Check for updates

OPEN ACCESS

EDITED BY Silvia Paola Caminiti, University of Pavia, Italy

REVIEWED BY Jorge Cancela, Roche, Switzerland Francesca Borgnis, Fondazione Don Carlo Gnocchi Onlus (IRCCS), Italy

*CORRESPONDENCE Doo Young Kim ⊠ kdygeno@gmail.com

RECEIVED 18 June 2024 ACCEPTED 30 December 2024 PUBLISHED 15 January 2025

CITATION

Jeon H, Kim DY, Park S-W, Lee B-S, Han H-W, Jeon N, Kim M, Kang M and Kim S (2025) A systematic review of cognitive telerehabilitation in patients with cognitive dysfunction. *Front. Neurol.* 15:1450977. doi: 10.3389/fneur.2024.1450977

COPYRIGHT

© 2025 Jeon, Kim, Park, Lee, Han, Jeon, Kim, Kang and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

A systematic review of cognitive telerehabilitation in patients with cognitive dysfunction

Hyeonwoo Jeon¹, Doo Young Kim¹*, Si-Woon Park¹, Bum-Suk Lee¹, Hyeong-Wook Han¹, Namo Jeon¹, Minsong Kim¹, Mingu Kang¹ and Suebeen Kim²

¹Department of Rehabilitation Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea, ²International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea

Introduction: One of the possible treatment options for patient with cognitive dysfunction is cognitive telerehabilitation. Previous systematic reviews on cognitive telerehabilitation have focused on specific disease groups and the analysis of intervention methods did not differentiate between traditional face-to-face cognition treatment and usual care. In this systematic review, we aim to analyze randomized controlled trials (RCTs) that compare telerehabilitation with face-to-face treatment or usual care for improving cognitive function in elderly individuals with cognitive dysfunction or patients with acquired brain injury.

Methods: We conducted this systematic review following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). In this systematic review, we searched 7 electronic databases (PubMed, Cochrane, EMbase, CINAHL, Web of Science, Scopus, KMbase) to identify relevant studies published through December 10, 2024. We conducted a meta-analysis to assess the quality of the studies and synthesize the evidence. Certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method.

Results: Finally, 16 studies were included in the analysis. For comparing telerehabilitation with face-to-face cognition treatment, the meta-analysis included 2 RCTs for global cognition (immediate outcome), 2 RCTs for attention (immediate outcome), 2 RCTs for visuospatial function (immediate outcome). For comparing telerehabilitation with usual care, the meta-analysis included 7 RCTs for global cognition (immediate outcome), 3 RCTs for global cognition (persistence outcome), 4 RCTs for attention (immediate outcome), 3 RCTs for executive function (immediate outcome), 3 RCTs for working memory (immediate outcome), 3 RCTs for visuospatial function (immediate outcome).

Discussion: Telerehabilitation has been shown to be more effective than usual care in improving global cognitive function, and its effectiveness is not inferior to that of traditional face-to-face cognitive treatment. By overcoming the limitations of traditional cognition rehabilitation and providing continuous treatment, telerehabilitation can offer effective treatment in specific situations.

KEYWORDS

telerehabilitation, cognitive remediation, cognitive dysfunction, neurodegenerative diseases, health services accessibility

Introduction

Cognitive dysfunction is the result of age-related neurodegenerative changes (1). It is also a major complication in acquired brain injury, such as stroke, or traumatic brain injury (TBI) (2, 3). Cognitive dysfunction interferes with functional abilities and activities of daily living (ADLs), thereby reducing people's quality of life (QOL) and participation in society (4). Mild cognitive impairment (MCI) occurs in 15–20% of elderly, and it is known that 8–15% of those with MCI progress to dementia each year (5). Cognitive dysfunction is reported to occur in 70% of overall stroke survivors, 15% of mild TBI patients, and 65% of moderate-to-severe TBI patients (2, 3).

Cognitive rehabilitation interventions for patients with cognitive dysfunction is essential, with a particular emphasis on early implementation to preserve and enhance individual's independence in ADLs (6). Cognitive training has also been recognized as an effective intervention strategy for improving or preserving cognitive function in patients with cognitive dysfunction (1). It can address both physiological and pathological neurodegenerative processes by stimulating the brain's compensatory mechanisms (1). Therefore, appropriately designed cognitive training programs can effectively activate the neural systems involved in sensory and cognitive processing and take advantage of the brain's plasticity to restore brain and cognitive function to a normal state (7).

However, traditional face-to-face cognition treatment approaches have the disadvantage of accessibility issues (8). Barriers to treatment involve restricted service accessibility, especially post-transition from hospital to home, limited mobility due to physical and cognitive impairments, and reduced levels of participation in the face-to-face cognition rehabilitation programs (9, 10). These accessibility issues interrupt the continuity of treatment. These issues have been exacerbated by the COVID-19 pandemic, underscoring the need for additional training options for maintaining continuity of rehabilitation (1). Telerehabilitation has emerged as a promising approach to address numerous challenges, including dependence on caregivers, financial constraints, insufficient access to local medical resources, and transportation difficulties and has shown high participant satisfaction (10, 11). In the field of cognitive treatment, telerehabilitation is emerging as a promising treatment alternative to traditional face-to-face cognition rehabilitation, through technological advances (12). Telerehabilitation is defined by the American Telemedicine Association as the delivery of rehabilitation services using information and communication technologies, and utilizes telecommunications, remote sensing, and operational technology to deliver medical rehabilitation services remotely (6, 13). This approach improves accessibility, providing more effective treatment opportunities, allowing treatment to continue despite spatial constraints (14).

To the best of our knowledge, previous systematic reviews on cognitive telerehabilitation have focused on specific disease groups and the analysis of intervention methods did not differentiate between traditional face-to-face cognition treatment and usual care. The aim of this systematic review is to analyze and synthesize evidence on the efficacy of cognitive telerehabilitation treatment in patients with cognitive dysfunction and compare it to conventional face-to-face cognition treatment group or usual care group.

Materials and methods

Review question

Does cognitive telerehabilitation improve cognitive function (attention, memory, visuospatial, executive function), activities of daily living, quality of life in patients with cognitive dysfunction?

This literature review aims to assess studies of various forms of telerehabilitation in patients with cognitive dysfunction.

Registration of the study protocol

We conducted this systematic review following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and flow diagram. The protocol of this review was registered in the International Prospective Register of systematic reviews (PROSPERO) under the following registration number CRD 42023454250 and can be accessed in its entirety on the program website.¹

Criteria for this review (PICO)

- (1) Patients (P): Patients with cognitive dysfunction (stroke, traumatic brain injury, neurodegenerative diseases, cognitive dysfunction).
- (2) Intervention (I): Telerehabilitation.
- (3) Comparison (C): Face-to-face cognition treatment or Usual care.
- (4) Outcomes (O): Cognition (memory, attention, executive function, visuospatial function), activities of daily living (ADLs), quality of life (QOL).

Usual care was defined as receiving no treatment, sham treatment, etc., while the face-to-face treatment was defined as receiving traditional therapy provided directly by a therapist. Further details are presented in Table 1.

Search and selection

Publications were searched in PubMed, Cochrane, EMbase, CINAHL, Web of Science (WOS), Scopus, KMbase. For comprehensive literature search, the scope of the search did not specify a start date and the end date was December 10, 2024. The review included publications in English and Korean. Detailed search terms are provided in Supplementary material 1. Two reviewers (H.J, H.H) independently conducted the study selection and data extraction. During the screening phase, when the relevance to the topics is ambiguous based on the title and abstract, a partial review of full text was conducted. Studies meeting the

¹ https://www.crd.york.ac.uk/prospero/display_record. php?ID=CRD42023454250

TABLE 1 Characteristics of included studies.

1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Calabrò (19)	Benefits of	Journal of Medical	2023	RCT	Teleneuro-Virtual	[face-to-face treatment	T0: Baseline	[general cognitive	Both teleneuro-VRRS and FTF	Best improvement: BI
	telerehabilitation for	Internet Research			Reality Rehabilitation	group]	T1: Post-treatment	function]	groups improved in global	(<i>p</i> < 0.001), FAB (<i>p</i> < 0.001),
	patients with severe				System (VRRS	Usual Territorial	examinations	MoCA	functional, cognitive, and general	BDI-II ($p < 0.001$) Burden of
	acquired brain injury:				HomeKit device):	Rehabilitative Treatment	(week 12)	[executive function] FAB	health status.	caregivers (CBI; <i>p</i> < 0.004)
	promising results from a				1 h/session,	(paper and pencil in a		[ADLs] BI	However, Only the teleneuro-VRRS	Statistical differences
	multicenter randomized				5 sessions/week	face-to-face rehabilitative		[QoL] SF-36	group improved in executive	(between-group analysis):
	controlled trial using				for 12 weeks	setting):			functions, with a significant	anxiety (effect size
	nonimmersive virtual					1 h/session, 5 sessions/			reduction in anxiety and depression	[ES] = 0.85, <i>p</i> < 0.02), self-
	reality					week for 12 weeks			symptoms.	control (ES = 0.40, <i>p</i> < 0.03)
									The teleneuro-VRRS group achieved	subtests of the PGWBI and
									a statistically significant	in the social role functioning
									improvement: general and motor	(ES = 0.85, <i>p</i> < 0.02) subtest
									outcomes, psychological well-being,	of the SF-36, confirmed by
									QoL.	quite medium and large ESs.
Canyazo (22)	Effectiveness of	Dementia &	2023	RCT	AgeWise program	[Usual care group]	Baseline	[general cognitive	Treatment group (week 10) had	Significant reduction of
	cognitive rehabilitation	Neuropsychologia			(Computerized	(No treatment (Waiting	Post-treatment	function] MoCA	better scores in cognitive variables.	affective symptomatology:
	on mild cognitive				cognitive	list))	(week 10)	[verbal memory] RAVLT	Memory (RAVLT learning trials	depression (GDS β = -2.68;
	impairment using				rehabiliation			EDO-10	β = 0.7; p = 0.030) RAVLT delayed	p = 0.00), neuropsychiatric
	teleneuropsychology				program):			MMQ	recall ($\beta = 0.48$; $p = 0.029$) Activities	symptoms (NPI-Q
					45 min/session, 1			[depression] GDS	of daily living (FAQ β = -3.16;	$\beta = -1.46; p = 0.045),$
					session/week for			[anxiety] DASS-21	p = 0.001) Satisfaction with memory	forgetfulness (EDO-10
					10 weeks			NPI-Q	performance (MMQ satisfaction	$\beta = -1.5; p = 0.00)$, and
								FAQ	$\beta = 10.3; p = 0.004)$ Use of memory	stress (DAS stress $\beta = -6.0$;
									strategies (MMQ strategy $\beta = 4.4$;	<i>p</i> = 0.00)
									p = 0.00)	

