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A health-related (HR) profile is a set ofmultiple health-related items recording the

status of the patient at di�erent follow-up times post-stroke. In order to support

clinicians in designing rehabilitation treatment programs, we propose a novel

multi-task learning (MTL) strategy for predicting post-stroke patient HR profiles.

The HR profile in this study is measured by the Barthel index (BI) assessment

or by the EQ-5D-3L questionnaire. Three datasets are used in this work and

for each dataset six neural network architectures are developed and tested.

Results indicate that an MTL architecture combining a pre-trained network

for all tasks with a concatenation strategy conditioned by a task grouping

method is a promising approach for predicting the HR profile of a patient with

stroke at di�erent phases of the patient journey. These models obtained a

mean F1-score of 0.434 (standard deviation 0.022, confidence interval at 95%

[0.428, 0.44]) calculated across all the items when predicting BI at 3 months

after stroke (MaS), 0.388 (standard deviation 0.029, confidence interval at 95%

[0.38, 0.397]) when predicting EQ-5D-3L at 6MaS, and 0.462 (standard deviation

0.029, confidence interval at 95% [0.454, 0.47]) when predicting the EQ-5D-

3L at 18MaS. Furthermore, our MTL architecture outperforms the reference

single-task learning models and the classic MTL of all tasks in 8 out of 10 tasks

when predicting BI at 3MaS and has better prediction performance than the

reference models on all tasks when predicting EQ-5D-3L at 6 and 18MaS. The

models we present in this paper are the first models to predict the components

of the BI or the EQ-5D-3L, and our results demonstrate the potential benefits of

using MTL in a health context to predict patient profiles.

KEYWORDS

multi-task learning, task grouping, stroke, activities of daily living, quality-of-life, Barthel

index, EQ-5D-3L

1 Introduction

Many medical instruments that are widely used to measure and assess the health status

of a patient are structured questionnaires (1–3). To help the clinician improve treatment

decisions, machine learning (ML) is often used to forecast patients’ future conditions by

predicting the answers of such questionnaires. To date, research on this type has focused

on using conventional single-task learning (STL). In STL, a separate model is trained to
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predict either a value representing the summary of these answers

(4, 5), or each element of a questionnaire independently (e.g. the

study of Devlin et al. in (6)).

An understudied alternative to STL is to use multi-task learning

(MTL) where a model is trained to make predictions for groups

of related items in parallel, thereby allowing the model to learn

to predict coherent sets of values across the items (7). In this

study, we explore the benefit of MTL to predict the answers of

structured questionnaires and compare our results to conventional

STL models.

Health-related quality-of-life is a recognized tool for evaluating

and assessing the health state of patients during post-acute stroke

treatment (8). By the definition of the World Health Organization,

quality-of-life (QoL) is “an individual’s perception of their position

in life in the context of the culture and value systems in which

they live and in relation to their goals, expectations, standards and

concerns” (9). However, the definition of QoL is still vague and

ambiguous when used in different fields (10). In the health context,

the concept of QoL can be defined as (i) a set of health-related (HR)

outcomes or (ii) an outcome score that describes a patient’s overall

wellbeing or health (11).

The first QoL definition represents a broader conceptualization

of QoL where QoL is composed of a set of HR outcomes describing

and evaluating the ability of the patient in different physical

activities of daily living (ADLs), as well as the psychological

or cognitive aspects of the wellbeing of the patient. Such

conceptualization can be measured using various questionnaires or

surveys of patients that are administered during follow-up care,

such as the stroke specific quality-of-life (SS-QoL) (12), EQ-5D

(13, 14), or SF-36 (15). The answers of these surveys form a set of

HR outcomes of the patients. For the second QoL definition, the

outcome score used may be calculated by a similar measure of QoL

impairment as mentioned earlier (e.g., EQ-5D, SS-QoL, SF-36). For

each of these cases, the patient assessment is composed of multiple

items. The overall outcome score of the assessment is either the sum

of all the individual scores from each item (e.g., SS-QoL total score,

SF-36 total score (16)), or a value that summarizes the item scores

(e.g., EQ-5D index value (17)).

