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Background: Cytokines are powerful immune response factors that operate at 
inflammation sites and are also found in the blood. Nevertheless, research on 
encephalitis and these circulating inflammatory proteins is quite limited.

Methods: This study investigated the potential causal effects of 91 circulating 
inflammatory proteins on three different types of encephalitis using a two-
sample Mendelian randomisation analysis. The data source for encephalitis was 
the latest Finngen_R12 dataset, released in 2024. The study investigated causal 
effects mainly using Steiger, MR-Egger, weighted median and inverse variance 
weighting (IVW) methods. In addition, sensitivity analyses were performed, 
including heterogeneity assessment, horizontal pleiotropy and leave-one-out 
techniques.

Results: In this study, 91 circulating inflammatory proteins were subjected to 
MR analysis of causality with each of the three types of encephalitis. The results 
suggest that the inflammatory factors with a potential causal relationship with 
viral encephalitis are artemin, C-C motif chemokine 28, C-X-C motif chemokine 
1, interleukin-10 and neurotrophin-3. Inflammatory factors potentially 
causally associated with acute disseminated encephalomyelitis are monocyte 
chemoattractant protein 2, interleukin-10 receptor subunit beta and matrix 
metalloproteinase-1. Inflammatory factors potentially causally associated with 
autoimmune encephalitis are C-C motif chemokine 28 levels and Macrophage 
inflammatory protein 1a levels.

Conclusion: This study identifies potential causal effects of certain circulating 
inflammatory factors on susceptibility to three types of encephalitis. Although 
the exact mechanisms by which inflammatory proteins contribute to the 
pathogenesis of different encephalitis subtypes remain unclear, our findings 
provide new perspectives on these potential causal relationships.
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Introduction

Encephalitis has become a major global health burden due to high 
rates of disability and mortality. According to the Global Burden of 
Disease (GBD), encephalitis is one of the top ten causes of neurological 
Disability Adjusted Life Years (DALYs) worldwide. However, a specific 
aetiology can be identified in less than half of cases (1). A review of 
encephalitis infections published in 2016 highlighted viral infections 
as the main pathogen associated with encephalitis. In addition, acute 
disseminated encephalomyelitis and autoimmune encephalitis are 
common subtypes of encephalitis that are more commonly seen in 
clinical practice (2). Timely and definitive diagnosis of encephalitis in 
clinical practice is challenging because the non-specific symptoms of 
neuroencephalitis are similar to those of other neurological and 
psychiatric disorders. Oligoclonal banding (OCB) is a specific 
immunoglobulin G (IgG) banding pattern detected in cerebrospinal 
fluid (CSF) by isoelectric focusing electrophoresis (3). In autoimmune 
encephalitis, such as anti-NMDAR encephalitis, OCB status may be a 
potential prognostic biomarker. This means that the presence or 
absence of OCB may correlate with disease severity, response to 
treatment or long-term prognosis (5).

Cytokines are potent molecules of the immune response. They act 
at the site of inflammation and circulate in the bloodstream (6). 
Immune-mediated responses have been implicated in the pathogenesis 
of encephalitis. Recent studies have identified several cytokines that 
exhibit significant changes in plasma levels, including B-cell activating 
factor for B-cell proliferation, thymus and activation-regulated 
chemokines for T-cell chemoattraction, soluble CD40 ligand for Th2 
cell-mediated responses, C5/C5a for complement activation, brain-
derived neurotrophic factor for neuronal survival responses, and 
dipeptidyl peptidase 4, retinol-binding proteins, Dickkopf-associated 
proteins, and epidermal growth factor in response to environmental 
stimuli (7–9). The heightened concentrations of multiple cytokines 
observed in individuals with encephalitis underscore the significant 
role played by inflammatory and autoimmune processes (10). This 
inflammatory cascade is regulated by an intricate system of cells and 
signaling molecules, including cytokines and soluble receptors present 
in circulation (11). Consequently, identifying the genetic factors 
influencing the levels of inflammation-related circulating proteins 
could provide valuable knowledge regarding the pathophysiology and 
origins of various diseases. However, the clinical significance of these 
cytokines remains incompletely understood as a result of insufficient 
experimental and clinical research. Therefore, a thorough investigation 
into the potential causal association between circulating inflammatory 
proteins and encephalitis could elucidate the underlying biological 
mechanisms of encephalitis pathogenesis (12).

