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SpectrisTM treatment preserves
corpus callosum structure in
Alzheimer’s disease
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1Cognito Therapeutics, Inc, Cambridge, MA, United States, 2Taub Institute for Research on Alzheimer’s
Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University,
New York, NY, United States, 3Department of Neurology, Vagelos College of Physicians and Surgeons,
Columbia University, New York, NY, United States, 4Department of Comparative Medicine, Yale
University School of Medicine, New Haven, CT, United States

Objective: To examine the impact of 40Hz gamma stimulation on the
preservation of the corpus callosum, a critical structure for interhemispheric
connectivity, in people with mild cognitive impairment or Alzheimer’s disease.

Methods: OVERTURE (NCT03556280) participants were randomized 2:1
(Active:Sham) to receive daily, 1-h, 40Hz gamma sensory stimulation or sham
treatment for 6 months. Structural magnetic resonance imaging data were
analyzed to assess changes in corpus callosum area (N = 50; 33 for active,
17 for sham). Bayesian linear mixed-e�ects modeling was used to assess
di�erences in longitudinal changes of corpus callosum area between the two
treatment groups.

Results: All observed di�erences in corpus callosum area favored the active
treatment group. Di�erences were observed in the total corpus callosum area
(2.28 ± 0.87%, p < 0.02) and its subregions, including genu/rostrum (2.36 ±

0.90%, p< 0.02), anterior-body (2.64± 1.26%, p< 0.04), mid-body (2.79± 1.18%,
p < 0.03), posterior-body (2.87 ± 1.41%, p < 0.05), and splenium (1.58 ± 0.73%,
p < 0.04). Total corpus callosum area and some of the sub-regional di�erences,
such as genu/rostrum and splenium, were observed as early as 3 months after
commencement of treatment.

Interpretation: The structural magnetic resonance imaging results from the
OVERTURE Phase 2 study suggest that 6 months of non-invasive 40Hz
stimulation reduces the rate of atrophy of the corpus callosum in individuals
with Alzheimer’s disease. The preservation of structural integrity in the corpus
callosum, crucial for interhemispheric communication and cognitive function,
may be achievable through this non-invasive approach, potentially providing a
promising disease-modifying alternative in Alzheimer’s disease management.

KEYWORDS

Alzheimer’s disease, corpus callosum, white matter, atrophy, 40Hz, non-invasive,
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Introduction

Alzheimer’s disease (AD) is marked by neuronal death, synaptic loss, and

compromised white matter structural integrity (1). Current AD therapies primarily

focus on reducing amyloid protein accumulation, with limited focus on directly

preventing neurodegeneration. Our prior research indicated that 40Hz gamma

sensory stimulation may prevent atrophy in individuals with mild cognitive

impairment (MCI) or AD, showing reductions in white matter volume loss (2, 3).
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However, our previous work did not specifically examine the corpus

callosum. Notably, earlier studies, some over two decades old,

reported more than eightfold reduction in the midsagittal area

of the corpus callosum, the principal white matter fiber bundle

connecting the brain’s hemispheres, in AD patients compared to

controls (4). Building on these findings, this study explored the

effects of 40Hz gamma sensory stimulation therapy specifically on

the preservation of the corpus callosum.

The corpus callosum plays a crucial role in interhemispheric

functional integration, with over 300 million fibers transmitting

information across the network (5). Corpus callosum atrophy

is particularly pronounced in AD and preventing it may have

important consequences for neuronal communication and neural

network function (4, 6). Corpus callosum atrophy is more severe

in the anterior and posterior thirds, where there are more small,

myelinated fibers (7). Although the regional pattern and degree

of corpus callosum atrophy correlates with dementia severity in

individuals with AD (4, 8–12), the development of therapeutic

interventions for AD have not focused on preventing or mitigating

corpus callosum atrophy. Recent findings indicate that noninvasive

40Hz gamma sensory stimulation can induce neuronal oscillations,

potentially preventing synaptic loss, neurodegeneration, and brain

atrophy (13, 14). This stimulation may also mitigate demyelination

and promote the generation of new oligodendrocytes (15).

Furthermore, clinical studies suggest that 40Hz gamma stimulation

may enhance functional connectivity and reduce potentially

harmful cytokines in the nervous system (16), slow cognitive

decline (2), and improve activities of daily living (2, 17).