During stroke treatment and rehabilitation, healthcare

professionals use instruments such as the Barthel index (BI) (18)

or the functional independence measure (FIM) (19) to assess

and track how patients are recovering with respect to different

physical ADLs. ADL dependency is a common consequence

post-stroke and persists in 35% of stroke survivors during the

first year after stroke (20). ADL evaluation provides evidence

Abbreviations: HR, Health-Related; MTL, Multi-Task Learning; BI, Barthel

Index; STD, Standard Deviation; CI, Confidence Interval; MaS, Months after

Stroke; STL, Single-Task Learning; QoL, Quality-of-Life; ADLs, Activities of

Daily Living; iADL, independence in Activities of Daily Living; FIM, Functional

Independence Measure; ML, Machine Learning; SS-QoL, Stroke Specific

Quality-of-Life; NIHSS, National Institutes of Health Stroke Scale; DaS, Days

after Stroke; IST-3, Third International Stroke Trial; EQ-5D-3L, EuroQoL

five-dimensions - three-level; EQ-VAS, EuroQoL Visual Analog Scale; TAG,

Task-A�nity Grouping; VTAG, Cramer’s V Task-Association Grouping; MLP,

MultiLayer Perceptron; ReLU, Rectified Linear Unit; PTM, Pre-Trained Model;

MPI, Multi-task Performance Improvement.

for decision-making in treatment, rehabilitation, nursing and

ultimately social participation after discharge (21). Similar to the

concept of QoL, a patient’s independence in ADL (iADL) can be

assessed using either the set of answers of the questionnaire or the

outcome score of the iADL assessment (e.g., the total score of BI

or FIM).

However, the outcome scores of QoL and iADL assessments

mask all the answers of the QoL and iADL questionnaires.

Consequently, predicting the set of HR outcomes at a given time
point after stroke may help clinicians to identify and prioritize the
areas of need of the patient, thus improving the treatment for the

patient to restore their functional abilities and QoL after stroke
(22, 23). Inspired by previous studies (24, 25) on defining the QoL
profile of the patient, in this work we treated the assessments of QoL

and iADL, i.e., the EQ-5D-3L and BI respectively, as representing

personalized HR profiles of patients.

To improve the care of patients during post-acute stroke

treatment, we are interested in predicting the HR profile of the

patient at a given time point after stroke. Especially, we are
interested in predicting all the items of the BI and EQ-5D-3L
assessments since several studies have shown their mutual support

in the diagnosis and assessment of patients with stroke (26, 27).

A set of multiple outcomes is a more complex structure than
an outcome score, making the prediction of an HR profile a

challenge. Given the inter-related multi-element structure of these
instruments, a relevant and novel approach to predicting all the

items of the HR profile is to use MTL to bridge the gap of applying

predictive modeling for post-stroke rehabilitation.

MTL technique involves training an ML model to predict

outcomes for multiple problems at the same time using a

shared representation (28). MTL is different from the more

standard ML approach of STL where a separate model is

independently trained for each problem. Each problem can

have two labels (binary classification), more than two labels

(multinomial classification), or have a continuous numeric target

(regression) (29). In recent years, neural-network-based MTL

has demonstrated its advantages in different domains such as

computer vision, speech recognition, natural language processing,

multimedia data processing, reinforcement learning, and multi-

modal problems (7, 30, 31).

The idea underpinning MTL is that it is sometimes possible

to improve the prediction performance of a system across a set

of related tasks by integrating the shared information across these

tasks during the training of the system. This is generally achieved

by training a system on all the tasks in parallel and sharing model

parameters across the tasks. For example, in the case of a multi-

task neural network the sharing of parameters can be achieved by

sharing one or more layers of the network across multiple tasks.

In this way, the learning signals from multiple tasks are integrated

during the updates of these shared parameters (7). However, the

benefit of using MTL is often dependent on the strength of the

relationship between the sub-tasks that are learnt in parallel (32,

33). If MTL is applied to a set of tasks that are not related this

can result in a more complex model with no benefit in prediction

accuracy on any task.