Charvet (15) Cognitive function in multiple sclerosis improves with telerchabilitation: PAUS ONE 2017 RCT Adaptive cognitive remediation (ACR) ordinary computer remediation (ACR) ordinary computer organa games: (inction] significantly greater improvement in function] significantly greater improvement in function] Neuropsychological the primary outcome of cognitive function in games: Results from a randomized controlled trial Fraid In/session, 5 week for 12 weeks Neuropsychological the primary outcome of cognitive function in games: I //session, 5 randomized controlled Fraid I //session, 5 week for 12 weeks Neuropsychological the primary outcome of cognitive function in games: I //session, 5 usek for 1 h/session, 5 week for 12 weeks Neuropsychological the primary outcome of cognitive ordition Number Sequence I //session, 5 usek for 1 weeks I h/session, 5 week for 12 weeks Number Sequence participants (56.7% vs. 51.0%) I //session, 5 usek for 1 weeks I weeks I weeks I weeks I weeks I weeks I week for 12 wee	

TABLE 1	(Continued)
---------	-------------

1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Jelcic (20)	Feasibility and efficacy	Clinical	2014	RCT	Lexical-Semantic	[face to face treatment	Baseline	[general cognitive	Mean MMSE score: improved	The results of comparing
	of cognitive	Interventions in			Stimulation with	group]	Post-treatment	function] MMSE	significantly in LSS-tele and LSS-	telerehabilitation group and
	telerehabilitation in early	Aging			teleconference	direct:	(month 3)	[attention] Digit	direct treatments.	face-to-face treatment group
	Alzheimer's disease: a				technology (LSS-	1 h/session, 2 sessions/		Cancelation Test	LSS-tele improved language abilities	telerehabilitation group and
	pilot study				Tele):	week for 3 months		Trail making test A	(phonemic, semantic), stabilized	usual care group were used
					1 h/session, 2			[Executive] Trail making	delayed verbal episodic memory	for meta-analysis,
					sessions/week for			test B	(improved performance after the	respectively.
					3 months			[working memory] DSF	LSS-direct intervention).	
								DSB	For episodic memory, delayed	
								[visual spatial memory]	verbal memory stabilized after	
								ROCF Copy Test	LSS-tele and improved only after	
								[verbal memory] RAVLT	LSS-direct intervention, with respect	
								[visual memory] ROCF	to deterioration in the control	
								Delayed Recall Test	group. Immediate episodic memory	
								Brief Story Recall	(story immediate recall) improved	
									significantly only in the LSS-direct	
									group (<i>p</i> = 0.03).	
									Attention abilities assessed with the	
									Digit Cancellation Test improved	
									significantly only in the LSS-tele	
									group (<i>p</i> = 0.01).	
elcic (20)						[Usual care group]			LSS-tele improved stabilized delayed	
						Unstructured cognitive			verbal episodic memory (improved	
						stimulation			performance after the LSS-direct	
									intervention, verbal episodic	
									memory decline observed in the	
									usual care group).	
									Improvement was not achieved in	
									any neuropsychological test score	
									after unstructured cognitive	
									stimulation.	

10.3389/fneur.2024.1450977

TABLE 1 (Continued)

1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Jonsdottir	Virtual reality for motor	Frontiers in	2021	RCT	Phase I: Clinic HEAD	[Usual care group]	T0: Baseline	[general cognitive	Clinic HEAD result: significant	The Human Empowerment
(23)	and cognitive	Neurology			45 min/session,	Phase I: Clinic HEAD	T1: End of the	function] MoCA	increase in cognition ($p = 0.003$),	Aging and Disability
	rehabilitation from clinic				3 sessions/week	45 min/session,	Clinic HEAD	(Montreal Cognitive	most secondary outcome variables	program (HEAD) protocol
	to home: a pilot				for 4 weeks	3 sessions/week	T2: 3 months after	Assessment)	There was an improvement in	was feasible with good
	feasibility and efficacy				Phase II: Home	for 4 weeks	T3: At follow	[Memory] RBMT-GMI	memory at 6 months from Clinic	adherence: Clinic HEAD
	study for persons with				HEAD (tele-VRRS):	Phase II:	up 7 months after		HEAD only in the Home HEAD	phase (92%), Home HEAD
	chronic stroke				45 min/session,	Usual care for 6 months	baseline		group, indicating further long-term	phase (89%)
					3 sessions/week				benefit on memory from bringing	
					for 3 months				the HEAD system home.	
					Usual care for					
					3 months					
Koc (24)	Comparison of the effect	Complementary	2024	RCT	Online supervised	[Usual care group]	T1 (Baseline)	[general cognitive	For cognition intragroup outcomes,	
	of online physical	Therapies in			physical exercise	: No treatment	T2 (12 weeks)	function] MoCA	the usual care group significantly	
	exercise and	Clinical Practice			program (SPEP)		T3 (24 weeks)	[QoL]	reduced their MoCA during the	
	computerized cognitive				: 60 min/session			ADRQL	study process.	
	stimulation in patients				2 sessions/ week for			[ADLs]	Physcial exercise + Cognitive	
	with Alzheimer's disease				12 weeks			Katz ADL scale,	stimulation group demonstrated	
	during the Covid-19				Cognitive stimulation			Lawton IADL scale	significant improvement in	
	pandemic				(CS) program				cognition, balance and reduction	
					: 10 min/session				in depression compared to the	
					at least $3 \sim 5$ days for				Control group ($p < 0.05$).	
					12 weeks					

tiers in Neurology		trial of plasticity-based cognitive training in mild traumatic brain injury				Science (telerehabilitation) experimental treatment: 1 h/session, 5 sessions/week, for 13 weeks	Sham_games: 13 off-the- shelf computer games (e.g., hangman, Boggle, mah-jong) similar to the experimental treatment program: 1 h/session, 5 sessions/ week for 13 weeks	V2: After training (week 13) V3: No-training follow-up period (month 3)	function] Nine well- standardized measures (1 ~ 5 RAVLT +2 ~ 10 RULIT + WAI + WMS + EXAMINER battery) [general cognitive function] CFQ [executive function] FrSBe	composite cognitive measure improvement: the post-training [+6.9 points, confidence interval (CI) + 1.0 to +12.7, $p = 0.025$, d = 0.555], follow-up visit (+7.4 points, CI + 0.6 to +14.3, $p = 0.039$, d = 0.591) Both large and small cognitive function improvements were seen twice as frequently in the treatment	g o a I
									[depression] BDI [QoL] SF-12 (Short-Form 12 Physical/Mental Component Score) [ADLs] TIADL (Timed Instrumental Activities of Daily Living)	improvements in both groups: depressive and cognitive symptoms.	
07	Manenti (12)	Effectiveness of an innovative cognitive treatment and telerehabilitation on subjects with mild cognitive impairment: a multicenter, randomized, active- controlled study	Frontiers in Aging Neuroscience	2020		Face-to-face Virtual reality rehabilitation system (clinic-VRRS: 1 h/session, 12 sessions for 4 weeks) + tele-VRRS (Tele@H-VRRS: 1 h/session, 36 sessions for 3 months)	[Usual care group] face-to-face VRRS: 1 h/session, 12 sessions for 4 weeks + Tele@H-unstructed cognitive stimulation: 1 h/session, 3 sessions/ week for 3 months	T0: Baseline T1: 1 month T2: 4 months T3: Follow-up (7 months)	neuropsychological battery -MMSE, B.A.D.A., BADL, IADL, GDS, Everyday Memory Questionnaire -NPI [attention] TMT-A [executive function] TMT-B [working memory] FCSRT [visual spatial memory] CDT [verbal memory] RAVLT [QoL] QoL-AD	Clinic-VRRS was more efficient improving memory (FCSRT), language, attention (TMT A) and visuo-constructional abilities (CDT).	
frontiersin.org	Nousia (25)	Evaluation of the efficacy and feasibility of a telerehabilitation program using language and cognitive exercises in multi-domain amnestic mild cognitive impairment	Archives of Clinical Neuropsychology	2023	RCT	Zoom-Rehacom (telerehabilitation): 1 h/session, 2 sessions/week for 15 weeks	[Usual care group] Usual standard clinical care	Baseline (1 week before the beginning of program) 1 week after the completion of the sessions (week 15)	[general cognitive function] MoCA [attention] TMT-A [visual spatial memory] CDT [executive function] TMT-B [working memory] DSF, DSB	Training group after the telerehabilitation improved: delayed and working memory, confrontation naming, verbal fluency, and global cognition. A significant impact of the telerehabilitation program on memory (delay and working), language (naming and verbal fluency), global cognition performance.	

Design Intervention

RCT

2021

BrainHQ, Posit

Comparison

[Usual care group]

Assessment Outcome tool

[general cognitive

V1: Baseline

Outcomes

Telerehabilitation group showed an

Remark

No significant between

group effects were seen on

other measures. (directly

and symptom measures) Data unavailable.