Mendelian randomization is a statistical technique that employs 
single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) 
to establish causal relationships between exposure and outcome (13). 
Through random allocation during meiosis, SNPs are effectively 
categorized into groups based on genetic characteristics, resembling a 
randomized controlled trial. By reducing biases inherent in observational 
studies, MR strengthens the validity of causal inferences regarding 
exposure-outcome associations (14). However, current studies lack a 
comprehensive analysis of the potential causal relationship between 
circulating cytokine levels and different types of encephalitis. The data 
analysed in this study were derived from a recently published genome-
wide association study (GWAS) of circulating inflammatory proteins. 

Data on encephalitis and subtypes as study endpoints were obtained 
from the most recent Finngen Consortium R12 study dataset, published 
in 2024. In this study, we investigated the potential causal association of 
91 circulating inflammatory proteins with three types of encephalitis 
using two-sample MR analysis.

Methods

Study design

This study is presented in accordance with the STROBE-MR 
guidelines (15). A schematic representation of the study design is 
depicted in Figure  1. This study was based on three research 
hypotheses: (1) Association hypothesis: the genetic variance 
(instrumental variable) must be strongly associated with the exposure 
factor under study. (2) Independence assumption: genetic variants are 
not associated with any potential confounders. (3) Exclusionary 
limiting assumption: genetic variation can only affect the outcome by 
influencing the exposure factor, and not by other means. This excludes 
the possibility that genetic variants may influence outcomes directly 
or through other risk factors. To fulfill these assumptions, the 
following steps were taken in this study: (1) Selection of instrumental 
variables: genetic variants significantly associated with exposure 
factors were selected through GWAS data. (2) Validating associations: 
Ensuring that the selected genetic variants were statistically 
significantly associated with the exposure factors. (3) Controlling for 
confounders: Sensitivity analyses using statistical methods such as 
MR-Egger regression, weighted median method and weighted mode 
method to detect and adjust for the effects of confounders. (4) Testing 
for pleiotropy: MR-Egger regression and other methods are used to 
test whether genetic variation may affect the results by other means.

The objective of this study was to conduct a thorough analysis of 
the potential genetic causal relationship between 91 circulating 
immune proteins and three types of encephalitis. To mitigate 
population stratification bias, participants in both the exposure and 
outcome groups were limited to individuals of European descent. 
Given the anonymized nature of the data and the non-invasive nature 
of the study, ethical approval was obtained from the Ethics Committee 
of the First People’s Hospital of Yibin. Nonetheless, this study adhered 
to the highest ethical standards for protecting participant privacy and 
data security when analyzing and reporting results.

Source of outcome

Data on 91 circulating inflammatory proteins were collected from 
a recently published global genomic study conducted in 2023 involving 
14,734 people of European ancestry. The study’s population was drawn 
from 11 different study cohorts, totaling multiple populations of 
European ancestry. The study utilized genome-wide protein quantitative 
trait locus (pQTL) analysis to investigate the genetic impact of 
inflammation-related proteins, specifically those measured using the 
Olink Target platform (16). Data on these 91 plasma inflammatory 
proteins, including pQTL findings, are available in the EBI GWAS 
catalog (registry numbers GCST90274758 to GCST90274848).

Summary statistics from the genome-wide association study 
(GWAS) of the 3 encephalitis species that served as study endpoints 
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were obtained from the FinnGen consortium R12 release (Finngen_
R12 THROMBANG). The FinnGen study was initiated in 2017 as a 
comprehensive national effort to combine genetic information from 
the Finnish BioBank with national registries’ Digital Health Records 
combined GWAS included a large cohort of 412,181 Finnish 
participants and analyzed 21,311,942 variants.

704 cases and 497,501 controls were identified for viral 
encephalitis according to the International Classification of Diseases 
ICD-9 (046.9) and ICD-10 (A86); 64 cases and 497,087 controls were 
identified for acute disseminated encephalomyelitis according to 
ICD-9 (323) and ICD-10 (G04.0); 966 cases and 497,087 controls were 
identified for autoimmune encephalitis according to ICD ICD-9 
(323.6) and ICD-10 (G04.8).For additional information about the 
data, such as participant demographic characteristics, categories, and 
specific GWAS types, see Table 1.