Another potential problem with applying MTL is the so-called

“Robin Hood effect”. The Robin Hood effect describes a situation

in MTL where learning multiple tasks in parallel improves the
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predictive performance of one or more of the tasks but this gain is

at the cost of reducing the predictive accuracy on some of the other

tasks (34). Consequently, an important aspect of applying MTL is

choosing the sets of tasks that are grouped and learned in parallel.

A number of methods have been proposed to identify groups of

tasks that will benefit fromMTL, for example the grouping of tasks

can be selected by using statistical calculation (e.g., dependency

coefficients (35, 36)), by per-task loss estimation (e.g., higher order

approximation strategy (37)) or by the calculation of the affinity

between tasks (e.g., task-affinity grouping methodology (38)).

Importantly, these grouping criteria may not agree with respect to

what tasks to group. Thus, the selection of the criteria applied to

define the task groups can be understood as a hyper-parameter of

the MTL approach that can affect the overall effectiveness of the

MTL system.

In this paper, we frame post-stroke HR profile prediction as

a multi-task problem where the prediction of each item of an

HR profile is treated as a learning task. We use STL, where a

separate independent prediction model is trained for each task,

as the baseline comparator. We investigate the efficacy of two

different methods (task-affinity grouping (38) and Cramer’s V task-

association grouping) for identifying related tasks that the system

may benefit from learning together, and propose and evaluate a

number of strategies for constructing an MTL system. We also

analyse the presence of the “Robin Hood effect” when comparing

the performance between the novel proposed MTL against the

baseline models such as STL or the classic MTL approach where

all tasks are learned in parallel (where no task grouping is applied).

To the best of our knowledge, this research is the first time

neural network-based MTL has been applied to the prediction of

the details of the HR profile of patients with stroke, i.e., predicting

the score of each BI item or each EQ-5D-3L items in parallel.

This paper is structured as follows. A review of the application

of MTL in healthcare, with a particular focus on its use for stroke

treatment in predicting BI and EQ-5D-3L assessment, is provided

in Section 2. We then describe, in Section 3, the three studied

clinical datasets. Section 4 describes the data handling methods we

use in our experiments, and Section 5 details the ML architectures

we study and develop in our experiments. Following that, Section 6

describes our experiments and the results obtained from each ML

approach, as well as the comparison between the studied models. In

Section 7, we discuss the advantages of the proposedMTL approach

when comparing it to the STL and the classic MTL baseline models.

Finally, we set out our conclusions and our perspective on future

work in Section 8.

2 Related works: multi-task learning
for the prediction of health-related
outcomes

MTL has shown its potential in previous healthcare

applications for predicting future outcomes at multiple HR

dimensions of the patients (7, 30, 31), which helps to inform

the clinician of the possible future states or risks that the patient

could have. A recent example of MTL being used in a healthcare

setting is Roy et al. (39) who introduced sequential subnetwork

routing which is a sequential MTL deep recurrent neural network

architecture that use electronic health records to predict the

onset of multiple endpoints. These endpoints include the onset

of specific organ dysfunctions and general clinical outcomes such

as acute kidney injury, continuous renal replacement therapy,

mechanical ventilation, vasoactive medications, mortality, and

length of stay of the patient. Harutyunyan et al. (40) proposed

an MTL long short-term memory-based network that trains

on a multivariate clinical time series database to predict four

targets in parallel: the risk of in-hospital mortality, the length of

stay, physiologic decompensation, and phenotype classification

of the patients. In the context of supporting the treatment of

atrial fibrillation, an MTL model (41) combining a U-net for

segmentation with a fully connected network for classification was

developed to perform atrial segmentation and pre- or post-ablation

classification, using gadolinium-enhanced magnetic resonance

images. MTL has also been applied in neurological disorders, such

as Alzheimer’s disease diagnosis. Liu et al. (42) proposed an MTL

neural network multi-channel learning model that simultaneously

predicts brain disease and estimates the clinical score, using

magnetic resonance imaging data and demographic information

of patients. However, none of these works have focused on post-

stroke patients, nor on predicting the elements of a QoL or iADL

structured questionnaire.

