year survival probabilities by 
extracting potential prognostic factors specific to patients with 

FIGURE 9

Calibration plots of 3-, 5-, and 8-year OS for patients with intramedullary SP-EP. (A–C) Calibration plots of 3-, 5-, and 8-year OS in the training cohort. 
(D–F) Calibration plots of 3-, 5-, and 8-year OS in the validation cohort.
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SP-EP. Our findings indicate that age, gender, and surgical approach 
are potentially significant predictors of survival outcomes for 
SP-EP patients.

Consistent with previous findings by Boström et al. (33), age 
serves as a crucial factor influencing the prognosis of SP-EP 
patients. In cases where other tumor characteristics remain 
constant, the overall survival rate (OS) among older patients is 
significantly lower compared to younger patients, displaying a 
statistically significant difference (34). Through a combination of 
univariate/multivariate Cox regression analysis and the clinical 
prediction nomogram established, it becomes evident that an 
increase in age is inversely associated with patients’ overall survival 
time. This could be  attributed to the higher incidence of 
postoperative long-term sequelae in older patients, including 
secondary hydrocephalus, neurological dysfunction, and nutritional 
and metabolic disorders (35, 36). Additionally, this trend may also 
be  linked to age-related declines in immune function and gene 
repair capacity (9). Male gender emerges as a significant prognostic 

indicator for poorer outcomes in ependymoma, particularly among 
young boys under 15 years of age (37–40). According to population-
based cancer registry data analyzed by Soon et al. (41), there is a 
notable trend indicating an improved survival rate among female 
patients. Notably, the median OS for female patients diagnosed with 
malignant ependymoma is significantly longer than that of males 
(262 months versus 196 months). However, the precise reasons 
underlying the overall longer survival time observed in female 
patients remain elusive.

Surgical resection has traditionally been regarded as the primary 
treatment approach for SP-EP. Our research aligns with this 
consensus, revealing that patients undergoing ependymoma surgery 
fare better, with the extent of resection serving as a significant 
prognostic factor (42, 43). Notably, across various studies, patients 
who undergo gross total resection (GTR) surgery exhibit superior 
outcomes compared to those undergoing subtotal resection (STR) 
surgery (37, 44). Our findings echo these previous observations, 
emphasizing the need to prioritize maximal tumor tissue removal 

FIGURE 10

Decision curve analysis of the OS-associated nomograms. DCA curves of 3-, 5-, and 8-year OS in the training cohort (A–C) and validation cohort 
(D–F).
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while safeguarding neurological function to mitigate recurrence 
risks. Advancements in microsurgical techniques and endoscopic 
surgery have significantly enhanced the prognostic outlook for 
patients with SP-EP.

The utilization of postoperative radiotherapy (RT) in the 
management of ependymoma is gradually escalating (45). 
Nevertheless, our investigation reveals that adjuvant radiotherapy did 
not markedly enhance the overall survival (OS) of patients regardless 
of whether they underwent complete or incomplete resection surgery. 
Furthermore, certain studies concur that radiotherapy confers no 
notable advantage in terms of OS for ependymoma patients. In 
contrast to our findings, prior studies have advocated for high-dose 
adjuvant radiotherapy in patients undergoing subtotal resection (STR) 
(45, 46). However, it is noteworthy that our research may 
be  constrained by the limitations inherent in the SEER database, 
which precludes us from obtaining detailed information regarding 
tumor radiation dose and radiation field.

Over the past decade, tumor prediction models have increasingly 
been adopted, with nomogram emerging as one of the preferred 
methods. In our study, we also employed nomogram to predict patient 
outcomes. Compared to older prediction models, nomogram exhibit 
greater accuracy and effectiveness in forecasting patient outcomes, 
thanks to their balanced consideration of various factors (47). 
Furthermore, our analysis revealed that nomogram can precisely predict 
patient survival rates. Leveraging this approach, we developed a risk 
classification system that stratifies patients into high, medium, and 
low-risk OS categories. This system serves as a valuable tool for guiding 
patient risk adaptation counseling and clinical treatment decisions. 
However, it’s worth noting that our study has several limitations. Firstly, 
being a retrospective cohort study, it is inevitably prone to potential 
selection bias, which typically renders such studies less robust than large 
randomized controlled trials. Secondly, our validation process was 
limited to internal data, and we eagerly anticipate external validation 
using other datasets in the future. Additionally, the SEER database lacks 
detailed information on chemotherapy usage, radiation methods, and 
specific radiation levels, thus hindering our ability to correlate delayed 
treatment effects with precise radiation doses/volumes or specific 
chemotherapy administrations.