Instrumental variables selection

At the outset of this study, when selecting the instrumental 
variables, we were prepared to use 5 × 10−8 as a threshold for 
distinguishing significant differences in the exposure data. However, 
the results indicated the problem of insufficient instrumental variables 
for some exposure factors. Later, a more lenient threshold of 5 × 10-6 
was used. The study assessed the directionality of the relationship 
between the remaining instrumental variables and the outcomes by 
applying a Steiger filter. Subsequently, disjunction disequilibrium was 

assessed utilizing a reference panel of 1,000 genomes with thresholds 
of r2 > 0.001 and clustering distances <10,000 kb (17). In order to 
ensure the reliability of the chosen SNPs, the F-statistic was computed 
to eliminate weak instrumental variables with F-values below 10.The 
F-statistic was calculated as F = R2(N-2)/(1-R2), where R2 represents 
the proportion of variation explained by the genetic instrument, and 
N is the effective sample size of the SNP-exposure-associated GWAS 
study. The R2 value was calculated as 2 × MAF (1-MAF) beta2, where 
beta represents the estimate of the effect of exposure genetic variation 
in standard deviation (SD), and MAF represents the minor allele 
frequency (18). Subsequently, SNPs that may be associated with risk 
factors related to structural changes in the brain were excluded using 
PhenoScanner. This exclusion included neurological and psychiatric 
disorders, hypoxaemia and other possible confounding variables. The 
resulting SNPs were then used in a Mendelian randomization 
analysis (19).

The analyses were performed using the TwoSample MR (version 
0.5.7) package in R (version 4.3.2) and Free Statistics software version 
2.0 (Beijing, China). Effect sizes (β) and 95% confidence intervals (CI) 
were used to express MR estimates.

Statistical analysis

In our analysis, we assessed the contribution of each cytokine to 
the variance explained by the main instrumental variable and 
eliminated weak instrumental variables based on the F statistic. 

FIGURE 1

Overview of the study design and analysis.
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Specifically, effect size and standard error estimates were obtained 
for 91 circulating cytokines and 3 encephalitis species, respectively. 
Individual Mendelian randomization estimates were subsequently 
derived using the Wald ratio and Delta methods. To evaluate the 
relationship between genetically determined circulating cytokine 
levels and encephalitis, we aggregated MR estimates for individual 
SNPs using IVW techniques. IVW is the most commonly used 
method in Mendelian randomization analyses, which combines the 
effect sizes (Wald ratios) of multiple genetic variants in a fixed effects 
meta-analysis, where each ratio is weighted as the inverse of the 
variance of the association between the SNP and the outcome. In 
MR analyses, each SNP was treated as a separate “study” and was 
meta-analyzed under the fixed effects model. The weighted median 
method is considered robust under the assumption that a substantial 
portion of instrumental variables are valid, particularly when the 
proportion of instrumental variables demonstrating horizontal 
pleiotropy is less than 50 percent. Conversely, the MR-Egger method 
is deemed reliable when more than half of the instrumental variables 
display horizontal pleiotropy. To evaluate horizontal pleiotropy, 
sensitivity Mendelian randomization analyses were performed 
under various assumptions utilizing the weighted median, 
MR-Egger, and MR-PRESSO methods.

In order to enhance the reliability of our results, we performed 
sensitivity analyses utilizing various methods such as the sample 
median method, weighted median method, MR-Egger regression, and 
maximum likelihood method. Initial assessment of heterogeneity was 
conducted through Cochran’s Q analysis, with a significance level of 
p > 0.05 indicating the presence of heterogeneity. In cases of 
heterogeneity, the fixed-effects IVW method was employed. The 
intercept of MR-Egger regression serves as a valuable tool for 
identifying horizontal pleiotropy. The extended IVW method was 
employed as the primary analytical technique in this study, with the 
MR-Egger intercept utilized to evaluate potential horizontal 
pleiotropy. Additional sensitivity analyses were conducted to mitigate 
potential confounders. Following the exclusion of confounding SNPs, 
further MR analyses were carried out on the significant findings from 
the initial analyses to validate the preliminary results. All MR analyses 
were conducted using the TwoSample MR, Mendelian Randomization, 
and MR-PRESSO packages in R (version 4.3.2).