In stroke treatment, the standard STL approach has been

used to develop models to predict post-stroke BI total scores

and this line of research has reported promising results for

improving the care of patients (43). For example, Lin et al. (4)

demonstrated the relative effectiveness (compared with support

vector machines) of logistic regression and random forest models

for predicting the total scores of BI at discharge. In (44), an STL

approach based on support vector machines was used to predict

the motor, cognitive and total score of the FIM and the total BI

score of a patient with stroke at discharge from a rehabilitation

unit. Generally, these methods were developed for predicting the

total score or the rank of total BI score (e.g., low, medium or

high rank).

However, when the total score of BI is used, this summary

score masks the information of the activities where a patient’s

ability is impaired. This can result in practitioners and researchers

finding it difficult to interpret the clinical meaning of BI summary

scores or changes in these scores. The prediction of the specific

ADL outcomes after stroke rehabilitation is a helpful means for

clinicians to improve the accuracy of prognoses, set attainable goals,

reach shared decisions, personalize rehabilitation plans, and inform

patients and relatives (45). A recent study (6) proposed a tool

that predicts the level of 9 out of the 10 items in the BI at 3,

6, 12 months after stroke (MaS). They train a separate Random

Forest model for each BI item and prediction time point (i.e.,

they use an STL modeling approach). However, in that study the

prediction of each BI item was scaled down to an independent

binary classification problem, i.e. fully functional vs. any level of

dependency. By comparison, in this paper, we assess the benefit

of neural network-based MTL (as opposed to STL) for predicting

the future levels of BI items of the patient while preserving the

multi-level characteristic of such items.
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Besides the mentioned works on BI, we are also interested in

studies of ML applications on the EQ-5D-3L questionnaire. EQ-

5D-3L is one type of EQ-5D instrument that aims to measure

the health status of the patient (46) (more details about EQ-

5D-3L is presented in Section 3.2.1). The answers of the EQ-5D

questionnaire are usually collected and combined to generate a

health profile (or health state) of a patient. There are 243 possible

health profiles for EQ-5D-3L. Each EQ-5D-3L health profile can

be then summarized to one value, the so-called EQ-5D-3L index

value (EQ-5D-3L index, quality-of-life weights or utilities) (17).

This index is calculated using a weighted sum of the scored answers

to the questionnaire, and the EQ-5D-3L index ranges from 0

(indicating death) to 1 (indicating full health) (17). The set of

weights used for converting the EQ-5D-3L health profile to EQ-5D-

3L index value is called a value set, note that the weighting applied

for the conversion can vary between studies (17, 47).

In the literature, multiple studies have been developed for

mapping other QoL assessments to the EQ-5D-3L index value (48)

and also for predicting EQ-5D-3L index value. For example, Zrubka

et al. (49) recently proposed a study for evaluating the performance

of ML methods (such as extreme gradient boosting classification,

extreme gradient boosting regression and ordinary least squares

regression) in predicting the EQ-5D-3L index value of patients

in various health conditions using demographic data, disease-

related variables and patient-reported outcome information. A

study from Barbosa et al. (50) has applied linear regression to

predict the EQ-5D-3L index and the Short Form 6 Health Survey

Instrument of the patients at four time-points such as in the

first seven days after stroke (DaS) and during three follow-up

home-visits at 3, 6 and 12 months after discharge, using pre-

stroke, clinical and healthcare information of the patient to analyse

their HR QoL evolution over the first year post-stroke. Similar to

the use of the total score of BI, the EQ-5D-3L index value also

masks, however, the details of the patient health profile. For this,

our second goal in this study is to apply neural network-based

MTL to predict all the future answers of EQ-5D-3L survey of

the patient while preserving the multi-level characteristic of each

EQ-5D-3L dimension.