In conclusion, we have successfully developed and internally validated 
a nomogram-based OS prediction model for patients with SP-EP. Despite 
its limitations, the model demonstrates acceptable accuracy and clinical 
applicability, offering medical professionals a practical tool for intuitive and 
personalized risk analysis in clinical practice.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: SEER (https://seer.cancer.gov/) and GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) with accession numbers: 
GSE66354 and GSE50161.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional requirements. 

Written informed consent to participate in this study was not required 
from the participants or the participants’ legal guardians/next of kin 
in accordance with the national legislation and the 
institutional requirements.

Author contributions

TF: Data curation, Formal analysis, Funding acquisition, 
Investigation, Methodology, Project administration, Supervision, 
Validation, Visualization, Writing – original draft. CM: 
Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Project administration, Supervision, Validation, 
Visualization, Writing – original draft, Resources. ZC: 
Conceptualization, Data curation, Investigation, Methodology, Project 
administration, Resources, Supervision, Validation, Visualization, 
Writing – original draft. YH: Conceptualization, Methodology, Project 
administration, Validation, Visualization, Writing – original draft. HL: 
Investigation, Methodology, Project administration, Validation, 
Visualization, Writing – original draft, Conceptualization, Data 
curation, Formal analysis, Resources, Software. CW: Funding 
acquisition, Investigation, Project administration, Conceptualization, 
Data curation, Formal analysis, Methodology, Writing – review & 
editing. JL: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Investigation, Methodology, Project 
administration, Resources, Supervision, Validation, Visualization, 
Writing – review & editing, Software. SL: Conceptualization, Data 
curation, Investigation, Project administration, Resources, Software, 
Validation, Visualization, Writing – review & editing. FL: 
Conceptualization, Data curation, Funding acquisition, Investigation, 
Project administration, Resources, Visualization, Writing – review & 
editing, Formal analysis, Methodology, Supervision, Validation.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported in part by the Heilongjiang Natural Science Foundation 
Project (Grant No LH2021C096).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

https://doi.org/10.3389/fneur.2024.1454061
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://seer.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/


Fu et al. 10.3389/fneur.2024.1454061

Frontiers in Neurology 14 frontiersin.org

References
 1. Sun XY, Kong C, Lu SB, Sun SY, Guo MC, Ding JZ. Survival outcomes and 

prognostic factors of patients with intramedullary grade II ependymomas after surgical 
treatments. J Clin Neurosci. (2018) 57:136–42. doi: 10.1016/j.jocn.2018.08.001

 2. Villanueva-Castro E, Meraz-Soto JM, Hernández-Dehesa IA, Tena-Suck ML, 
Hernández-Reséndiz R, Mateo-Nouel EJ, et al. Spinal ependymomas: an updated WHO 
classification and a narrative review. Cureus. (2023) 15:e49086. doi: 10.7759/cureus.49086

 3. Candanedo-Gonzalez F, Ortiz-Arce CS, Rosales-Perez S, Remirez-Castellanos AL, 
Cordova-Uscanga C, Gamboa-Dominguez A. Immunohistochemical features of giant 
cell ependymoma of the filum terminale with unusual clinical and radiological 
presentation. Diagn Pathol. (2017) 12:7. doi: 10.1186/s13000-016-0595-y

 4. Rudà R, Bruno F, Pellerino A, Soffietti R. Ependymoma: evaluation and management 
updates. Curr Oncol Rep. (2022) 24:985–93. doi: 10.1007/s11912-022-01260-w

 5. Cachia D, Johnson DR, Kaufmann TJ, Lowe S, Andersen S, Olar A, et al. Case-based 
review: ependymomas in adults. Neurooncol Pract. (2018) 5:142–53. doi: 10.1093/nop/
npy026

 6. Farooqi S, Tebha SS, Qamar MA, Singh S, Alfawares Y, Ramanathan V, et al. Clinical 
characteristics, management, and outcomes of intramedullary spinal cord ependymomas 
in adults: a systematic review. World Neurosurg. (2023) 173:237–250.e8. doi: 10.1016/j.
wneu.2023.02.098

 7. Chamberlain MC, Tredway TL. Adult primary intradural spinal cord tumors: a 
review. Curr Neurol Neurosci Rep. (2011) 11:320–8. doi: 10.1007/s11910-011-0190-2

 8. Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, et al. Central 
nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. 
J Natl Compr Cancer Netw. (2020) 18:1537–70. doi: 10.6004/jnccn.2020.0052