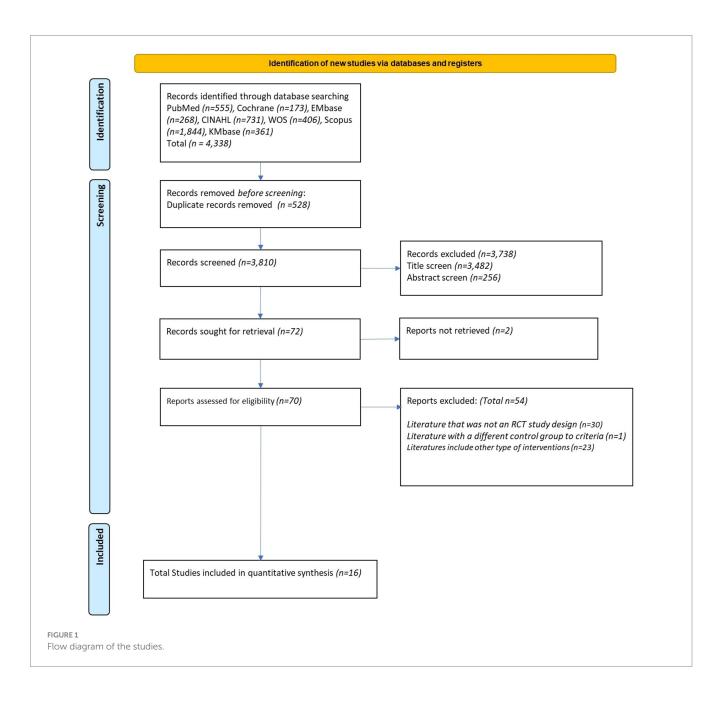
observed functional TIADL

TABLE 1 (Continued) 1st author Title

Mahncke (7) A randomized clinical Brain

1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Rossetto (16)	A digital health home intervention for people within the Alzheimer's disease continuum: results from the ability- telerehabilitation pilot randomized controlled trial	Annals of Medicine	2023	RCT	ABILITY condition (digital telerehabilitation platform for cognitive exercise, video tutorials for motor activities, adaptive incremental difficulty level): cognitive activities: 20 ~ 30 min/session, 5 sessions/week for 6 weeks + motor exercises: 15 ~ 25 min/session, 3 sessions/week, for 6 weeks	[Usual care group] Treatment as Usual intervention (standard manner, paper and pencil activities for cognitive exercise, written instruction for motor activities, fixed incremental difficulty level): cognitive activities: 20 ~ 30 min/session, 5 sessions/week, for 6 weeks, + motor exercises: 15 ~ 25 min/session, 3 sessions/week for 6 weeks	T0: Baseline T1: After 6 weeks of treatment T2: After 12 months after baseline	[general cognitive function] MoCA [attention] TMT-A [executive functions] TMT-B [verbal memory] CAT, DFR DTR, IFR, ITR	Treatment effect (ABILITY>Treatment as Usual): global cognitive level, especially in executive functions, and memory domains. Treatment carry-over effect (1-year follow-up): ABILITY group compared to control group, improved global cognitive functions, decreased behavioral symptoms, and caregiver distress	ABILITY program was efficient: Adherence (81% v. 62%), higher perceived fit of demands and skills ($p < 0.05$), good level of technology usability. Data unavailable.
Pino (26)	Virtual coach and telerehabilitation for Parkinson's disease patients: vCare system	Journal of Public Health	2024	RCT	vCare system (personalized home telerehabilitation with virtual coach system; motor and cognitive rehabilitation) : 20–45 min/session 4 sessions (2 motor sessions and 2 cognitive sessions) for 16 weeks	[Usual care group] : Standard clinical care	T0 (Pre- intervention) T1 (post- intervention)	[general cognitive function] MoCA [QoL] EQs 5D-5L (Euro Quality of Life 5 Levels) [ADLs] Schwab and England Activities of Daliy Living	Regarding intra-group differences, the vCare group showed statistically significant differences after treatment compared to pre- treatment, showing improvements in general cognitive status measured with MoCA ($z = -2.4$; $p = 0.016$) The usual care group showed no significant differences after intervention in any of the domains assessed	
Torpil (21)	The effectiveness of cognitive rehabilitation intervention with the telerehabilitation method for amnestic mild cognitive impairment: a feasibility randomized controlled trial	Journal of Telemedicine and Telecare	2023	RCT	Telerehabilitation (with Zoom, WhatsApp video conference, or Skype) (TR): 45 min/session, 2 sessions/week for 12 weeks	[face-to-face treatment group]: 45 min/session, 2 sessions/week for 12 weeks	Pre-intervention Post-intervention (12 weeks)	[attention, visual spatial memory] LOTCA-G scores (Orientation, Visual perception, Spatial perception, Motor praxis, Visuomotor, Thinking operation, Memory, Attention/concentration)	Cognitive skills: increased in both groups ($p < 0.001$) Within-group analysis showed a significant increase in all functions in both groups ($p < 0.001$). A statistically significant difference was observed between the groups in the post-intervention visual-spatial perception, praxis, and total LOTCA-G scores ($p < 0.01$). higher scores at face-to-face treatment group	The researchers noted that telerehabilitation is not inferior to traditional face- to-face approaches in terms of effectiveness, validity, reliability, and patient satisfaction, and even in cost, time, and accessibility for both therapists and clients

Frontiers in Neurology


1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Torrisi (17)	Using telerehabilitation to improve cognitive function in post-stroke survivors: is this the time for the continuity of care?	International Journal of Rehabilitation Research	2019	RCT	Experimental group (EG) [VRRS-Evo (telerehabilitation)]: 50 min/session, 5 sessions/week for 12 weeks after discharge - VRRS Home Tablet 50 min/session, 3 sessions/week for 12 weeks	[Usual care group] (CG) Using paper-pencil tools, 50 min/session, 5 sessions/week for 12 weeks → traditional training, 50 min/session, 3 sessions/week for 12 weeks	T0: Baseline T1: After 12 weeks T2: After 24 weeks (end of protocol)	[general cognitive function] MoCA [attention] AM [attention] TMT-A [executive function] TMT-B- [executive function] FAB [executive function] FAB [executive function] FAB [working memory] Digit Span [verbal memory] RAVLT [depression] HRS-D [anxiety] HRS-A	Significant improvements were shown at the Experimental group compared to usual care group: MoCA, AM, TMT-B, TMT-B-A, RAVL.I, HRS-D, HRS-A No effects: TMT-A, RAVL.D, digit span, Weigl, FAB	
van der Linden (18)	eHealth cognitive rehabilitation for brain tumor patients: results of a randomized controlled trial	Journal of Neuro- Oncology	2021	RCT	ReMind (eHealth cognitive rehabilitation) 3 h/ week for 10 weeks	[Usual care group] Waiting-list control group	T0: Before surgery T3: After 3 months T6: After 6 months T12: After 12 months		Proportions of participants with impairment in cognitive performance were not significantly different between the groups at T3 and T6, with percentages lying around 70% (Table 3). At T12, significantly fewer participants in the intervention group showed cognitive impairment (35% vs. 68%, $p = 0.027$). Performance-based cognitive outcome, patient-reported outcomes: not significantly differ in group means over time nor RCIs [intervention (final $n = 20$) / control group (final n = 25)] No significant effects were demonstrated, while adherence and satisfaction with the eHealth program were good. In clinical practice, ReMind may be helpful, if timing would be adapted to patients' needs.	All participants found a tablet-app suitable for delivery of cognitive rehabilitation and 90% rated the program as "good" or "excellent"

1 st author	Title	Journal	Year	Design	Intervention	Comparison	Assessment	Outcome tool	Outcomes	Remark
Vilou (27)	Computerized cognitive	Journal of	2020	RCT	BrainHQ™ (Web-	Usual care	Baseline	[attention] TMT-A	Within-group comparisons revealed	
	rehabilitation for	Integrative			based cognitive		Post-treatment	[executive function]	significant improvements in verbal	
	treatment of cognitive	Neuroscience			rehabilitation		examinations	TMT-B	learning (GVLT, <i>p</i> < 0.001),	
	impairment in multiple				program):		(week 6)	[executive function]	visuospatial memory (BVMT-R,	
	sclerosis: an explorative				40 min/session, 2			Stroop word color test	p = 0.001), visual attention (TMT-A,	
	study				sessions/week for			[verbal memory] GVLT	p < 0.001), task switching (TMT-B,	
					6 weeks			[visual memory]	p < 0.001), reading speed and response	
								BVMT-R	inhibition (Stroop tests, $p = 0.002$)	
								[speed] SDMT	within the intervention group	
								[Depression] BDI-FS	When group comparisons were tested	
									by considering individual score	
									changes across follow-up, significantly	
									beneficial effect sizes of the	
									intervention were noted for verbal	
									learning (GVLT, large effect size),	
									visuospatial memory (BVMT-R,	
									moderate effect size), reading speed	
									and response inhibition (Stroop tests,	
									moderate effect size) and visual	
									attention	
Wilson (9)	Home-based (virtual)	Journal of	2021	RCT	EDNA TM (tele-	[Usual care group]	Baseline	[general cognitive	For EDNA training, the pre-post	
	rehabilitation improves	NeuroEngineering			computerized	GRASP (Tele-	Posttreatment	function] MoCA	effect size on the MoCA was	
	motor and cognitive	and Rehabilitation			cognitive	Computerized motor	examinations	[Health-related QOL]	moderate ($g = 0.70$), and triple that	
	function for stroke				rehabilitation	rehabilitation	(week 8)	SIS	of the GRASP training	
	patients: a randomized				program) + Treatment	program) + Treatment as	Follow-up (month	[Depression] NFI	Moderate (but non-significant)	
	controlled trial of the				as Usual:	Usual:	3)		improvement in functional behavior	
	Elements (EDNA-22)				30 min/session, 3 ~ 4	30 min/session, 3 ~ 4			on the SIS ($g = 0.57$) and NFI	
	system				sessions/week for	sessions/week for 8 weeks			(<i>g</i> = 0.49)	
					8 weeks					