Results

This study utilized genetic variants as instrumental variables to 
assess potential causal associations between circulating inflammatory 
proteins and three types of encephalitis. We selected genetic variants 
with strong associations with exposure and outcome that showed 
consistent patterns of association in two independent samples. This 
consistency increased our confidence in the validity of the genetic 
instrumental variables and reduced potential bias due to confounders 
or reverse causation. In this study, our exposure and outcome samples 
came from studies with different national cohorts and there were no 
overlapping individuals between them. This was done to maintain the 
independence of the two samples, thus avoiding bias in MR estimation 
due to sample overlap. By using two independent samples, we were 
able to more accurately estimate the potential causal effect of genetic 
variation on the relationship between circulating inflammatory 
proteins and encephalitis subtypes.
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Genetic tools for 91 circulating 
inflammatory proteins used for exposure

Figure 1 shows the complex design and flowchart of the study. 
Under certain conditions, we extracted SNPs with significant 
differences in 91 inflammatory proteins as instrumental variables. 
Those SNPs with weak instrumental qualities, as indicated by 
F-statistic values below 10, were excluded. PhenoScanner was then 
used to eliminate potentially confounding SNPs, resulting in a final 
selection of 6-21 SNPs with F-statistic values ranging from 22.8 to 
99.6, as shown in Table 2.

Figure 2 illustrates the potential causal relationship between 
the circulating inflammatory factor profiles predicted by all 91 
genes and three different types of encephalitis. All P values 
corrected for FDR were clustered and colour coded according to 
the direction of effect.

Estimates of the causal relationship 
between circulating inflammatory proteins 
and viral encephalitis

In the most recent GWAS dataset of circulating inflammatory 
proteins, published in 2023, our team identified 91 isoforms as 
exposures of interest. We then performed Mendelian randomisation 
analysis on the viral encephalitis dataset from the latest 2024 release of 
the Finnegan Consortium R12 version. Of these, six potential causal 
associations showed statistically significant differences in the 
Mendelian analyses after adjustment for false discovery rate (FDR).
Specifically, genetically predicted C-C motif chemokine 28 levels 
(OR=0.624; 95% CI=0.411-0.948, p = 0.027) were potentially negatively 
associated with viral encephalitis in the IVW approach. However, 
artemin levels (OR=1.539; 95% CI=1.039-2.281, p = 0.038), C-X-C 
motif chemokine 1 levels (OR=1.526; 95% CI=1.079-2.157, p = 0.017), 
interleukin-10 levels (OR=1.601; 95% CI=1. 155-2.219, p = 0.005) and 
neurotrophin-3 levels (OR=1.945; 95% CI=1.236-3.061, p = 0.004) 
were positively associated with the development of viral encephalitis 
(Table 2; Figure 3).

Estimates of the causal relationship 
between circulating inflammatory proteins 
and acute disseminated encephalomyelitis

When the study outcome was replaced with acute disseminated 
encephalomyelitis for the analyses, we identified three potential 
causalities that showed statistically significant differences after 
adjusting for FDR. When targeting acute disseminated 
encephalomyelitis as an outcome subtype, three potential causal 
associations showed statistically significant differences after adjusting 
for FDR. In particular, the IVW approach suggests that genetically 
predicted monocyte chemoattractant protein 2 (OR=1.448; 95% 
CI=1.085-2.343, p = 0.013) and matrix metalloproteinase-1 showed a 
potential positive association (OR=3.619; 95% CI=1.284-10.205,  
p = 0.015). However, interleukin-10 receptor subunit beta levels 
(OR=0.562; 95% CI=0.277-0.961, p = 0.011) were potentially 

negatively associated with acute disseminated encephalomyelitis 
(Table 2; Figure 3).

Estimates of the causal relationship 
between circulating inflammatory proteins 
and autoimmune encephalitis

Using autoimmune encephalitis as the outcome for MR analysis, 
this study identified 2 potential causal relationships. Gene-predicted 
C-C motif chemokine 28 levels (OR=0.564; 95% CI=0.394-0.805,  
p = 0.002) were potentially negatively associated with autoimmune 
encephalitis in the IVW analysis method. However, levels of 
macrophage inflammatory protein 1a (OR=1.325; 95% CI=1.021-
1.719, p = 0.034) showed a potential positive association with 
autoimmune encephalitis (Table 2; Figure 3).