Materials and methods

Study sample and design

This study used data from the OVERTURE clinical trial

(NCT03556280), a randomized, placebo-controlled study aimed at

evaluating the safety, tolerability, adherence, and efficacy estimate

of daily, 1-h sessions using SpectrisTM to generate combined 40Hz

visual and auditory evoked gamma oscillations for 6 months

in individuals who are clinically diagnosed as MCI or AD (N

= 74) (2). The trial protocols were approved by the Advarra

institutional review board (FDA IORG#0000635, OHRA IRB

Registration #00000971), and informed consent was obtained

from all participants or their legally authorized representatives.

The exclusion criteria included comorbid neurological conditions,

profound sensory impairments, seizure history, or those on anti-

seizure/anti-epileptic medication. Participants who were already

taking cholinesterase inhibitors continued a consistent dosage;

however, the use of memantine was exclusionary. Although not

part of the inclusion criteria, amyloid pathology was assessed

using Amyvid [18F] florbetapir PET imaging [see Hajós et al. (2)

for methods].

Therapeutic device

The treatment used the Cognito Therapeutics device

(SpectrisTM), featuring a handheld controller, visual stimulation

eye-set, and headphones for auditory stimulation. The device

allowed participants to adjust the visual and auditory stimulation

levels for comfort and was equipped with a communication feature

for assistance from a care partner if required. Usage and adherence

data were automatically captured and transmitted to a secure cloud

server for remote monitoring purposes.

MRI data acquisition

Structural magnetic resonance imaging (MRI) was performed

at baseline, month 3, and month 6 using 1.5 Tesla MRI scanners

across multiple sites. The imaging protocol was harmonized

with the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI1)

protocol to ensure consistency in data acquisition (3, 18). The

protocol specifics for T1-weighted images were as follows: on

Siemens Espree scanners, images were acquired with an in-plane

spatial resolution of 1.25 × 1.25mm, slice thickness of 1.2mm,

repetition time (TR) of 2,400ms, and echo time (TE) of 3.65ms;

on General Electric Signa HDxt scanners, the resolution was 0.94×

0.94mm, slice thickness 1.2mm, TR ∼3.9ms, and TE 1.35ms; and

on Philips Ingenia or Achieva scanners, the protocol was set to 0.94

× 0.94mm resolution, 1.2-mm slice thickness, TR of 9.5ms, and

TE∼3.6 or 4 ms.

MRI analysis

Among the 74 participants who enrolled in the study, MRI

analyses were conducted based on specific exclusion criteria to

ensure the quality and reliability of the data. The exclusion criteria

were as follows: Insufficient Image Quality: Participants whose T1-

weighted (T1w) MRI images were deemed inadequate for analysis

due to excessive motion artifacts or insufficient contrast between

gray matter and white matter were also excluded. This criterion

resulted in the exclusion of ten participants from the Active

group and seven participants from the Sham group. Incomplete

Data: Participants who failed to complete baseline structural MRI

assessments or at least one follow-up visit by the end of the study

period (Month 6) were excluded. This criterion led to the exclusion

of three participants from the Active group and four participants

from the Sham group. After applying these exclusion criteria, the

final sample comprised 50 participants, with 33 in the Active group

and 17 in the Sham group (see Table 1 for a comparison of the

baseline characteristics of the Active and Sham groups in this

sample). These participants were included in the longitudinal area

assessments of the corpus callosum.

Corpus callosum midsagittal area analysis

To delineate midsagittal area of the corpus callosum, we

used a segmentation process using the Yuki module within the

Automated Registration Toolbox (ART) (19) (http://www.nitrc.

org/projects/art), which was applied to T1-weighted MRI images to

define the boundaries and calculate the area within the midsagittal

plane (MSP). Subsequently, the MSP of the corpus callosum was
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TABLE 1 Demographic characteristics∗.

Active (n = 33) Sham (n = 17) χ
2 t-value 95% CI p-value

Age in years, mean± SD 69.21± 7.54 75.06± 11.26 n.a. 1.93 −0.41, 12.11 0.07

Sex, male/female 10/23 10/7 2.71 n.a. n.a. 0.10

Number (%) of APOE¶
ε4 positive 16 (50%) 8 (47%) 0 n.a. n.a. 1

Number (%) of PET SUVR§
>1.12 23 (77%) 11 (65%) 0.78 n.a. n.a. 0.5

MMSE† score, mean± SD 21.15± 3.45 18.88± 3.33 n.a. −2.25 −4.32,−0.22 0.03

ADCS-ADL‡ scale, mean± SD 65.30± 9.47 62.94± 11.77 n.a. −0.72 −9.12, 4.41 0.48

∗From participants with corpus callosum data (see Material and methods).
¶APOE, apolipoprotein E. APOE status for one active participant is missing.
§PET SUVR (F18-AV-45 Positron Emission Tomography, Standard Uptake Value Ratio, whole cerebellum reference) (2). PET SUVR for three active treatment participants is missing.
†MMSE, Mini-Mental State Examination.
‡ADCS-ADL, Alzheimer’s Disease Cooperative Study-Activities of Daily Living.

n.a., not applicable.