The grey shading in the table indicates the studies excluded from the meta-analysis. RCT; randomized controlled trial, VRRS; virtual reality rehabilitation system, MoCA; Montreal Cognitive Assessment, FAB; Frontal Assessment Battery, ADLs; activities of daily living, BI; Barthel Index, QOL; quality of life, SF-36; Short Form Health Survey 36, FTF; Face-to-face treatment, BDI-2; Beck Depression Inventory II, PGWBI; Psychological General Well-Being Index, CBI; Caregiver Burden Inventory, RAVLT; Rey Auditory Verbal Learning Test, EDO-10; Oblivion Detection Scale, MMQ; Multifactorial Memory Questionnaires, GDS; Geriatric Depression Scale, DASS-21; Depression, Anxiety and Stress Scale, NPI-Q; Neuropsychiatric Inventory Questionnaire, FAQ; Functional Activities Questionnaire, ACR; Adaptive cognitive remediation, DSB; Digit Span Backward, SRT; selective reminding test, BVMT-R; Brief Visuospatial Memory Test-Revised, SD; standard deviation, LSS; lexical-sematic stimulation, MMSE; Mini-Mental State Examination, DSF; Digit Span Forward, ROCF; Rey–Osterrieth Complex Figure Copy Test, RBMT-GMI; Rivermead Behavioral Memory Test-Third Edition - Global Memory Index, CFQ; Cognitive Failures Questionnaire, FrSBe; Frontal Symptoms Behavioral Scale, SF-12; Short-Form 12 Physical/ Mental Component Score, TIADL; Timed Instrumental Activities of Daily Living, BA.D.A; Battery for Analysis of Aphasic Deficits, BADL; Basic activity of daily living, IADL; Instrumental Activities of Daily Living, BA.D.A; Battery for Analysis of Aphasic Deficits, BADL; Basic activity of alily living, IADL; DrR: Delayed Tree Recall, DTR; Delayed Total Recall, JTR; Immediate Free Recall, JTR; Immedia

Jeon et al

frontiersin.org

inclusion criteria were included in the review, while those not meeting them were excluded from the review process. A discussion or 3rd reviewer was utilized to resolve conflicts. After screening, the full text was reviewed by two reviewers and excluded studies were described with reasons for their exclusion. Based upon the PRISMA 2020 checklist, the review process was described in the flow chart and the following cases were excluded during the literature screening:

- Studies published as abstracts only, or those for which the full text is not accessible due to reasons such as being unpublished or inaccessible in the original language (non-English/ non-Korean).
- 2. Studies that do not correspond to the PICO criteria.
- 3. Studies that do not match the predefined types of research selected for this study.

Risk of bias (RoB) assessment

Two reviewers (S.P, D.Y.K) independently reviewed the full text for quality assessment. The risk of bias of included studies was assessed using Cochrane revised tool for Risk of Bias in randomized trials (RoB 1.0) to evaluate quality of individual studies.

Data synthesis

Treatment effects were evaluated using Mean Difference (MD) of homogeneous outcome measures or Standardized Mean Difference (SMD) when the outcomes were measured with different scales. For assessing heterogeneity intervention and outcome measures were considered, and data from the most clinically similar trials were combined for analysis. Random-effect model is used to represent an estimate of treatment effect. Subgroups analysis was done according to diagnosis.

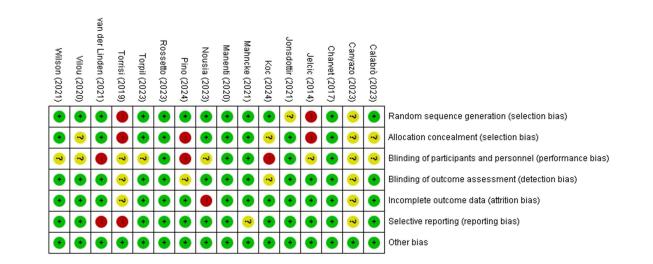
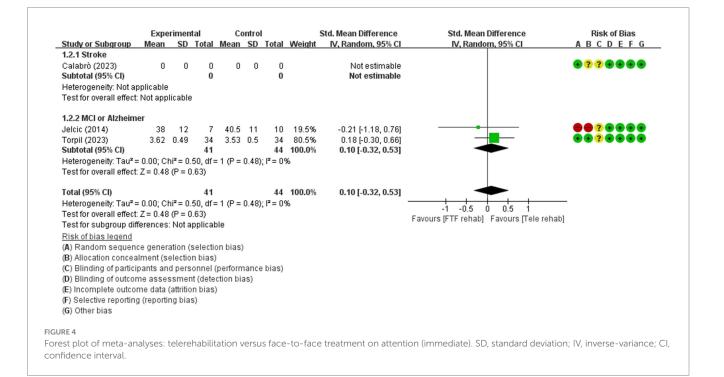


FIGURE 2

Risk of bias for included studies. The included studies were independently assessed and agreed by 2 reviewers using the Cochrane's RoB of 1.0. The colors of the symbols represent the risk of bias as follows: green indicates a low risk of bias, yellow indicates an unclear risk of bias, and red indicates a high risk of bias.

TABLE 2 The evidence summaries and GRADEs.

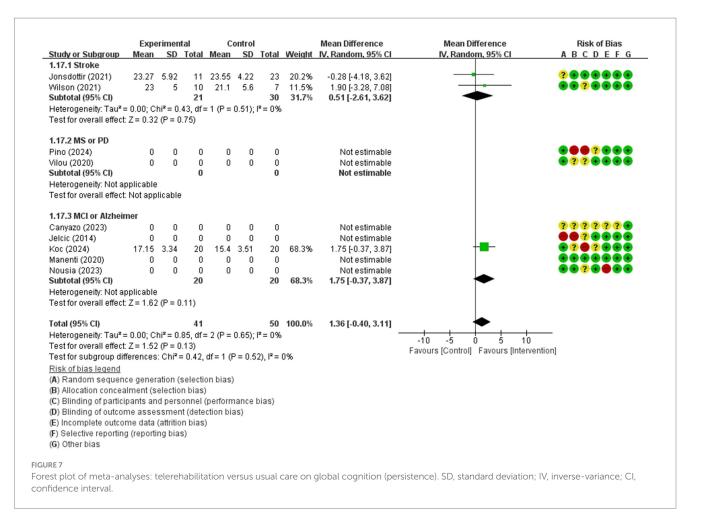

Outcomes	No. of participants / No. of studies	GRADE certainty of evidence (deduction factors)	Statistical methods (IV, Random, 95% CI)	Effect estimates
VS. face-to-face cognitio	n treatment			
Global cognition (immediate)	57 / 2	low (Imprecision –2)	SMD	-0.34 [-0.87, 0.19]
Attention (immediate)	85 / 2	low (Imprecision –2)	SMD	0.10 [-0.32, 0.53]
Visuospatial function (immediate)	85 / 2	low (Imprecision –2)	SMD	-0.26 [-0.75, 0.23]
VS. usual care				
Global cognition (immediate)	216 / 7	moderate (Imprecision -1)	SMD	0.55 [0.24, 0.86]
Global cognition (persistence)	91 / 3	low (Imprecision –2)	MD	1.36 [-0.40, 3.11]
Attention (immediate)	126 / 4	low (Imprecision –2)	SMD	0.24 [-0.11, 0.59]
Executive function (immediate)	109 / 3	moderate (Imprecision -1)	MD	-3.13 [-29.11, 22.85]
Working memory (immediate)	79 / 3	low (Inconsistency of results -1; Imprecision -2)	SMD	-0.02 [-0.56, 0.51]
Visuospatial function (immediate)	79 / 3	very low (Inconsistency of results -1; Imprecision -2)	SMD	0.49 [-0.33, 1.31]

GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; SMD, Standardized mean difference; IV, inverse-variance; CI, confidence interval; MD, mean difference.

Statistical analysis of evidence

We performed a meta-analysis using Reviewer Manager Software 5.4 (Cochrane Collaboration, Oxford, UK). A statistical analysis for continuous variable was conducted. Heterogeneity was estimated using I², which quantifies the percentage of total variation across studies. An I² value greater than 50.0% was considered indicative of substantial heterogeneity. The meta-analyses employed a random effects model with the inverse variance method for continuous outcome variables.

	Expe	rimen	tal	C	ontrol			Std. Mean Difference	Std. Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG
1.1.1 Stroke										
Calabrò (2023)	23	4.44	20	24	3.33	20	71.7%	-0.25 [-0.87, 0.37]		
Subtotal (95% CI)			20			20	71.7%	-0.25 [-0.87, 0.37]	-	
Heterogeneity: Not a	pplicable									
Test for overall effect	: Z = 0.79	(P = 0	1.43)							
1.1.2 MCI or Alzheim	er									
Jelcic (2014)	25.7	2	7	26.9	2	10	28.3%	-0.57 [-1.56, 0.42]		
Torpil (2023)	0	0	0	0	0	0		Not estimable		$\bullet \bullet ? \bullet \bullet \bullet \bullet$
Subtotal (95% CI)			7			10	28.3%	-0.57 [-1.56, 0.42]		
Heterogeneity: Not a	pplicable									
Test for overall effect	: Z = 1.13	(P = 0	1.26)							
Total (95% CI)			27			30	100.0%	-0.34 [-0.87, 0.19]	•	
Heterogeneity: Tau ² :	= 0.00; Cł	ni² = 0.	.29, df=	= 1 (P =	0.59);	² = 0%				
Test for overall effect									Favours (FTF rehab) Favours (Tele rehab)	
Test for subgroup di	ferences	: Chi² =	= 0.29,	df = 1 (F	P = 0.5	9), I² =	0%			
Risk of bias legend										
(A) Random sequen)					
(B) Allocation concea										
(C) Blinding of partici						bias)				
					as)					
(D) Blinding of outcom	me data ()						
(E) Incomplete outco			S)							
(E) Incomplete outco (F) Selective reportin		ng bia								
(E) Incomplete outco		ng bia								
(E) Incomplete outco (F) Selective reportin (G) Other bias	g (reportir	-							cognition (immediate). SD, standard de	



Assessment of certainty of evidence

The certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) method. This method categorizes the certainty of evidence as high, moderate, low, or very low. Depending on the study design, the certainty of evidence is initially determined as 'high', and whether the evidence level can be lowered is determined based on specific criteria. For randomized controlled trails (RCTs), 5 factors are considered: (1) risk of bias, (2) inconsistency, (3) indirectness, (4) imprecision and (5) publication bias, and the certainty of evidence can be lowered by 1 or 2 levels. These evaluations were independently conducted by two authors and then subjected through a consensus process.