Sensitivity analysis

SNPs failing to meet the threshold of genome-wide significance 
(p < 5 × 10–8) for the outcome variable were initially omitted from 
the analysis. The directionality of the associations between the 
remaining instrumental variables and the outcome was then evaluated 
using Steiger filtering. Correlations with raw p values below 0.05, 
though not meeting the aforementioned thresholds, were deemed 
statistically significant. In Mendelian randomization analyses, any 
instrumental variables flagged as spurious by Steiger filtering 
(indicating that the SNP explained a greater proportion of the variance 
in the outcome compared with exposure) were excluded. In order to 
evaluate the existence of horizontal pleiotropy, sensitivity Mendelian 
randomization analyses were performed utilizing multiple 
methodologies including weighted median, MR-Egger, and 
MR-PRESSO. The findings from these analyses were concordant with 
those obtained from the inverse variance weighted analyses. The 
weighted median method operates under the assumption that a 
substantial portion of the instrumental variables are reliable, and 
demonstrates resilience when the proportion of potentially biased 
instrumental variables is below 50 percent. It should be emphasized 
that the presence of heterogeneity was initially assessed by Cochran 
Q analysis. The p-values of the Cochran Q statistics were all greater 
than 0.05, indicating the absence of heterogeneity. This study also used 
the MR-PRESSO global test to assess the presence of horizontal 
pleiotropy among all instrumental variables. The results showed that 
the exposure-outcome analysis tests with potential causality all 
suggested a p- value greater than 0.05, suggesting no horizontal 
pleiotropy (Table 3).

The intercept of the MR-Egger regression was utilized in this 
investigation to evaluate the potential existence of horizontal pleiotropy. 
All MR-Egger intercept test statistics pertaining to causality yielded 
p-values exceeding 0.05, suggesting the lack of horizontal pleiotropy. To 
validate the identified causality, a reverse MR analysis was conducted on 
the aforementioned statistically significant findings. No evidence of 
encephalitis impacting cytokine levels was observed 
(Supplementary Table S1). Scatter plots, forest plot, funnel plots, and 
leave-one-out sensitivity analysis plots for all exposure-outcome 
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TABLE 2 Mendelian randomization analysis between circulating inflammatory proteins and different types of encephalitis.

Outcomes NSNPs Inverse variance weighted* Weighted median MR-Egger

Exposures Beta SE P Beta SE P Beta SE P

Viral encephalitis

Artemin 17 0.431 0.201 0.031 0.623 0.276 0.023 0.891 0.513 0.103

C-C motif chemokine 28 20 -0.471 0.213 0.027 -0.169 0.315 0.591 -0.387 0.457 0.409

C-X-C motif chemokine 1 8 0.423 0.177 0.017 0.395 0.190 0.037 0.254 0.269 0.383

Interleukin-10 18 0.470 0.166 0.004 0.353 0.236 0.134 0.639 0.343 0.081

Neurotrophin-3 16 0.293 0.131 0.005 0.383 0.319 0.231 0.441 0.524 0.414

Acute disseminated 

encephalomyelitis(ADEM)

Monocyte chemoattractant 

protein 2
24 0.370 0.246 0.013 0.228 0.268 0.395 0.249 0.301 0.416

Interleukin-10 receptor subunit 

beta
19 -0.576 0.362 0.011 -0.379 0.408 0.352 -0.551 0.547 0.328

Matrix metalloproteinase-1 26 0.825 0.528 0.015 2.112 0.749 0.004 1.780 0.935 0.077

Autoimmune encephalitis

C-C motif chemokine 28 20 -0.573 0.182 0.002 -0.755 0.239 0.001 -0.468 0.387 0.241

Macrophage inflammatory 

protein 1a
13 0.282 0.133 0.034 0.148 0.144 0.304 0.134 0.214 0.544

Abbreviations: NSNPs Number of single-nucleotide polymorphisms, SE standard error, A p value < 0.05 was considered nominally significant.
*IVW; Inverse variance weighted，The IVW method is the most dominant method in Mendelian randomization analysis and its P < 0.05 indicates a statistically significant difference.
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relationships with potential causality are shown in 
Supplementary Figures S1–S40.