TABLE 2 Normalized area assessments for corpus callosum and its subregions at baseline.

Active (n = 33)
mean ± SD (%)

Sham (n = 17)
mean ± SD (%)

t-value 95% CI p-value

Total corpus callosum 4.17± 0.52 3.91± 0.55 −1.66 −0.59 to 0.06 0.108

Genu/rostrum 1.19± 0.15 1.14± 0.18 −0.98 −0.16 to 0.05 0.334

Anterior-body 0.61± 0.11 0.56± 0.09 −1.58 −0.10 to 0.01 0.123

Mid-body 0.55± 0.09 0.50± 0.08 −1.95 −0.10 to 0.00 0.059

Posterior-body 0.57± 0.12 0.52± 0.11 −1.22 −0.11 to 0.03 0.230

Splenium 1.26± 0.19 1.18± 0.16 −1.56 −0.18 to 0.02 0.127

parcellated into five subregions (genu/rostrum, anterior body, mid

body, posterior body, and splenium) (6) using an automated image

analysis streamline. For baseline comparisons between the two

groups, the area of interest for each individual was normalized

by the total intracranial volume raised to the two-thirds power to

account for the dimensional difference between volume and area.

Statistical methods

A longitudinal analysis was conducted to assess percent changes

in midsagittal plane corpus callosum area and in the areas of

its five midsagittal plane subregions. The percent change was

computed using the formula: Percent change = 100 × (Area

at follow-up/Area at baseline – 1) % where Area represents the

studied corpus callosum area at the respective time points. These

changes were analyzed with a Bayesian linear mixed-effects model,

incorporating non-informative priors for all model parameters.

The model accounted for baseline Mini-Mental State Examination

(MMSE) score, age at baseline, time of visit, treatment group

allocation, baseline MRI measures of corpus callosum area, two-

thirds power of total intracranial volume (as a covariate for area),

group and visit interaction, and interactions between baseline area

and visit. Random effects in the model included inter-subject and

inter-site variability. The Kenward-Roger approximation was used

to estimate the model’s degrees of freedom. The percent change

from baseline was evaluated for the total corpus callosum and each

of the five subregions. All statistical analyses were performed using

the statistical computing software R, version 4.1.1.

Results

Demographic characteristics

There were no differences in age, sex, apolipoprotein E4

(APOE4) status, or baseline Alzheimer’s Disease Cooperative

Study-Activities of Daily Living (ADCS-ADL) scores between

active and sham groups (Table 1). However, MMSE scores were

higher in the active group. This difference was accounted for and

adjusted in all the models studied.

Assessment of corpus callosum structure at
baseline

The two treatment groups did not differ in total or subregion

corpus callosum area at baseline (Table 2).

Changes in total corpus callosum following
treatment

The active treatment group exhibited preservation of

the corpus callosum, in contrast to the sham group, which
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FIGURE 1

Representative total MSP corpus callosum area and group level changes (%) from baseline to 6 months. (A) Total MSP corpus callosum segmentation
(green) from a single participant. (B) Least squares (LS) mean changes in total corpus callosum area. Significant di�erences were observed in the
changes in total corpus callosum area between the active treatment group (red) and the sham group (blue) over both a 3-month period (p < 0.03)
and a 6-month period (p < 0.02). The active treatment group showed preservation of the corpus callosum area, while the sham group exhibited
atrophy. Error bars indicate standard error (SE). *p < 0.05.

demonstrated atrophy (see Figure 1): The differences were

detectable after 3 months; the active treatment group had a

change of 0.20 ± 0.62% while the sham group had a change

of −1.34 ± 0.75%. The difference between the groups was

significant after 3 months (1.54 ± 0.68%, p < 0.03). After

6 months of treatment, the active group exhibited a corpus

callosum area change of 0.20 ± 0.70%, whereas the sham

group showed a change of −2.08 ± 0.87%. The difference

between the two groups was significant (2.28 ± 0.87%,

p < 0.02).