	Expe	riment	al	C	ontrol			Std. Mean Difference	Std. Mean I	Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Rando	m, 95% Cl	ABCDEFG
1.6.1 Stroke											
Calabrò (2023)	0	0	0	0	0	0		Not estimable			••??•••
Subtotal (95% CI)			0			0		Not estimable			
Heterogeneity: Not ap	plicable										
Test for overall effect:	Not appl	licable									
1.6.2 MCI or Alzheim	er										
Jelcic (2014)	18.6	12	7	25.8	7	10	22.0%	-0.73 [-1.74, 0.27]		_	
Torpil (2023)	19.71	1.42	34	19.91	1.64	34	78.0%	-0.13 [-0.60, 0.35]	-	-	$\bullet \bullet ? \bullet \bullet \bullet \bullet$
Subtotal (95% CI)			41			44	100.0%	-0.26 [-0.75, 0.23]	-	•	
Total (95% CI) Heterogeneity: Tau ² =	: 0.02: Ch	ni² = 1.1	41 13.df=	= 1 (P =	0.29):		100.0%	-0.26 [-0.75, 0.23]		► 	-
Heterogeneity: Tau ² =				= 1 (P =	0.29);	² = 129	6		-2 -1 0) 1 2	-
Test for overall effect: Test for subgroup diff				alo					Favours (FTF rehab)	Favours [tele rehab]	
Risk of bias legend	erences.	. NOL A	opiicar	JIC .							
(A) Random sequence	e deners	ation (s	electio	nn hias)							
(B) Allocation concea	-			,							
(C) Blinding of particip			,		ance	bias)					
(D) Blinding of outcom	ne asses	smen	t (dete	ction bia	as)						
(E) Incomplete outcor	me data ((attritio	n bias))							
(F) Selective reporting) (reportir	ng bias	5)								
(G) Other bias											
JURE 5											
	alvses: t	elerel	habilit	ation	ersus	face-	to-face	treatment on visuos	natial function (imm	ediate) SD standa	ard deviation; IV, inverse-
riance: Cl. confidenc	5		GOTH		cisus	, lace		deathene on visuos		coloce, 5D, 501100	
ance, ei, connuenc	c interv	ut.									

		erimenta			control			Std. Mean Difference	Std. Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG
1.1.1 Stroke										
Jonsdottir (2021)	24.36	4.24		23.13	4.21	23	15.3%	0.28 [-0.44, 1.01]		?
Wilson (2021)	21.9	4.1	10	18.7	6	7	8.8%	0.61 [-0.38, 1.61]		**?****
Subtotal (95% CI)			21			30	24.1%	0.40 [-0.19, 0.98]	-	
Heterogeneity: Tau² = Test for overall effect:				I (P = 0.	60); I² =	0%				
1.1.2 MS or PD										
Pino (2024)	25.4	2.7	10	23.5	3.4	8	9.5%	0.60 [-0.36, 1.55]		•••
Vilou (2020)	0	0	0	0	0	0		Not estimable		• ? ? • • • •
Subtotal (95% CI)			10			8	9.5%	0.60 [-0.36, 1.55]		
Heterogeneity: Not ap	pplicable									
Test for overall effect:	Z=1.23	(P = 0.22	2)							
1.1.3 MCI or Alzheim	er									
Canyazo (2023)	-1.969			-2.97	2.913	30		0.36 [-0.15, 0.87]	+	2 ? ? ? ? ? .
Jelcic (2014)	25.7	2	7	24.1	4	10	9.0%	0.45 [-0.53, 1.44]		
<oc (2024)<="" td=""><td>17.3</td><td>3.19</td><td>20</td><td>16.1</td><td>3.22</td><td>20</td><td>19.3%</td><td>0.37 [-0.26, 0.99]</td><td></td><td>• ? • ? • • •</td></oc>	17.3	3.19	20	16.1	3.22	20	19.3%	0.37 [-0.26, 0.99]		• ? • ? • • •
Manenti (2020)	0	0	0	0	0	0		Not estimable		
Nousia (2023)	23.67	1.59	15	21.2	1.47	15	12.0%	1.57 [0.74, 2.40]		•••?••
Subtotal (95% CI)			72			75	66.4%	0.64 [0.11, 1.17]	-	
Heterogeneity: Tau² = Test for overall effect:				3 (P = 0.	09); I² =	55%				
fotal (95% CI)			103			113	100.0%	0.55 [0.24, 0.86]	•	
Heterogeneity: Tau ² =	= 0.03; Ch	i ² = 7.16	, df = 6	6 (P = 0.	31); I ² =	16%				
Test for overall effect:	Z = 3.46	(P = 0.00)	005)						-2 -1 U 1 2 Favours [Control] Favours [Intervention]	
Test for subgroup diff	ferences:	Chi ² = 0	.38, df	= 2 (P =	= 0.83),	I ² = 0%			Favours (Control) Favours (intervention)	
Risk of bias legend										
(A) Random sequend	ce genera	ation (sel	lection	bias)						
(B) Allocation concea	ilment (se	election k	oias)							
(C) Blinding of partici	pants and	d person	nel (p	erforma	nce bia	s)				
D) Blinding of outcom	me asses	sment (detecti	ion bias	.)					
E) Incomplete outcor	me data (attrition b	bias)							
(F) Selective reporting	g (reportin	ng bias)								
(G) Other bias										
RE 6										
	nalyses: t	telereha	abilita	ition ve	ersus u	sual ca	are on g	lobal cognition (imm	ediate). SD, standard deviation; IV, inv	erse-variance; Cl,

Results

Study selection

After a comprehensive literature search, 2 reviewers screened 4,338 studies for duplicate and 16 RCTs were finally selected and PRISMA flow is described in Figure 1. A description of the included studies is detailed in Table 1. Of the final selection, Charvet et al. (15), Mahncke et al. (7), Rossetto et al. (16), Torrisi et al. (17) and Van der Linden et al. (18) were excluded from the analysis because data extraction for meta-analysis was not possible. Individual data sharing requests were sent via email to the corresponding authors of these studies, but no responses were received.

Study characteristics

The studies comparing the efficacy of cognitive telerehabilitation with face-to-face cognition treatment were Calabrò (19), Jelcic (20), Torpil (21). Studies comparing cognitive telerehabilitation with usual care were Canyazo (22), Jelcic (20), Jonsdottir (23), Koc (24), Manenti (12), Nousia (25), Pino (26), Vilou (27), Wilson (9). There were no available data for meta-analysis on the other outcomes, ADLs and QOL. The Risk of bias for the studies included in the analysis is shown in Figure 2.

Meta-analysis for effects of telerehabilitation

For comparing telerehabilitation with face-to-face cognition treatment, the meta-analysis included 2 RCTs for global cognition (immediate outcome), 2 RCTs for attention (immediate outcome), 2 RCTs for visuospatial function (immediate outcome). For comparing telerehabilitation with usual care, the meta-analysis included 7 RCTs for global cognition (immediate outcome), 3 RCTs for global cognition (persistence outcome), 4 RCTs for attention (immediate outcome), 3 RCTs for executive function (immediate outcome), 3 RCTs for working memory (immediate outcome), 3 RCTs for visuospatial function (immediate outcome). The evidence summaries and GRADE assessments are provided in Table 2, while forest plots of the metaanalyses are presented in Figures 3–11. Across all analyses, the 95% confidence intervals of the MD and SMD for the effectiveness of the cognitive telerehabilitation were distributed including zeros, indicating no significant difference between the interventions. We examined synthesis of evidence for cognitive telerehabilitation, and conducted subgroup analyses based on diagnosis, including stroke, mild cognitive impairment (MCI), Parkinsons's disease, and multiple sclerosis. Out of the total 16 studies, 11 were included in the meta-analysis and analyzed by subdomain of cognition. The subdomain with the highest number of studies analyzed together was global cognition (immediate outcome), with 7 studies. Therefore, a funnel plot for assessing publication bias was not generated.

		rimenta			ntrol			Std. Mean Difference	Std. Mean Difference	Risk of Bias
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG
3.1 Stroke										
onsdottir (2021)	0	0	0	0	0	0		Not estimable		? • • • • • • •
/ilson (2021)	0	0	0	0	0	0		Not estimable		$\bullet \bullet ? \bullet \bullet \bullet \bullet$
ubtotal (95% CI)			0			0		Not estimable		
eterogeneity: Not ap		abla								
est for overall effect:	Not applic	aple								
3.2 MS or PD										
ino (2024)	0	0	0	0	0	0		Not estimable		• • • ? • • •
lou (2020)	-38.2	20	23	-43.4	21	24	37.6%	0.25 [-0.33, 0.82]		• ? ? • • • •
ubtotal (95% CI)			23			24	37.6%	0.25 [-0.33, 0.82]		
eterogeneity: Not ap										
est for overall effect:	Z = 0.85 (P = 0.40)								
3.3 MCI or Alzheime	er									
anyazo (2023)	0	0	0	0	0	0		Not estimable		22222
elcic (2014)	38	12	7	36	13	10	13.2%	0.15 [-0.82, 1.12]		
oc (2024)	0	0	0	0	0	0		Not estimable		
anenti (2020)	-58.1	24.7	18	-65.9	26.1	14	25.1%	0.30 [-0.40, 1.00]		
ousia (2023)	-114.27	41.46		-122.07	31.08	15	24.1%	0.21 [-0.51, 0.93]		•••?••
ubtotal (95% CI)			40			39	62.4%	0.23 [-0.21, 0.68]		
eterogeneity: Tau² =				(P = 0.97);	I ² = 0%	,				
est for overall effect:	Z = 1.02 (P = 0.31)	•							
otal (95% CI)			63			63	100.0%	0.24 [-0.11, 0.59]	-	
eterogeneity: Tau ² =	0.00; Chi ^a	= 0.07,	df = 3	(P = 1.00);	l² = 0%				-1 -0.5 0 0.5 1	
est for overall effect:	Z = 1.33 (I	P = 0.18)							-1 -0.5 0 0.5 1 Favours [Control] Favours [Intervention]	
est for subgroup diff	erences: (Chi² = 0.0	00, df =	= 1 (P = 0.9	6), I² =	0%			Tavou's [control] Tavou's [intervention]	
isk of bias legend										
) Random sequenc				oias)						
Allocation conceal										
) Blinding of particip					bias)					
) Blinding of outcom				n bias)						
) Incomplete outcom			as)							
) Selective reporting i) Other bias	(reporting	(alas)								
ouler bias										
E 8										
		- 1 1	In COLUMN				++		SD, standard deviation; IV, inverse-vai	in a concernent of the second second

Telerehabilitation versus face-to-face treatment

Global cognition (immediate)

The studies included in the meta-analysis to determine the effects of telerehabilitation versus face-to-face treatment on global cognition (immediate), were a total of 2 studies. The evaluation tools for the outcome measures were Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). The effect size was calculated using SMD and the result was -0.34 (-0.87, 0.19).