Discussion

The present study used a recently published large-scale GWAS 
dataset to perform a comprehensive two-sample Mendelian 
randomisation analysis to elucidate potential causal relationships 
between circulating inflammatory proteins and three different 
forms of encephalitis at the genetic level. Our results indicate that 
artemin, C-C motif chemokine 28, C-X-C motif chemokine 1, 
interleukin-10 and neurotrophin-3 are potentially causal 
inflammatory factors. Inflammatory factors potentially causally 
associated with acute disseminated encephalomyelitis are 

monocyte chemoattractant protein 2, interleukin-10 receptor 
subunit beta and matrix metalloproteinase-1. Inflammatory factors 
that may be causally associated with autoimmune encephalitis are 
C-C motif chemokine 25 levels and hepatocyte growth factor levels.

Viral encephalitis is the predominant subtype of encephalitis 
in numerous geographical areas. Cytokines, encompassing both 
proinflammatory and anti-inflammatory types, serve as pivotal 
regulators in the host’s reaction to viral infection, pathogenesis, 
and disease progression. The host’s cytokine responses are 
genetically determined and reflect the intricate array of inter-
individual variations in immune responses to viral infections (3, 
20). Currently, supportive symptomatic therapy remains the 
primary treatment option for patients with viral encephalitis, as 
effective targeted therapies have not been developed. The 
morbidity and mortality rate among patients with viral 

FIGURE 2

Heat map of all exposures and endings.
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encephalitis is approximately 30%, with over half of survivors 
experiencing various neuropsychiatric sequelae (21). Neuroleptic 
viral infections causing viral encephalitis have garnered increased 
attention due to their significant mortality and disability rates (2). 
However, existing studies have not yet comprehensively analyzed 
inflammatory proteins. Limited observational studies conducted 
over the past decades have shown a correlation between certain 
inflammatory proteins and the risk of viral encephalitis (22). 
Through this study, it was confirmed that Caspase 8 levels, 
Interleukin-10 levels, Interleukin-7 levels, and TNF-beta have a 
positive correlation on the occurrence of viral encephalitis at the 
genetic level. However, the findings of these studies are often 
inconsistent due to selection biases in case sample selection and 
subsequent analyses inherent in observational studies (23, 24). 
Hence, the practical application of these biomarkers as reliable 
diagnostic and prognostic indicators is not feasible (25). This 
research employed a two-sample Mendelian randomization 
methodology to establish strong causal relationships, mitigating 
potential confounding factors and eliminating the possibility of 
reverse causation. Furthermore, we  utilized data from 
comprehensive global genomic studies accessible to the public, 
encompassing a substantial cohort of individuals with viral 
encephalitis and control subjects. The analysis of inflammatory 
proteins was conducted using the most up-to-date and extensive 
genomic datasets available. This provides strong and solid 
evidence for exploring potential causal relationships.

Furthermore, as a secondary objective of this research, 
we conducted a thorough Mendelian randomization analysis on 
acute disseminated encephalomyelitis, autoimmune encephalitis, 
and inflammatory proteins. Acute disseminated encephalomyelitis 

(ADEM) is a condition characterized by immune-mediated 
inflammation of the central nervous system, leading to widespread 
demyelination primarily in the white matter of the brain and 
spinal cord (26). This inflammatory response is typically initiated 
by viral infections or vaccinations. ADEM is typically precipitated 
by viral infection or vaccination, presenting with acute 
encephalopathy characterized by multifocal neurological 
manifestations and deficits. While the condition can manifest at 
any age, it is more prevalent in pediatric populations (27). Due to 
the lack of definitive biomarkers, the diagnosis of ADEM relies on 
clinical and imaging criteria. Treatment options for ADEM are not 
standardized, with most approaches involving non-specific 
immunosuppressive therapy (28). As of present, there is a lack of 
randomized controlled trials investigating the treatment of ADEM 
in both pediatric and adult populations. The etiology of ADEM 
remains unclear, with current research indicating that microbial 
infections may trigger an autoimmune response targeting myelin 
through molecular mimicry (29). Alternatively, ADEM may result 
from the activation of pre-existing myelin-reactive T-cells via a 
non-specific inflammatory mechanism (30). Our study aims to 
conduct a thorough analysis of the relationship between ADEM 
and inflammatory proteins using Mendelian randomization 
analysis. The results suggest that Beta-nerve growth factor levels, 
Cystatin D levels, Interleukin-7 levels, Latency-associated peptide 
transforming growth, factor beta 1 levels, Neurotrophin-3 levels 
and ADEM have a potential causal relationship. These findings 
will provide some new directions and ideas for further mechanistic 
studies, clinical diagnosis and treatment.