Changes in corpus callosum subregional
areas

Figure 2 illustrates the changes in the areas of the

corpus callosum subregions. At the 3-month assessment,

preservation of area in the anterior and posterior subregions

of the corpus callosum was observed in the active treatment

group. This preservation is reflected by the following

differences in area change compared to the sham group:

Genu/Rostrum (1.59 ± 0.70%, p < 0.03) and Splenium

(1.24 ± 0.54%, p < 0.03). At 6 months, the active treatment

group exhibited preservation or reduced atrophy in all

studied subregions whereas the sham group showed

atrophy in all subregions. The differences between the

two groups were significant: Genu/Rostrum (2.36 ±

0.90%, p < 0.02), Anterior-Body (2.64 ± 1.26%, p <

0.04), Mid-Body (2.79 ± 1.18%, p < 0.03), Posterior-Body

(2.87 ± 1.41%, p < 0.05), and Splenium (1.58 ± 0.73%,

p < 0.04).

Annual atrophy rates in the corpus
callosum

Several longitudinal studies have documented annual

reductions in the corpus callosum area in patients with AD,

particularly affecting the genu-rostrum and splenium regions

(4, 20–22). These are the same regions where we observed the

effects of the treatment within 3 months. We compared the

one-year projected atrophy rates of the corpus callosum area

of participants in the OVERTURE study with those reported

for people with and without AD in the literature. Our findings

consistently demonstrate either preservation of the corpus

callosum area (total, genu/rostrum, anterior, mid, and posterior

body) or reduced atrophy (splenium) compared to the rates

reported in the literature (Table 3). Observed rates of corpus

callosum reduction in the sham group in OVERTURE were

in line with previously reported rates of atrophy in people

with AD.

Discussion

We assessed the effects of 40Hz gamma stimulation on the area

of the corpus callosum in individuals with clinical MCI and AD.

Our findings indicate that after 6 months, participants receiving

active treatment exhibited either preservation or a reduction in

atrophy of the corpus callosum compared to those receiving sham

treatment. These results constitute an extension of our previous

findings that demonstrated that 40Hz simultaneous audio-visual

sensory stimulation preserves white matter integrity (3). The

beneficial effects of 40Hz gamma stimulation may be mediated by

stimulation-evoked neuronal oscillatory activity, which potentially

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2024.1452930
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Da et al. 10.3389/fneur.2024.1452930

FIGURE 2

Representative subregional MSP corpus callosum area and group level changes (%) from baseline to 6 months. (A) Subregional MSP corpus callosum
segmentation from a single participant: genu/rostrum (green), anterior body (yellow), mid body (red), posterior body (blue), and splenium (purple).
(B–F) Least Squares (LS) Mean changes in subregional corpus callosum area indicate significant di�erences between the active (red) and sham (blue)
treatment groups in favor of the active treatment group. (B) Genu/Rostrum (p < 0.02), (C) Anterior-body (p < 0.04), (D) Mid-body (p < 0.03), (E)
Posterior-body (p < 0.05), and (F) Splenium (p < 0.04). LS Mean area changes at month 3 are significant were observed for (B) Genu/Rostrum (p <

0.03) and (F) splenium (p < 0.03). Error bars indicate standard error (SE). *p < 0.05.

enhances white matter plasticity, promoting oligodendrogenesis

and adaptive myelination (23, 24).

Accelerated loss of corpus callosum area in AD patients is

well documented and considered to indicate either axonal loss

or loss of myelination of existing interhemispheric axons (25,

26). Brain atrophy reflects neurodegeneration, but the underlying

mechanisms that promote atrophy are not fully understood.

Intracellular accumulation of toxic hyperphosphorylated tau likely

contributes to neurodegeneration in AD. Hyperphosphorylated tau

accumulates in axons and disrupts axonal transport (27), perhaps

accounting for the white matter volume loss that is present at a very

early stage of AD progression (28).