3 Datasets of patients with stroke

In this study, three datasets were used. The first one is

the BI dataset for training models to predict a set of BI

items of patients with stroke at 3 months after the onset

of stroke symptoms (3MaS). The other two datasets were

extracted from the clinical IST-3 trial (51, 52). Using these two

datasets, the proposed MTL models were trained to predict

the items of EQ-5D-3L questionnaire of patients at 6MaS and

at 18MaS.

3.1 Barthel index data: Dataset 1

The first dataset relating to BI assessments of patients with

stroke during their rehabilitation was collected at the Institut

Guttmann (Barcelona, Spain) from 2002 to 2021.

FIGURE 1

Flowchart illustrating patient selection for extracting BI dataset from

the BI cohort collected at the Institut Guttmann. n represents the

number of patients.

3.1.1 Barthel index
The BI (18) is a measure that was developed to evaluate

the basic issues in ADLs of patients with musculoskeletal and

neuromuscular pathologies, such as stroke. It scores the level

of functional independence of patients along 10 items, namely

Feeding, Bathing, Grooming, Dressing, Bowel control, Bladder

control, Toilet Use, Transfers bed to chair and back, Mobility on

Level Surfaces and Stairs.

BI items are scored using a two-, three- or four-point scale

coded in steps of 5 points (i.e., the points on a two-point scale

are 0 and 5; three-point scale 0, 5, 10; and four-point scale 0, 5,

10, 15). The higher the score the more independent the patient

is on completing the ADL task. The minimum item score is 0,

corresponding to a high dependence on help from the patient

when performing the ADL task. The total BI score is calculated by

summing up all the item scores. This total BI score can range from

0 to 100. The details of BI items and their scoring are shown in

Supplementary Table S1.
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As the follow-up BI items contain HR items of a patient with

stroke, this set of items is considered as the target set that the

proposed models will be trained to predict.

3.1.2 Data source and preparation
The total number of patients in the BI dataset collected in

the period under study (2002–2021) from the Institut Guttmann

(Barcelona, Spain) is 1172. For this study, only patients who were

admitted to the unit with a diagnosis of ischemic stroke were

included. In line with previous related work on predicting stroke

rehabilitation outcomes (such as the study of Scrutinio et al.

(53)), we used a 3-month cutoff from stroke onset to discharge of

rehabilitation as an inclusion criterion for this study. Patient’s data

includes gender, age at stroke, type of ischemic stroke, civil status,

the number of days since stroke onset to admission, a National

Institutes of Health Stroke Scale (NIHSS) (54) and a BI assessment

on admission, and a BI assessment at discharge.

We filtered the dataset to only those patient records that

included both:

1. a BI admission assessment completed within 45DaS, and

2. a BI discharge assessment completed between 70 and 120DaS.

These number of days cut-offs were selected so that the

timespan from admission to discharge was relatively consistent

across patients while at the same time maximizing the final number

of patients of the final filtered dataset. This filtering resulted in a

dataset of 195 patient records which we used for our experiments.

Figure 1 presents the flowchart of the extraction of the BI dataset

for this study. Annexe 1 and Supplementary Table S2 detail the

summary statistics of the studied Guttmann dataset.

Using the BI dataset, all demographics, diagnostics and BI data

upon admission were used for predicting the BI item scores of the

patients at discharge. Figure 2 shows the distribution of scores by

items across the BI discharge assessment. The figure shows that

the distribution of scores for BI items at discharge is imbalanced.

There is 1 patient with a score of 0 for the BI item Feeding and

only 2 patients with a score of 0 for the BI item Transfer. However,

in keeping our goal of developing an MTL model for predicting the

full BI set, we decided to keep all of these items as the target outputs.

3.2 IST-3 clinical trial data: dataset 2 and 3

The third international stroke trial (IST-3) dataset is a

pragmatic international, multicentre, randomized, open-treatment

trial which contains 3035 patients with stroke enrolled by 156

hospitals in 12 countries (51, 52). Eligible hospitals participating

in IST-3 had to have an organized acute stroke service that met the

local standard and guidelines of an effective stroke unit care.