The relationship between IL-7 and LPTF-B1 and encephalitis 
involves complex immunoregulatory mechanisms. Biologically, 

FIGURE 3

Forest plots of potential causal exposures and outcomes.
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TABLE 3 Heterogeneity and pleiotropy tests of the causal effects of Circulating inflammatory proteins on different types of encephalitis.

Outcomes NSNPs Cochrane’s Q test MR-Egger intercept test MR-PRESSO
Steiger test F-statistics

Exposures Q-value P Intercept P Globle test P Cor-P

Viral encephalitis

Artemin 17 91.2 0.478 0.0015 0.685 0.621 - True 16.5-99.7

C-C motif chemokine 28 20 82.3 0.625 0.0024 0.094 0.203 - True 20.1-79.7

C-X-C motif chemokine 1 8 84.1 0.598 0.0012 0.324 0.181 - True 19.2-112.3

Interleukin-10 18 102.6 0.658 0.0018 0.632 0.235 - True 16.4-845.1

Neurotrophin-3 16 70.9 0.924 0.0031 0.125 0.632 - True 18.8-95.7

Acute disseminated 

encephalomyelitis

Monocyte 

chemoattractant protein 2
19 68.8 0.624 0.0017 0.632 0.157 - True 19.5-210.1

Interleukin-10 receptor 

subunit beta
26 76.5 0.852 0.0011 0.125 0.369 - True 18.2-85.7

Matrix 

metalloproteinase-1
24 82.3 0.635 0.0032 0.428 0.236 - True 16.8-116.7

Autoimmune 

encephalitis

C-C motif chemokine 28 20 66.5 0.842 0.0014 0.632 0.635 - True 18.1-89.6

Macrophage 

inflammatory protein 1a
13 79.3 0.652 0.0011 0.257 0.576 - True 17.6-102.3

Abbreviations: NSNPs Number of single-nucleotide polymorphisms, Q-test p-value > 0.05 suggests no heterogeneity. MR-Egger, intercept test P-value > 0.05 suggests no horizontal pleiotropy. Cor-P, Outlier-Corrected P.
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this phenomenon is of interest because different types of 
encephalitis may involve different immune pathways. In ADEM 
and viral encephalitis, cytokines may play different roles. For 
example, certain cytokines may promote an inflammatory 
response in viral encephalitis and increase the chance of 
morbidity, whereas in ADEM they may help to reduce 
inflammation and decrease the chance of morbidity (31). This 
depends on how well they activate or inhibit specific immune 
pathways. Current studies have found that common 
pro-inflammatory factors are IL-1β, IL-2, IL-6, IL-12, IL-17, 
IL-18, TNF-α, IFN-γ, TNF-β andCCL2, etc. And the common 
anti-inflammatory factors are IL-4, IL-10, IL-11, IL-13, TGF-β, 
IL-25, IL-37, IL-35, PGE2 and sTNFR, etc. These cytokines play 
complex roles in different immune responses and inflammatory 
processes, and they can regulate each other and work together to 
maintain the balance of the immune system (32). In certain 
disease states, the balance between pro-inflammatory and anti-
inflammatory factors may be disrupted, leading to excessive or 
inadequate inflammatory responses. Understanding the 
mechanism of action of these cytokines is essential for the 
development of drugs for the treatment of inflammatory diseases. 
These findings offer valuable insights for further research on the 
mechanisms, diagnosis, and treatment of autoimmune 
encephalitis. As the screening and functional characterization of 
susceptibility genes progresses, the significance of these genetic 
variants in encephalitis episodes, as well as their interactions with 
other genes and the environment, will become more evident (33, 
34). These advancements are anticipated to offer valuable insights 
into the immunological mechanisms involved in the development 
of encephalitis, and to facilitate more accurate diagnosis and 
treatment based on host genotypes. Functional genomics has 
opened up exciting new frontiers in elucidating the genetic 
architecture of encephalitis immunity and is now ripe for 
the picking.