Preclinical studies demonstrated a protective effect of 40Hz

steady-state oscillation, due to optogenetic or non-invasive sensory

stimulation. Reduced neurodegeneration and brain volume loss

are observed in AD-related transgenic mice when steady-state

gamma oscillations are evoked over several weeks due to

upregulation of cytoprotective proteins and reduced DNA damage

(13). Furthermore, in ischemic stroke models, there are also

neuroprotective effects of gamma oscillation evoked by either

optogenetic (29) or sensory stimulations (30). Recent clinical

findings revealed protective effects of sensory-evoked gamma

oscillation on brain atrophy in AD patients (2). Evoked gamma

oscillation reduced hippocampal volume loss after 3 months of

treatment (31) and whole brain volume loss after 6 months of

treatment (2). Notably, attenuated cortical thinning of the occipital

cortex was also observed, a region that has profound steady state

oscillation in response to visual stimulation (32). Reduced neuronal

loss due to evoked gamma oscillation may prevent axonal loss as

well as decline in corpus callosum structure.

Neuroprotective effects of evoked gamma oscillations on

myelin were also observed in preclinical and clinical studies.
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TABLE 3 Comparison of corpus callosum changes in literature.

REFERENCE ESTIMATED
CHANGE
(per year)

POPULATION N
(M/F)

AGE
mean ± SD
(range)

MMSE
mean ± SD
(range)

TOTAL
CORPUS

CALLOSUM

GENU
ROSTRUM

ANTERIOR
BODY

MID
BODY

POSTERIOR
BODY

SPLENIUM

OVERTURET % Sham 17

(10/7)

75.06± 11.26

(51–91)

18.88± 3.33

(14–25)

−3.46± 1.39 −3.68± 1.45 −3.68± 1.99 −4± 1.89 −3.85± 2.23 −2.7± 1.23

Active 33

(10/23)

69.21± 7.54

(56–79)

21.15± 3.45

(14–26)

0.22± 1.03 0.12± 1.09 0.44± 1.48 0.88± 1.38 1.23± 1.66 −0.48± 0.91

Elahi et al. (21)† %

MCI-NC 57

(46/11)

74.1± 7.4

(n.a.)

27.7± 1.7

(n.a.)

−0.64± 0.29

(M only)

0.02± 0.60

(F only)

−0.98± 0.59

(M only)

−0.02± 1.20

(F only)

−0.73± 0.63 −0.43± 0.62 −0.02± 0.69

−0.41± 0.47

(M only)

0.02± 0.96

(F only)

MCI-C 81

(51/30)

74.1± 6.9

(n.a.)

26.7± 1.8

(n.a.)

−0.75± 0.28

(M only)

−1.22± 0.36

(F only)

−1.23± 0.56

(M only)

−2.03± 0.73

(F only)

−0.59± 0.53 0.09± 0.52 0.04± 0.58

−0.82± 0.44

(M only)

−1.75± 0.58

(F only)

Teipel et al. (4)¶ % NC 10

(6/4)

65.4± 7.2

(52–76)

29.8± 0.4

(29–30)

−0.9± 5.0 −1.6± 6.3 3.9± 12.1 −1.6± 9.5 −3.7± 12.7 0.7± 3.6

AD 21

(11/10)

69.2± 8.2

(54–87)

17.4± 6.7

(1–28)

−7.7± 6.7 −12.1± 15.1 −10.3± 18.8 −3.0± 10.6 4.0± 18.1 −7.3± 9.3

Zhu et al. (22)¶ % NC 72

(22/50)

75.43± 8.23

(n.a.)

29.19± 0.85

(n.a.)

−1.69± 1.44 n.a. n.a. n.a. n.a. n.a.

Decliner 14

(4/10)

77.07± 7.69

(n.a.)

29.36± 0.93

(n.a.)

−1.37± 0.79 n.a. n.a. n.a. n.a. n.a.

AD 51

(30/21)

74.96± 6.23

(n.a.)

25.92± 3.09

(n.a.)

−3.86± 2.81 n.a. n.a. n.a. n.a. n.a.

Bachman

et al. (20)†
mm2 NC 75

(21/54)

75.5 n.a.

(60–93)

29.2 n.a.

(26–30)

−1.50± 1.56 −0.81± 0.71 −0.52± 0.39 −0.09± 0.40 −0.02± 0.50 −0.25± 0.51

AD-VM 51

(29/22)

75.7 n.a.

(61–90)

26.9 n.a.

(17–30)

−3.20± 1.86 −1.61± 0.84 −0.43± 0.45 −0.13± 0.46 0.02± 0.60 −0.95± 0.59

AD-M 21

(11/10)

73.4 n.a.

(64–83)

23.5 n.a.

