AUTHOR=Nguyen Thi Nguyet Que , García-Rudolph Alejandro , Saurí Joan , Kelleher John D. TITLE=Multi-task learning for predicting quality-of-life and independence in activities of daily living after stroke: a proof-of-concept study JOURNAL=Frontiers in Neurology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2024.1449234 DOI=10.3389/fneur.2024.1449234 ISSN=1664-2295 ABSTRACT=

A health-related (HR) profile is a set of multiple health-related items recording the status of the patient at different follow-up times post-stroke. In order to support clinicians in designing rehabilitation treatment programs, we propose a novel multi-task learning (MTL) strategy for predicting post-stroke patient HR profiles. The HR profile in this study is measured by the Barthel index (BI) assessment or by the EQ-5D-3L questionnaire. Three datasets are used in this work and for each dataset six neural network architectures are developed and tested. Results indicate that an MTL architecture combining a pre-trained network for all tasks with a concatenation strategy conditioned by a task grouping method is a promising approach for predicting the HR profile of a patient with stroke at different phases of the patient journey. These models obtained a mean F1-score of 0.434 (standard deviation 0.022, confidence interval at 95% [0.428, 0.44]) calculated across all the items when predicting BI at 3 months after stroke (MaS), 0.388 (standard deviation 0.029, confidence interval at 95% [0.38, 0.397]) when predicting EQ-5D-3L at 6MaS, and 0.462 (standard deviation 0.029, confidence interval at 95% [0.454, 0.47]) when predicting the EQ-5D-3L at 18MaS. Furthermore, our MTL architecture outperforms the reference single-task learning models and the classic MTL of all tasks in 8 out of 10 tasks when predicting BI at 3MaS and has better prediction performance than the reference models on all tasks when predicting EQ-5D-3L at 6 and 18MaS. The models we present in this paper are the first models to predict the components of the BI or the EQ-5D-3L, and our results demonstrate the potential benefits of using MTL in a health context to predict patient profiles.