 9. Cerretti G, Pessina F, Franceschi E, Barresi V, Salvalaggio A, Padovan M, et al. 
Spinal ependymoma in adults: from molecular advances to new treatment perspectives. 
Front Oncol. (2023) 13:1301179. doi: 10.3389/fonc.2023.1301179

 10. Zhang D, Liu H, Zhang M, Cao J. Adult supratentorial extraventricular anaplastic 
ependymoma with cerebrospinal fluid dissemination metastases: a case report. Front 
Neurol. (2024) 15:1351674. doi: 10.3389/fneur.2024.1351674

 11. Wang Q, Chen J, Wang A, Sun L, Qian L, Zhou X, et al. Differentially expressed 
circRNAs in melanocytes and melanoma cells and their effect on cell proliferation and 
invasion. Oncol Rep. (2018) 39:1813–24. doi: 10.3892/or.2018.6263

 12. Feng S, Li J, Fan F, Wang Z, Zhang Q, Zhang H, et al. Prognostic factors and 
treatment strategies for elderly patients with malignant meningioma: a SEER population-
based study. Front Oncol. (2022) 12:913254. doi: 10.3389/fonc.2022.913254

 13. Li X, Shao Y, Wang Z, Zhu J. Risk prediction and treatment assessment in glioma 
patients using SEER database: a prospective observational study. BMJ Open. (2023) 
13:e079341. doi: 10.1136/bmjopen-2023-079341

 14. Tang D, Chen Y, Shi Y, Tao H, Tao S, Zhang Q, et al. Epidemiologic characteristics, 
prognostic factors, and treatment outcomes in primary central nervous system 
lymphoma: a SEER-based study. Front Oncol. (2022) 12:817043. doi: 10.3389/
fonc.2022.817043

 15. Zeng Y, Li N, Zheng Z, Chen R, Peng M, Liu W, et al. Screening of hub genes 
associated with pulmonary arterial hypertension by integrated bioinformatic analysis. 
Biomed Res Int. (2021) 2021:6626094–16. doi: 10.1155/2021/6626094

 16. Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, et al. 
MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-
specific reprogramming of adult human fibroblasts. Cell Stem Cell. (2017) 21:332–348.e9. 
doi: 10.1016/j.stem.2017.08.002

 17. Liu J, Wan Y, Li S, Qiu H, Jiang Y, Ma X, et al. Identification of aberrantly methylated 
differentially expressed genes and associated pathways in endometrial cancer using 
integrated bioinformatic analysis. Cancer Med. (2020) 9:3522–36. doi: 10.1002/cam4.2956

 18. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

 19. Liu J, Feng M, Li S, Nie S, Wang H, Wu S, et al. Identification of molecular markers 
associated with the progression and prognosis of endometrial cancer: a bioinformatic 
study. Cancer Cell Int. (2020) 20:59. doi: 10.1186/s12935-020-1140-3

 20. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The gene 
ontology (GO) database and informatics resource. Nucleic Acids Res. (2004) 32:258D–
2261D. doi: 10.1093/nar/gkh036

 21. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

 22. Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing 
regulation in the brain during health and disease. Mol Cell Neurosci. (2013) 56:456–64. 
doi: 10.1016/j.mcn.2012.12.003

 23. Mu Q, Lv Y, Luo C, Liu X, Huang C, Xiu Y, et al. Research progress on the functions 
and mechanism of circRNA in cisplatin resistance in tumors. Front Pharmacol. (2021) 
12:709324. doi: 10.3389/fphar.2021.709324

 24. Fan X, Liu L, Shi Y, Guo F, Wang H, Zhao X, et al. Integrated analysis of RNA-
binding proteins in human colorectal cancer. World J Surg Oncol. (2020) 18:222. doi: 
10.1186/s12957-020-01995-5

 25. Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between tumor infiltrating 
immune cells and tumor metastasis and its prognostic value in cancer. Cells. (2022) 
12:64. doi: 10.3390/cells12010064

 26. Allam M, Hu T, Lee J, Aldrich J, Badve SS, Gökmen-Polar Y, et al. Spatially variant 
immune infiltration scoring in human cancer tissues. NPJ Precis Oncol. (2022) 6:60. doi: 
10.1038/s41698-022-00305-4

 27. Mu Q, Yao K, Syeda MZ, Wan J, Cheng Q, You Z, et al. Neutrophil targeting 
platform reduces neutrophil extracellular traps for improved traumatic brain injury and 
stroke theranostics. Adv Sci. (2024) 11:e2308719. doi: 10.1002/advs.202308719