Advantages and limitations

This study’s primary strength resides in its utilization of a 
two-sample Mendelian randomization methodology to investigate 
potential causal associations between 91 circulating inflammatory 
factors and three distinct forms of encephalitis. Noteworthy 
strengths encompass the substantial sample size, the employment 
of various Mendelian randomization techniques to guarantee the 
reliability of results, and the utilization of GWAS data to mitigate 
confounding variables. The circulating inflammatory proteins 
utilized as exposures in this study were sourced from the GWAS 
dataset of the most recent meta-analysis released in 2023, 
representing the most comprehensive circulating protein data 
currently accessible. Furthermore, the study used multiple test 
correction methods: (1) e.g. Bonferroni correction, which adjusts 
the p-value threshold to control for false discovery rate (FDR). (2) 
Choose robust statistical methods: e.g., weighted median method 
or MR-Egger regression, which are resistant to outliers and genetic 
instrumental variables that violate the independence assumption. 
(3) Perform sensitivity analyses: Verify consistency of results by 

leave-one-out analysis or by repeating the analysis using different 
sets of genetic variants. (4) Transparent reporting of all analyses 
performed, including those results that were not statistically 
significant, will help to assess the credibility of the results.

This study used multiple methods, including weighted median, 
MR-Egger, and MR-PRESSO, to assess horizontal pleiotropy and 
perform sensitivity analyses. These methods were consistent with the 
results of the inverse variance weighted analyses, which reinforces our 
confidence in the results. Although the point estimates were similar in 
nature, the differences in standard errors primarily reflected the 
sensitivity of each method to outliers and potential horizontal 
pleiotropy. The differences observed in this study are primarily due to 
differences in how these methods handle independence and outliers 
in genetic instrumental variables. For example, the MR-Egger and 
MR-PRESSO methods accounted for possible horizontal pleiotropy 
when calculating SE, which may have led to larger SEs. In addition, 
MR-PRESSO adjusted the analysis by excluding outliers, which may 
explain the further increase in SE compared to the other methods. 
Despite these differences, the consistency of all methods demonstrates 
the robustness of the results of this study. Our results are not dependent 
on a single analytical method, but have been validated by multiple 
methods. We  hope that these explanations help the reader to 
understand the impact of different methods on the significance 
findings and enhance the credibility of our findings.

However, it is important to acknowledge several limitations of 
this study. Firstly, Mendelian randomization evaluates the long-
term impacts of exposure, while the levels of inflammatory proteins 
were measured solely at the time of enrollment, failing to consider 
temporal dynamics. Second, this research predominantly focused 
on epidemics of European descent identified in existing Genome-
Wide Association Studies (GWAS), thereby restricting the 
applicability of the findings to other populations. Third, the study 
was unable to delve deeper into the distinct impacts of various 
subtypes of outcomes. This limitation arises from the potential 
development of different forms of encephalitis based on factors 
such as the origin of the infection and host genetics. Fourth, our 
analyses concentrated solely on levels of circulating inflammatory 
proteins, neglecting the potential for the local tissue cytokine 
environment to provide a more accurate representation of the 
inflammatory response in cases of encephalitis. Our inability to 
elucidate the potential dynamic changes in inflammatory protein 
levels during the clinical progression of encephalitis highlights a 
limitation in our study. Conducting further research to address 
these limitations will strengthen the validity of genetic studies on 
the inflammatory protein milieu in various subtypes of encephalitis. 
Consequently, additional experiments are necessary to clarify the 
underlying biological mechanisms elucidated in this study.

Conclusion

In summary, our research employed Mendelian randomization to 
examine recently published Genome-Wide Association Study data 
from a substantial cohort, elucidating potential causal connections 
between 91 circulating inflammatory proteins and three distinct 
subtypes of encephalitis. Notably disparate causal relationships were 
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observed for various inflammatory proteins across the three 
encephalitis subtypes. While the precise mechanisms by which 
inflammatory proteins contribute to the pathogenesis of encephalitis 
remain unclear, our results offer novel perspectives on the potential 
causal link between these entities. This will provide new directions for 
further in-depth studies.
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