Briefly, to meet the participation requirement a stroke unit

should have a written protocol for the acute assessment of patients

with suspected acute stroke to include interventions to reduce the

time from onset to treatment, immediate access to computerized

tomography (CT) or magnetic resonance imaging (MRI) brain

scanning (24h a day), and a treatment area where thrombolysis

may be administered and the patient monitored according to the

trial protocol. The inclusion criteria of eligible patients in this trial

were (i) patients had symptoms and signs of clinically definite acute

stroke, (ii) the time of stroke onset was known, (iii) the treatment

could be started within 6 hours of onset, and iv) the CT or MRI

had reliably excluded both intracranial hemorrhage and structural

brain lesions, which could mimic stroke (e.g., cerebral tumor).

In this trial data was recorded for each patient at admission to

the trial (< 6 hours from onset of symptoms), at 24 h after stroke

onset, at 7DaS, and at 6 and 18MaS. At admission the patient’s

demographic (e.g., age, gender, etc.) and diagnostic information

(e.g., NIHSS, stroke type, comorbidities, blood tests, etc.) was

recorded. At 24 hours after stroke, the acute treatment information

for the patient was recorded. At 7DaS the patient’s details regarding

previous stroke, previous medication, medication administered

between 24h to 7 days, and Glasgow coma scale (GCS) were

recorded. At 6 and 18MaS the Oxford handicap score (OHS) as

well as the EQ-5D-3L questionnaires were collected. This dataset is

used to assess the ability of theMTLmodel to predict the EQ-5D-3L

questionnaire responses for a patient at 6MaS and 18MaS.

3.2.1 EQ-5D-3L
Developed by the EuroQoL group, EQ-5D (13, 14) is a

commonly used instrument for measuring and comparing

the health status of patients during rehabilitation (46).

Originally, the EQ-5D was a five-dimensional three-level generic

instrument. Nowadays, there are three different versions of EQ-5D

measurements (46), the EQ-5D-3L (so-called EQ-5D or the 3-level

version of EQ-5D) questionnaire is the first version, followed

by EQ-5D-5L (the 5-level version of EQ-5D) and EQ-5D-Y (the

child-friendly EQ-5D version). In our study, we use the EQ-5D-3L

since the data of this questionnaire is available in the IST-3 data.

As shown in Supplementary Table S3, this instrument consists

of 2 groups of information: the EQ-5D descriptive system and the

EQ visual analog scale (EQ-VAS). The EQ-5D descriptive system

has five dimensions (or items): Mobility, Self-care, Usual Activities,

Pain/Discomfort, and Anxiety/Depression. Each dimension has 3

response categories namely “having no problem”, “having some

problems” and “having extreme problems”. The EQ-VAS is a

scoring scale that describes the overall health state of the patient

going from 0 (as worst state) to 100 (as best state).

Based on available follow-up information, two datasets are

extracted for training models to predict the EQ-5D-3L of

patients diagnosed with ischemic stroke at 6 and 18MaS. The

common condition for extracting these two datasets includes only

patients with ischemic stroke who are under recombinant tissue

plasminogen activator (r-tPA) treatments. Data for patients that

were added to the IST-3 trial more than 6h after stroke onset or

whose record contains predicted NIHSS score, imputed OHS or

was marked as violating protocol were excluded. Figure 3 presents

the flowchart of the extraction of the two EQ-5D-3L datasets for

this study.

3.2.2 Dataset 2: EQ-5D-3L at 6MaS
For predicting the EQ-5D-3L set at 6MaS, all the information of

patients from admission to the trial till 6MaS is used. Furthermore,

we considered only the patients that are still alive at 6MaS, and
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FIGURE 2

Distribution of scores for each BI item calculated from BI discharge assessments. n represents the number of patients.

FIGURE 3

Flowchart illustrating patient selection for extracting EQ-5D-3L at 6MaS and at 18MaS datasets from the IST-3 clinical trial. n represents the number

of patients.

for which all the EQ-5D-3L items collected at 6MaS are non-null.

The final number of patients for the study of EQ-5D-3L at 6MaS

is 726. The demographic, diagnostic information and follow-up

information till 6MaS for this dataset are detailed in Annex 2 and

Supplementary Table S4.