 28. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 
(2013) 45:580–5. doi: 10.1038/ng.2653

 29. Siddaway R, Milos S, Vadivel AKA, Dobson THW, Swaminathan J, Ryall S, et al. 
Splicing is an alternate oncogenic pathway activation mechanism in glioma. Nat 
Commun. (2022) 13:588. doi: 10.1038/s41467-022-28253-4

 30. Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, García-Vioque V, Agraz-
Doblas A, Yubero-Serrano EM, et al. Altered CELF4 splicing factor enhances pancreatic 
neuroendocrine tumors aggressiveness influencing mTOR and everolimus response. Mol 
Therapy Nucleic Acids. (2024) 35:102090. doi: 10.1016/j.omtn.2023.102090

 31. Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation 
to reactivation: a multipronged defense wall against pathogens. Cell Death Discov. (2024) 
10:117. doi: 10.1038/s41420-024-01889-5

 32. Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF family proteins in 
Cancer: highlights on the RNA-binding protein/noncoding RNA regulatory axis. Int J 
Mol Sci. (2021) 22:11056. doi: 10.3390/ijms222011056

 33. Boström A, von Lehe M, Hartmann W, Pietsch T, Feuss M, Boström JP, et al. 
Surgery for spinal cord ependymomas: outcome and prognostic factors. Neurosurgery. 
(2011) 68:302–8; discussion 9. doi: 10.1227/NEU.0b013e3182004c1e

 34. Wang C, Yuan X, Zuo J. Individualized prediction of overall survival for primary 
intramedullary spinal cord grade II/III ependymoma. World Neurosurg. (2020) 
143:e149–56. doi: 10.1016/j.wneu.2020.07.049

 35. Mohammed W, Farrell M, Bolger C. Spinal cord ependymoma—surgical 
management and outcome. J Neurosci Rural Pract. (2019) 10:316–20. doi: 10.4103/jnrp.
jnrp_267_18

 36. Deng X, Zhang X, Yang L, Lu X, Fang J, Yu L, et al. Personalizing age-specific 
survival prediction and risk stratification in intracranial grade II/III ependymoma. 
Cancer Med. (2020) 9:615–25. doi: 10.1002/cam4.2753

 37. Rodríguez D, Cheung MC, Housri N, Quinones-Hinojosa A, Camphausen K, 
Koniaris LG. Outcomes of malignant CNS ependymomas: an examination of 2408 cases 
through the surveillance, epidemiology, and end results (SEER) database (1973-2005). 
J Surg Res. (2009) 156:340–51. doi: 10.1016/j.jss.2009.04.024

 38. Jia Z, Yan Y, Wang J, Yang H, Zhan H, Chen Q, et al. Development and validation 
of prognostic nomogram in ependymoma: a retrospective analysis of the SEER database. 
Cancer Med. (2021) 10:6140–8. doi: 10.1002/cam4.4151

 39. Elsamadicy AA, Koo AB, David WB, Lee V, Zogg CK, Kundishora AJ, et al. 
Comparison of epidemiology, treatments, and outcomes in pediatric versus adult 
ependymoma. Neurooncol Adv. (2020) 2:vdaa019. doi: 10.1093/noajnl/vdaa019

 40. Wang Y, Mu Q, Sheng M, Chen Y, Jian F, Li R. A nomogram for predicting overall 
survival of patients with primary spinal cord glioblastoma. Neurospine. (2024) 
21:676–89. doi: 10.14245/ns.2448082.041

 41. Soon WC, Goacher E, Solanki S, Hayes J, Kapetanstrataki M, Picton S, et al. The 
role of sex genotype in paediatric CNS tumour incidence and survival. Childs Nerv Syst. 
(2021) 37:2177–86. doi: 10.1007/s00381-021-05165-0

 42. Leblond P, Massimino M, English M, Ritzmann TA, Gandola L, Calaminus G, et al. 
Toward improved diagnosis accuracy and treatment of children, adolescents, and young 
adults with ependymoma: the international SIOP ependymoma II protocol. Front 
Neurol. (2022) 13:887544. doi: 10.3389/fneur.2022.887544

 43. Samuel N, Tetreault L, Santaguida C, Nater A, Moayeri N, Massicotte EM, et al. 
Clinical and pathological outcomes after resection of intramedullary spinal cord tumors: 
a single-institution case series. Neurosurg Focus. (2016) 41:E8. doi: 
10.3171/2016.5.Focus16147