In the stroke subgroup analyses, to evaluate the effects of telerehabilitation versus face-to-face treatment on global cognition (immediate), a total of 1 study was included in the meta-analysis. The evaluation tool for the outcome measures MoCA. The effect size was calculated using SMD and the result was -0.25 (-0.87, 0.37).

In the MCI or Alzheimer's disease subgroup analyses, to evaluate the effects of telerehabilitation versus face-to-face treatment on global cognition (immediate), a total of 1 study was included in the metaanalysis. The evaluation tool for the outcome measures was MMSE. The effect size was calculated using SMD and the result was -0.57 (-1.56, 0.42) (Figure 3).

Attention (immediate)

For attention (immediate), a total of 2 studies were included in the meta-analysis to determine the effects of telerehabilitation versus faceto-face treatment in patients with MCI or Alzheimer's disease. The evaluation tools were digital cancelation and Loewenstein Occupational Therapy Cognitive Assessment-Geriatric (LOTCA-G). The effect size was calculated using SMD and the result was 0.10 (-0.32, 0.53) (Figure 4).

Visuospatial function (immediate)

For visuospatial function (immediate), a total of 2 studies were included in the meta-analysis to determine the effects of telerehabilitation versus face-to-face treatment. The evaluation tools were Rey-Osterrieth complex figure copy test (ROCF) and LOTCA-G. The effect size was calculated using SMD and the results were -0.26 (-0.75, 0.23) (Figure 5).

Telerehabilitation vs usual care group

Global cognition (immediate)

The studies included in the meta-analysis to determine the effects of telerehabilitation versus usual care on global cognition (immediate), were a total of 7 studies. The evaluation tools of the outcome measures were MoCA and MMSE. The effect size was calculated using SMD and the result was 0.55 (0.24, 0.86).

In the stroke subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on global cognition (immediate), a total of 2 studies were included in the meta-analysis. The evaluation tool for the outcome measures was MoCA. The effect size was calculated using SMD and the result was 0.40 (-0.19, 0.98).

Church and Curle area un		rimental			ontrol	Tetal	Mainha	Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup 1.4.1 Stroke	Mean	50	Total	Mean	50	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	ABCDEFG
Jonsdottir (2021) Wilson (2021)	0 0	0 0	0 0 0	0 0	0 0	0 0 0		Not estimable Not estimable Not estimable		?****** **?****
Subtotal (95% CI) Heterogeneity: Not appli	icable		0			0		Not estimable		
Test for overall effect: No		able								
1.4.2 MS or PD										
Pino (2024)	0	0	0	0	0	0		Not estimable	_	
Vilou (2020)	-73.4	27	23	-82.5	24	24	50.9%	9.10 [-5.53, 23.73]		***
Subtotal (95% CI) Heterogeneity: Not appli	iaabla		23			24	50.9%	9.10 [-5.53, 23.73]		
Test for overall effect: Z:		P = 0 22	`							
restion overall ellect. 2.	- 1.22 (i	- 0.22)	, 							
1.4.3 MCI or Alzheimer										
Canyazo (2023)	0	0	0	0	0	0		Not estimable		2222224
Jelcic (2014)	0	0	0	0	0	0		Not estimable		
Koc (2024)	0	0	0	0	0	0		Not estimable		• ? • ? • • •
	-219.1			-241.4		14		22.30 [-76.17, 120.77]		
	259.33	33.55	15	-238	25.9	15	42.9%	-21.33 [-42.78, 0.12]		
Subtotal (95% CI)	00. OL 17		33			29	49.1%	-19.35 [-40.31, 1.60]		
Heterogeneity: Tau ² = 0. Test for overall effect: Z :				(P = 0.4t	J); I* = U%	Xo				
Total (95% CI)			56			53	100.0%	-3.13 [-29.11, 22.85]	•	
Heterogeneity: Tau ² = 28	89.88 [.] C	$hi^2 = 5.4$		2 (P = 0	.06): I ² =		100.070	-0110 [-20111, 22100]		
Test for overall effect: Z :				- • -					-100 -50 Ó 50 100	
Test for subgroup differe				: 1 (P = 0).03), I ² =	79.09	6		Favours [Control] Favours [Intervention]	
Risk of bias legend										
(A) Random sequence	generati	ion (sele	ection b	oias)						
(B) Allocation concealm				,						
(C) Blinding of participar				formand	e bias)					
(D) Blinding of outcome	assess	ment (d	etectio	n bias)						
(E) Incomplete outcome	data (at	ttrition bi	ias)							
	eporting	(bias)								
(F) Selective reporting (r										
(F) Selective reporting (r (G) Other bias										
(F) Selective reporting (r (G) Other bias JRE 9										
(F) Selective reporting (r (G) Other bias RE 9	yses: te	elereha	bilitat	ion ver	sus usi	ual ca	re on ex	ecutive function (imi	mediate). SD, standard deviation; IV, ir	nverse-variance; CI,

In the multiple sclerosis or Parkinson's disease subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on global cognition (immediate), a total of 1 study was included in the metaanalysis. The evaluation tool for the outcome measures was MoCA. The effect size was calculated using SMD and the result was 0.60 (-0.36, 1.55).

In the MCI or Alzheimer's disease subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on global cognition (immediate), a total of 4 studies were included in the meta-analysis. The evaluation tools were MoCA and MMSE. The effect size was calculated using SMD and the result was 0.64 (0.11, 1.17) (Figure 6).

Global cognition (persistence)

The studies included the meta-analysis to determine the effects of telerehabilitation versus usual care on global cognition (persistence), were a total of 3 studies. The evaluation tool was MoCA. The effect size was calculated using MD and the result was 1.36 (-0.40, 3.11).

In the stroke subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on global cognition (persistence), a total of 2 studies were included in the metaanalysis. The evaluation tool for the outcome measures was MoCA. The effect size was calculated using MD and the result was 0.51 (-2.61, 3.62).

In the MCI or Alzheimer's disease subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on global cognition (persistence), a total of 1 study was included in the meta-analysis. The

evaluation tool for the outcome measures was MoCA. The effect size was calculated using MD and the result was 1.75 (-0.37, 3.87) (Figure 7).

Attention (immediate)

The studies included in the meta-analysis to determine the effects of telerehabilitation versus usual care on attention (immediate), were a total of 4 studies. The evaluation tools for outcome measures were Trail Making Test-A (TMT-A) and digit cancelation. The effect size was calculated using SMD and the result was 0.24 (-0.11, 0.59).

In the multiple sclerosis subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on attention (immediate), a total of 1 study was included in the meta-analysis. The evaluation tool for the outcome measures was TMT-A. The effect size was calculated using SMD and the result was 0.25 (-0.33, 0.82).

In the MCI or Alzheimer's disease subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on attention (immediate), a total of 3 studies were included in meta-analysis. The evaluation tools were TMT-A and digit cancelation. The effect size was calculated using SMD and the result was 0.23 (-0.21, 0.68) (Figure 8).

Executive function (immediate)

The studies included in the meta-analysis to determine the effects of telerehabilitation versus usual care on executive function (immediate), were a total of 3 studies. The evaluation tool was Trail Making Test-B (TMT-B). The effect size was calculated using MD and the result was -3.13 (-29.11, 22.85).

		rimen			ontrol			Std. Mean Difference	Std. Mean		Risk of Bias
tudy or Subgroup 5.1 Stroke	Mean	SD	lotal	Mean	SD	lotal	Weight	IV, Random, 95% Cl	IV, Rando	m, 95% Cl	ABCDEFG
onsdottir (2021)	0	0	0	0	0	0		Not estimable			?
ilson (2021)	0	0	0	0	0	0		Not estimable			
ubtotal (95% CI)	0		0	0	0	0		Not estimable			
eterogeneity: Not ap	nlicable					0		Notestindide			
est for overall effect:			•								
5.2 MS or PD											
ino (2024)	0	0	0	0	0	0		Not estimable			
lou (2020)	0	Ō	Ō	0	Ō	0		Not estimable			
ubtotal (95% CI)			0			0		Not estimable			
eterogeneity: Not ap	plicable										
est for overall effect:			•								
5.3 MCI or Alzheim	er										
anyazo (2023)	0	0	0	0	0	0		Not estimable			???????
elcic (2014)	5	1	7	4.8	1	10	24.3%	0.19 [-0.78, 1.16]		•	
oc (2024)	0	0	0	0	0	0		Not estimable			• ? • ? • •
anenti (2020)	18.2	8.5	18	22.1	6.3	14	38.2%	-0.50 [-1.21, 0.21]			
ousia (2023)	6.13	1.92	15	5.6	1.18	15	37.5%	0.32 [-0.40, 1.04]			•••
ubtotal (95% CI)			40				100.0%	-0.02 [-0.56, 0.51]			
eterogeneity: Tau² = est for overall effect:				= 2 (P =	0.25);	* = 289	%				
	2 - 0.00		,								
otal (95% CI)			40				100.0%	-0.02 [-0.56, 0.51]			
eterogeneity: Tau² =				= 2 (P =	0.25);	* = 289	Xo		-2 -1 () 1	2
est for overall effect:									Favours [Control]	Favours (Interve	ntion]
est for subgroup diff	erences	: Not a	pplicat	ole						-	
isk of bias legend											
) Random sequend											
) Allocation concea											
) Blinding of particip						olas)					
) Blinding of outcon					as)						
) Incomplete outcor)							
) Selective reporting	(reporti	ng bia	S)								
i) Other bias											
10											
	alvees		hahili+	ation v	orcus	أجرزورا	care on	working memory (in	mediate) SD stan	hard deviation.	IV, inverse-variance; CI,
	alvaca.	LEIEIE	าสมาแป	αισιν	CISUS	usudl	Care Oll	WORKING HIGHIOLY (III	inneulate). JD, Starla	and deviation,	$1v, 11v \in S \in valial (CE, CL)$

In the multiple sclerosis subgroup analyses, to evaluate the effects of telerehabilitation versus usual care on executive function (immediate), a total of 1 study was included in meta-analysis. The evaluation tool was TMT-B. The effect size was calculated using MD and the result was 9.10 (-5.53, 23.73).