(19–30)

−4.07± 3.54 −2.04± 1.70 0.36± 1.00 0.22± 1.03 0.26± 1.08 −2.91± 1.31

NC, normal controls; AD, Alzheimer’s disease; AD-VM, very mild Alzheimer’s disease; AD-M, mild Alzheimer’s disease; MCI-C, mild cognitive impairment converted to Alzheimer’s disease; MCI-NC, mild cognitive impairment NOT converted to Alzheimer’s disease;

M, male; F, female.
†mean± 95% CI.
¶mean± SD.
TLS_mean± SE (1-year projection).

n.a., data not available.
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A recent study reported that sensory-evoked gamma oscillation

prevented demyelination in cuprizone multiple sclerosis model by

promoting new oligodendrocyte generation and reducing brain

inflammation by decreasing levels of proinflammatory molecules

(15). These findings are in line with previous results demonstrating

that optogenetic activation of neurons promotes oligodendrocyte

differentiation and remyelination of axons in the damaged

brain tissue by enhancing axon-oligodendroglia interactions

(33). Our recent findings showed that 40Hz sensory-evoked

gamma oscillation preserved various white matter structures in

OVERTURE trial participants (3). Therefore, it is reasonable to

consider that preservation of corpus callosum area could be due

to both reduced neurodegeneration and demyelination associated

with AD progression.

Interhemispheric communication is critical for normal

brain function, and there is disrupted connectivity in numerous

psychiatric and neurological diseases. Corpus callosum provides

the main connection between the brain hemispheres supporting

their interhemispheric coordination and communication.

In addition to glutamatergic neurons, parvalbumin positive

(PV+) GABAergic neurons connect corresponding cortical

areas, including visual, auditory, and motor cortices between

hemispheres, forming an interhemispheric neuronal network

of the cortex (34, 35). PV+ GABAergic neurons play a critical

role in generating gamma oscillation (36); we speculate that

interhemispheric PV+ GABAergic neurons also contribute to

coherent neuronal network gamma activity and interhemispheric

synchronization between the two hemispheres. Importantly, PV+

GABAergic neurons take part in evoked steady-state oscillations

(37), and their activity could be one of the key mechanisms

producing clinical benefits of evoked steady state gamma oscillation

in patients. Furthermore, cortical PV+ GABAergic neurons

are myelinated by oligodendrocytes and steady state gamma

oscillations activate oligodendrocytes and promote myelination

(38). Restored myelination of PV+ GABAergic neurons could

also contribute to preservation of corpus callosum morphology,

potentially improving interhemispheric communication and

brain function.

While our study offers novel insights, there are a few

limitations, including baseline imbalance in MMSE scores between

active and sham groups, short study duration, and small sample

size. While baseline scores were adjusted for in our analysis,

their variability could still influence neuropathological progression

and intervention outcomes. Although no statistical differences

were found in baseline corpus callosum area measures, the small

sample size may enhance the effects of any baseline discrepancies.

Consequently, caution should be used in generalizing our findings,

as these imbalances could obscure the true efficacy of the

interventions. We also used 1.5T MRI, rather than the more

sensitive 3T. Nonetheless, the study’s strengths, notably the use

of advanced analytical tools and a standardized MRI acquisition

protocol may mitigate these limitations to a certain extent. In

this study, participants were permitted to adjust the auditory

(sound volume) and visual (light intensity) stimulation settings

within predefined limits for comfort. Although these adjustments

were allowed, they were not included in the statistical analysis,

introducing a potential variable that could influence the outcomes.

This should also be acknowledged as a limitation of our analysis.

Our study represents a detailed retrospective analysis of Phase

2 data, specifically focusing on identifying critical structural

endpoints in the corpus callosum. The study was not designed

to correlate these structural changes directly with functional or

cognitive outcomes. We anticipate that forthcoming larger-scale

studies, such as the Hope pivotal study (N > 500), will be

better equipped to examine how alterations in the corpus

callosum structure may impact cognitive functioning and disease

progression in Alzheimer’s disease and other neurodegenerative

disorders prone to white matter abnormalities.

In conclusion, we demonstrate that 40Hz noninvasive

gamma sensory stimulation is a promising intervention to

preserve corpus callosum integrity. By comparing our findings

with the observed corpus callosum atrophy in AD found in

literature, we provide novel insights into possible intervention

to preserve corpus callosum integrity. Our research paves the

way for future investigations aimed at unraveling the mechanistic

underpinnings of these findings. The potential for this therapy

to transform the clinical management of AD and possibly

other neurodegenerative diseases by possibly aiding to preserve

network structure marks an exciting frontier in neuroscience and

clinical research.
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