 44. Korshunov A, Golanov A, Sycheva R, Timirgaz V. The histologic grade is a main 
prognostic factor for patients with intracranial ependymomas treated in the 
microneurosurgical era: an analysis of 258 patients. Cancer. (2004) 100:1230–7. doi: 
10.1002/cncr.20075

 45. Tensaouti F, Ducassou A, Chaltiel L, Sevely A, Bolle S, Padovani L, et al. Imaging 
biomarkers of outcome after radiotherapy for pediatric ependymoma. Radiother Oncol. 
(2018) 127:103–7. doi: 10.1016/j.radonc.2018.02.008

 46. Macdonald SM, Sethi R, Lavally B, Yeap BY, Marcus KJ, Caruso P, et al. Proton 
radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 
70 patients. Neuro Oncol. (2013) 15:1552–9. doi: 10.1093/neuonc/not121

 47. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a 
nomogram for cancer prognosis. J Clin Oncol. (2008) 26:1364–70. doi: 10.1200/
jco.2007.12.9791

https://doi.org/10.3389/fneur.2024.1454061
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/j.jocn.2018.08.001
https://doi.org/10.7759/cureus.49086
https://doi.org/10.1186/s13000-016-0595-y
https://doi.org/10.1007/s11912-022-01260-w
https://doi.org/10.1093/nop/npy026
https://doi.org/10.1093/nop/npy026
https://doi.org/10.1016/j.wneu.2023.02.098
https://doi.org/10.1016/j.wneu.2023.02.098
https://doi.org/10.1007/s11910-011-0190-2
https://doi.org/10.6004/jnccn.2020.0052
https://doi.org/10.3389/fonc.2023.1301179
https://doi.org/10.3389/fneur.2024.1351674
https://doi.org/10.3892/or.2018.6263
https://doi.org/10.3389/fonc.2022.913254
https://doi.org/10.1136/bmjopen-2023-079341
https://doi.org/10.3389/fonc.2022.817043
https://doi.org/10.3389/fonc.2022.817043
https://doi.org/10.1155/2021/6626094
https://doi.org/10.1016/j.stem.2017.08.002
https://doi.org/10.1002/cam4.2956
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/s12935-020-1140-3
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/j.mcn.2012.12.003
https://doi.org/10.3389/fphar.2021.709324
https://doi.org/10.1186/s12957-020-01995-5
https://doi.org/10.3390/cells12010064
https://doi.org/10.1038/s41698-022-00305-4
https://doi.org/10.1002/advs.202308719
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/s41467-022-28253-4
https://doi.org/10.1016/j.omtn.2023.102090
https://doi.org/10.1038/s41420-024-01889-5
https://doi.org/10.3390/ijms222011056
https://doi.org/10.1227/NEU.0b013e3182004c1e
https://doi.org/10.1016/j.wneu.2020.07.049
https://doi.org/10.4103/jnrp.jnrp_267_18
https://doi.org/10.4103/jnrp.jnrp_267_18
https://doi.org/10.1002/cam4.2753
https://doi.org/10.1016/j.jss.2009.04.024
https://doi.org/10.1002/cam4.4151
https://doi.org/10.1093/noajnl/vdaa019
https://doi.org/10.14245/ns.2448082.041
https://doi.org/10.1007/s00381-021-05165-0
https://doi.org/10.3389/fneur.2022.887544
https://doi.org/10.3171/2016.5.Focus16147
https://doi.org/10.1002/cncr.20075
https://doi.org/10.1016/j.radonc.2018.02.008
https://doi.org/10.1093/neuonc/not121
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1200/jco.2007.12.9791

	Disease characteristics and clinical specific survival prediction of spinal ependymoma: a genetic and population-based study
	1 Introduction
	2 Materials and methods
	2.1 Data collection and analysis
	2.2 Functional enrichment analysis
	2.3 Utilizing machine learning techniques to identify disease-specific characteristic genes
	2.4 Immune infiltration analysis of chips: a methodological perspective
	2.5 Research design and data collection
	2.6 Variable selection and research design
	2.7 Construction and validation of nomograms
	2.8 Clinical correlation
	2.9 Statistical analysis

	3 Results
	3.1 RNA-seq gene differential analysis
	3.2 Functional enrichment analysis
	3.3 Machine learning method for obtaining disease characteristic genes
	3.4 Immune infiltration analysis
	3.5 Clinical characteristics of patients
	3.6 Variable selection
	3.7 Nomogram validation

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions

	References