In the MCI or Alzheimer's disease group analyses, to evaluate the effects of telerehabilitation versus usual care on executive function (immediate), a total of 2 studies were included in metaanalysis. The evaluation tool was TMT-B. The effect size was calculated using MD and the result was -19.35 (-40.31, 1.60) (Figure 9).

Working memory (immediate)

For working memory (immediate), a total of 3 studies were included in meta-analysis to determine the effects of telerehabilitation versus usual care in patients with MCI or Alzheimer's disease. The evaluation tools were Free and Cued Selective Reminding test (FCSRT), digital span (Forward). The effect size was calculated using SMD and the result was -0.02 (-0.56, 0.51) (Figure 10).

Visuospatial function (immediate)

For visuospatial function (immediate), a total of 3 studies were included in meta-analysis to determine the effects of telerehabilitation versus usual care in patients with multiple sclerosis. The evaluation tools were Clock drawing test and ROCF. The effect size was calculated using SMD and the result was 0.49 (-0.33, 1.31) (Figure 11).

Discussion

To determine the effectiveness of telerehabilitation, two approaches of meta-analysis were conducted. In this analysis, we categorized and compared different clinical conditions as follows: usual care was defined as no treatment or sham treatment, while face-to-face treatment referred to traditional therapy directly provided by a therapist. Telerehabilitation was defined as treatment delivered using remote devices capable of providing medical rehabilitation services. The first analysis compared cognitive telerehabilitation with traditional face-toface cognition treatment. The outcomes showed that cognitive telerehabilitation was not significantly inferior to traditional face-to-face treatment in global cognition, attention, and visuospatial function. The second analysis compared cognitive telerehabilitation with the usual care group. Cognitive telerehabilitation demonstrated better outcomes in immediate global cognition compared to usual care. However, no significant differences were observed in persistent global cognition, attention, executive function, working memory, or visuospatial function. The studies analyzing executive function and

		riment			ontrol	T . 4 . 1		Std. Mean Difference	Std. Mean Difference	Risk of Bias
tudy or Subgroup 8.1 Stroke	Mean	SD	lotal	mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDEFG
onsdottir (2021)	0	0	0	0	0	0		Not estimable		
ilson (2021)	ŏ	ŏ	ŏ	ŏ	Ő	Ő		Not estimable		
ubtotal (95% CI)	Ū		ŏ	Ū	Ŭ	ŏ		Not estimable		
eterogeneity: Not ap	plicable									
est for overall effect:	Not app	licable								
8.2 MS or PD										
ino (2024)	0	0	0	0	0	0		Not estimable		
lou (2020)	0	0	0	0	0	0		Not estimable		\bullet ? ? \bullet \bullet \bullet \bullet
ubtotal (95% CI)			0			0		Not estimable		
eterogeneity: Not ap										
est for overall effect:	Not app	licable								
8.3 MCI or Alzheim	er									
anyazo (2023)	0	0	0	0	0	0		Not estimable		3333334
elcic (2014)	18.6	12	7	25.6	14	10	29.1%	-0.50 [-1.49, 0.48]		
oc (2024)	0	0	0	0	0	0		Not estimable		•?•?•••
anenti (2020)	-1.7	0.9	18	-2.6	1.2	14	35.8%	0.84 [0.11, 1.58]		
ousia (2023)	14.53	0.64		13.93	0.59	15	35.0%	0.95 [0.19, 1.71]		
ubtotal (95% CI)			40	_			100.0%	0.49 [-0.33, 1.31]	-	
eterogeneity: Tau² = est for overall effect:				: 2 (P =	0.05);	I* = 679	8			
otal (95% CI)			40			39	100.0%	0.49 [-0.33, 1.31]	•	
eterogeneity: Tau ² =	0.35° CI	hi² = 6 i		2 (P =	0.05)					
est for overall effect:				2 (1	0.00/,				-4 -2 0 2 4	
est for subgroup diff				le					Favours [Control] Favours [Intervention]
isk of bias legend										
) Random sequend	e aener	ation (s	selectio	on bias)						
Allocation concea	2			,						
) Blinding of particip					nance l	bias)				
) Blinding of outcon						,				
) Incomplete outcor	ne data	(attritio	n bias)							
) Selective reporting	(reporti	ng bias	s) -							
) Other bias										
11			1.111							
	alvses: 1	telereh	nabiliti	ation V	ALCINC	LICLIA	care on			
dence interval.	atyses.		10101111		cisus	usuut	care on	visuospatiat function	(immediate). SD, standard deviation; I	v, inverse-variance

visuospatial function showed high heterogeneity, with I² values exceeding 50%. Overall, the meta-analysis results suggest that cognitive telerehabilitation offers significant benefits in improving immediate global cognition in patients with cognitive dysfunction compared to usual care or sham treatment. Additionally, it demonstrates an equivalent level of effectiveness in cognitive function improvement when compared to traditional face-to-face cognition treatment. These results could provide support for the implementation of cognitive telerehabilitation.

The results of the studies that were not included in the metaanalysis because their data could not be used were similar to the findings of the meta-analysis. In a study by Charvet et al. (15), significant improvement in cognitive function was observed in patients with multiple sclerosis when comparing a remotely monitored, supervised-based telerehabilitation group with a computer-based treatment (usual care group). They suggested that cognitive telerehabilitation could serve as an alternative method for cognitive rehabilitation through remote supervision. Mahncke et al. (7) conducted a randomized controlled trial comparing the effects of telerehabilitation versus computer game-based treatment (usual care group) on cognitive function in traumatic brain injury patients. They observed improvements in cognitive function in the telerehabilitation group, as well as improvements in depressive and cognitive symptoms in both groups. However, no significant differences were observed in instrumental activities of daily living between the two groups. Rossetto et al. (16) conducted a randomized controlled trial comparing cognitive telerehabilitation with usual care in patients with mild cognitive impairment and Alzheimer's disease, and reported significant improvement on global cognitive level, including language, memory domains, and executive functions. It is known that impairments of executive function can have the most devastating impact on activities of daily living because of its super ordinate role in behavioral and cognitive processing (28). In addition, both patients and caregivers responded positively to the system usability scale and caregivers also noted reduced levels of distress associated with caregiving (16). Caregiver burden, defined as a multidimensional response linked to caregiver distress, can be exacerbated by various factors (29). A predictive risk factor that increases caregiver burden are known to include the overall negative experience with formal care and services (29). The psychological well-being of caregivers was linked to the nature of caregiving tasks, their subjective perception of rehabilitation, and the functional recovery of patients (30). A more positive approach by caregivers to rehabilitation was also corrected with an overall beneficial influence on the caregiving process in rehabilitation and improved functional outcomes for patients (30). Torrisi et al. (17) conducted a randomized controlled trial comparing telerehabilitation using virtual reality with usual care (usual care group) in patients with post stroke cognitive dysfunction to assess the efficacy of improving cognitive function.

Significant improvements were observed in global cognitive level, attention, memory, and linguistic skills domains. The study also reported that participants perceived consistent attention and maintained a high level of motivation. Furthermore, the study emphasized the positive effects of telerehabilitation, highlighting the importance of longer training sessions facilitated by participant encouragement. Van der Linder et al. (18) conducted a randomized controlled trial comparing telerehabilitation with tablet-based cognitive rehabilitation (usual care group) in patients with brain tumors to assess cognitive function outcomes. While the outcomes did not significantly differ in group, 90% of participants reported positive feedback about the intervention, with 95% indicating that they would recommend the program to others.

The included studies observed limitations of cognitive telerehabilitation. Limitations included difficulties in using telerehabilitation devices, such as reduced user engagement in digital literacy and lack of familiarity with the device. Yi et al. (31) conducted a systematic review on the barriers and facilitators of telerehabilitation for patients with dementia. Barriers included meeting technological requirements and adapting to sensory needs. Technological barriers encompassed the lack of necessary equipment and the older adults' ability to independently operate technologies. Sensory challenges, such as communication difficulties related to hearing and vision, were highlighted across multiple studies as barriers to the successful adoption of telemedicine. To address these barriers, enabling factors such as assistance of caregivers, pre-training on devices, utilization of captioned services to enhance communication, and the incorporation of electronic magnification and text-to-speech technology on devices were proposed.

Within the included studies, no significant adverse effects related to telerehabilitation were observed. Meanwhile, Gideon A Caplan et al. (32) conducted a randomized controlled trial comparing the incidence of delirium in in-hospital rehabilitation with early discharge rehabilitation in 104 elderly individuals and found that the incidence of delirium was lower during the rehabilitation at home process.

The effectiveness of cognitive telerehabilitation, as discussed above, shows better outcomes compared to usual care and comparable effects to face-to-face treatment. Usual care may result in less effective outcomes compared to active cognitive treatment, whereas face-toface treatment presents spatial and temporal constraints as well as cost issues. Although telerehabilitation may pose challenges related to digital literacy in device usage, its adoption is supported by advantages such as improved accessibility and continuity of rehabilitation. Especially, it can be used while reducing time and space constraints in the individual's own environment, and these advantages are also beneficial in preventing delirium, which can occur in elderly individuals and patients with acquired brain injuries associated with cognitive dysfunction. Telerehabilitation is not meant to replace the traditional face-to-face treatment but can be applied in a variety of ways depending on patient needs and characteristics. Cognitive telerehabilitation could prove beneficial in addressing chronic diseases with significant social implications and issues related to continuous long-term care, encompassing conditions associated with aging, such as dementia and other neurogenerative disorders. From this perspective and the results of this meta-analysis demonstrating that cognitive telerehabilitation is not inferior to face-to-face treatment and is more effective than usual care in improving general cognition (immediate), it may, in certain circumstances, even be superior to face-to-face treatment, particularly in terms of cost and accessibility.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

HJ: Writing – original draft, Data curation, Formal analysis. DK: Conceptualization, Data curation, Formal analysis, Supervision, Writing – review & editing. S-WP: Data curation, Formal analysis, Supervision, Writing – review & editing. B-SL: Data curation, Formal analysis, Supervision, Writing – review & editing. H-WH: Data curation, Formal analysis, Writing – review & editing. NJ: Data curation, Formal analysis, Writing – review & editing. MKi: Data curation, Formal analysis, Writing – review & editing. MKa: Data curation, Formal analysis, Writing – review & editing. SK: Data curation, Formal analysis, Writing – review & editing. SK: Data

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was supported by a grant of the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: RS-2023-00263587).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2024.1450977/ full#supplementary-material

References

1. Bernini S, Stasolla F, Panzarasa S, Quaglini S, Sinforiani E, Sandrini G, et al. Cognitive Telerehabilitation for older adults with neurodegenerative diseases in the COVID-19 era: a perspective study. *Front Neurol.* (2020) 11:623933. doi: 10.3389/fneur.2020.623933

2. Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, et al. Poststroke cognitive impairment and dementia. *Circ Res.* (2022) 130:1252–71. doi: 10.1161/ CIRCRESAHA.122.319951

3. Subbarao BS, Stokke J, Martin SJ. Telerehabilitation in acquired brain injury. Phys Med Rehabil Clin N Am. (2021) 32:223–38. doi: 10.1016/j.pmr.2021.01.001

4. Perez-Marcos D, Bieler-Aeschlimann M, Serino A. Virtual reality as a vehicle to empower motor-cognitive Neurorehabilitation. *Front Psychol.* (2018) 9:2120. doi: 10.3389/fpsyg.2018.02120

5. Petersen RC. Mild cognitive impairment. Continuum (Minneap Minn). (2016) 22:404–18. doi: 10.1212/CON.00000000000313

6. Cotelli M, Manenti R, Brambilla M, Gobbi E, Ferrari C, Binetti G, et al. Cognitive telerehabilitation in mild cognitive impairment, Alzheimer's disease and frontotemporal dementia: a systematic review. *J Telemed Telecare*. (2019) 25:67–79. doi: 10.1177/1357633X17740390

7. Mahncke HW, DeGutis J, Levin H, Newsome MR, Bell MD, Grills C, et al. A randomized clinical trial of plasticity-based cognitive training in mild traumatic brain injury. *Brain*. (2021) 144:1994–2008. doi: 10.1093/brain/awab202

8. Brown GC. Living too long: the current focus of medical research on increasing the quantity, rather than the quality, of life is damaging our health and harming the economy. *EMBO Rep.* (2015) 16:137–41. doi: 10.15252/embr.201439518

 Wilson PH, Rogers JM, Vogel K, Steenbergen B, McGuckian TB, Duckworth J. Home-based (virtual) rehabilitation improves motor and cognitive function for stroke patients: a randomized controlled trial of the elements (EDNA-22) system. J Neuroeng Rehabil. (2021) 18:165. doi: 10.1186/s12984-021-00956-7

10. Boulos ME, Colella B, Meusel LA, Sharma B, Peter MK, Worthington T, et al. Feasibility of group telerehabilitation for individuals with chronic acquired brain injury: integrating clinical care and research. *Disabil Rehabil.* (2024) 46:750–62. doi: 10.1080/09638288.2023.2177357

11. Knepley KD, Mao JZ, Wieczorek P, Okoye FO, Jain AP, Harel NY. Impact of Telerehabilitation for stroke-related deficits. *Telemed J E Health*. (2021) 27:239–46. doi: 10.1089/tmj.2020.0019

12. Manenti R, Gobbi E, Baglio F, Macis A, Ferrari C, Pagnoni I, et al. Effectiveness of an innovative cognitive treatment and Telerehabilitation on subjects with mild cognitive impairment: a multicenter, randomized, Active-Controlled Study. *Front Aging Neurosci.* (2020) 12:585988. doi: 10.3389/fnagi.2020.585988

13. Brennan D, Tindall L, Theodoros D, Brown J, Campbell M, Christiana D, et al. A blueprint for telerehabilitation guidelines. *Int J Telerehabil.* (2010) 2:31–4. doi: 10.5195/ ijt.2010.6063

14. McCue M, Fairman A, Pramuka M. Enhancing quality of life through telerehabilitation. *Phys Med Rehabil Clin N Am.* (2010) 21:195–205. doi: 10.1016/j. pmr.2009.07.005

15. Charvet LE, Yang J, Shaw MT, Sherman K, Haider L, Xu J, et al. Cognitive function in multiple sclerosis improves with telerehabilitation: results from a randomized controlled trial. *PLoS One.* (2017) 12:e0177177. doi: 10.1371/journal.pone.0177177

16. Rossetto F, Isernia S, Realdon O, Borgnis F, Blasi V, Pagliari C, et al. A digital health home intervention for people within the Alzheimer's disease continuum: results from the ability-TelerehABILITation pilot randomized controlled trial. *Ann Med.* (2023) 55:1080–91. doi: 10.1080/07853890.2023.2185672

17. Torrisi M, Maresca G, De Cola MC, Cannavò A, Sciarrone F, Silvestri G, et al. Using telerehabilitation to improve cognitive function in post-stroke survivors: is this the time for the continuity of care? *Int J Rehabil Res.* (2019) 42:344–51. doi: 10.1097/MRR.00000000000369

18. van der Linden SD, Rutten GM, Dirven L, Taphoorn MJB, Satoer DD, Dirven CMF, et al. eHealth cognitive rehabilitation for brain tumor patients: results of a randomized controlled trial. *J Neuro-Oncol.* (2021) 154:315–26. doi: 10.1007/s11060-021-03828-1

19. Calabrò RS, Bonanno M, Torregrossa W, Cacciante L, Celesti A, Rifici C, et al. Benefits of Telerehabilitation for patients with severe acquired brain injury: promising results from a multicenter randomized controlled trial using nonimmersive virtual reality. *J Med Internet Res.* (2023) 25:e45458. doi: 10.2196/45458

20. Jelcic N, Agostini M, Meneghello F, Bussè C, Parise S, Galano A, et al. Feasibility and efficacy of cognitive telerehabilitation in early Alzheimer's disease: a pilot study. *Clin Interv Aging.* (2014) 9:1605–11. doi: 10.2147/CIA.S68145

21. Torpil B, Pekçetin E, Pekçetin S. The effectiveness of cognitive rehabilitation intervention with the telerehabilitation method for amnestic mild cognitive impairment: a feasibility randomized controlled trial. *J Telemed Telecare*. (2023):1357633x231189541. doi: 10.1177/1357633X231189541

22. Canyazo CM, Keller G, Helou B, Arruabarrena M, Corvalán N, Carello A, et al. Effectiveness of cognitive rehabilitation on mild cognitive impairment using teleneuropsychology. *Dement Neuropsychol.* (2023) 17:e20220079. doi: 10.1590/1980-5764-dn-2022-0079

23. Jonsdottir J, Baglio F, Gindri P, Isernia S, Castiglioni C, Gramigna C, et al. Virtual reality for motor and cognitive rehabilitation from clinic to home: a pilot feasibility and efficacy study for persons with chronic stroke. *Front Neurol.* (2021) 12:601131. doi: 10.3389/fneur.2021.601131

24. Koc EA, Yazici-Mutlu Ç, Cinar N, Sahiner T. Comparison of the effect of online physical exercise and computerized cognitive stimulation in patients with Alzheimer's disease during the Covid-19 pandemic. *Complement Ther Clin Pract.* (2024) 57:101881. doi: 10.1016/j.ctcp.2024.101881

25. Nousia A, Pappa E, Siokas V, Liampas I, Tsouris Z, Messinis L, et al. Evaluation of the efficacy and feasibility of a Telerehabilitation program using language and cognitive exercises in multi-domain amnestic mild cognitive impairment. *Arch Clin Neuropsychol.* (2023) 38:224–35. doi: 10.1093/arclin/acac078

26. Del Pino R, de Echevarría AO, Díez-Cirarda M, Ustarroz-Aguirre I, Caprino M, Liu J, et al. Virtual coach and telerehabilitation for Parkinson´s disease patients: vCare system. *J Public Health.* (2023) 1-14. doi: 10.1007/s10389-023-02082-1

27. Vilou I, Bakirtzis C, Artemiadis A, Ioannidis P, Papadimitriou M, Konstantinopoulou E, et al. Computerized cognitive rehabilitation for treatment of cognitive impairment in multiple sclerosis: an explorative study. *J Integr Neurosci.* (2020) 19:341–7. doi: 10.31083/j.jin.2020.02.35

28. Dawson DR, Anderson ND, Binns MA, Bottari C, Damianakis T, Hunt A, et al. Managing executive dysfunction following acquired brain injury and stroke using an ecologically valid rehabilitation approach: a study protocol for a randomized, controlled trial. *Trials.* (2013) 14:306. doi: 10.1186/1745-6215-14-306

29. Lethin C, Leino-Kilpi H, Bleijlevens MH, Stephan A, Martin MS, Nilsson K, et al. Predicting caregiver burden in informal caregivers caring for persons with dementia living at home - a follow-up cohort study. *Dementia (London)*. (2020) 19:640–60. doi: 10.1177/1471301218782502

30. Bivona U, Villalobos D, De Luca M, Zilli F, Ferri G, Lucatello S, et al. Psychological status and role of caregivers in the neuro-rehabilitation of patients with severe acquired brain injury (ABI). *Brain Inj.* (2020) 34:1714–22. doi: 10.1080/02699052.2020.1812002

31. Yi JS, Pittman CA, Price CL, Nieman CL, Oh ES. Telemedicine and dementia care: a systematic review of barriers and facilitators. *J Am Med Dir Assoc.* (2021) 22:1396–402.e18. doi: 10.1016/j.jamda.2021.03.015

32. Caplan GA, Coconis J, Board N, Sayers A, Woods J. Does home treatment affect delirium? A randomised controlled trial of rehabilitation of elderly and care at home or usual treatment (the REACH-OUT trial). *Age Ageing*. (2006) 35:53–60. doi: 10.1093/ ageing/afi206