All the EQ-5D-3L items recorded at 6MaS are used as

prediction targets. The distribution of scores of all EQ-5D-3L

items collected at 6MaS is shown in Figure 4A. Here, the names

of EQ-5D-3L items were shortened to ease the visualization. The

EQ-VAS overall health score was binned into four equal categories

and classified as 1 for a score in the interval of [1, 25], 2 for [26,

50], 3 for [51, 75], and 4 for [76, 100]. Together with the other

five descriptive items, EQ-VAS binned scores are the set of output

targets for training the QoL 6MaS model. More details about the

variables used for training the QoL 6MaS model are shown in the

Supplementary Table S5.
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A B

FIGURE 4

Distribution of scores of all EQ-5D-3L items at (A) 6MaS and (B) 18MaS. n represents the number of patients.

3.2.3 Dataset 3: EQ-5D-3L at 18MaS
Similarly, the third dataset contains all the information of

patients from admission to the trial till 18MaS. Furthermore, we

considered only the patients that are still alive at 18MaS and for

which all the EQ-5D-3L items collected at 6MaS and at 18MaS

are non-null. The final number of patients for the study of HR

profile at 18MaS is 452. Demographic, diagnostic information and

follow-up information of this dataset are detailed in Annex 3 and

Supplementary Table S6.

All the EQ-5D-3L items recorded at 18MaS are used as

prediction targets for the personalized HR profile of the patients at

18MaS. The distribution of scores of all EQ-5D-3L items collected

at 18MaS is shown in Figure 4B. Similar to the IST-3 6MaS dataset,

the used EQ-VAS overall health scores were binned in four equal

categories and classified as 1 for the score in the interval of [1,25],

2 for [26, 50], 3 for [51, 75] and 4 for [76, 100]. Then, the five

descriptive items and the EQ-VAS binned scores are used as the

output targets for training the QoL 18MaS model. More details

about the variables used for training the QoL 18MaS model are

shown in the Supplementary Table S7.

4 Data re-sampling methodology

Given the relatively small size of our datasets, we use a

re-sampling (cross-validation) methodology for our experiments.

Using cross-validation provides us with a method for assessing

the variance of model performance across different splits of

a dataset, thereby estimating the confidence in the mean

performance as being a true estimate of model performance on

the task.

The most commonly used form of cross-validation in ML is

known as k-fold cross-validation where a dataset is split into k equal

parts (or folds) and then each fold is used as a validation set for the

model trained on the other k−1 folds. Using k-fold cross-validation,

each data point occurs in exactly one validation set and k−1

training sets. Monte Carlo cross-validation is another well-known

method where a test set and/or validation set is created by randomly

sampling data points from the dataset without replacement. Once

the test set and validation set of the desired size have been sampled

the remaining data points are treated as the corresponding training

set. The advantage of Monte Carlo cross-validation is that we can

sample as many validation sets as we wish while maintaining a

reasonable size for each validation set. Using Monte Carlo cross-

validation some data points may occur in multiple validation sets

and some may occur in none. However, this re-sampling method is

still considered a cross-validation method as no data point occurs

multiple times within a single validation or training set (which is

not the case in a bootstrapping methodology).

For each of our datasets (BI, EQ-5D-3L at 6MaS and 18MaS),

we use Monte Carlo cross-validation to create 50 full-training and

hold-out test sets containing 80% and 20% of the dataset.1 Each

random split is generated using a random seed varied from 0 to

49. As shown in Figure 5A, for each of the 50 Monte Carlo splits

we use the full-training data to do two things, first to determine the

grouping of tasks that will be used in the MTL models (see Sections

5.3.2 and 5.4.2), and second to train the neural network models.

To determine the task grouping, we use a k-fold cross-validation

process on the full-training data (Figure 5B). Due to the limited

size of the full-training splits, we used k = 3 for the BI dataset and

k = 5 for EQ-5D-3L at 6MaS and 18MaS datasets. Once the task

groupings have been determined, a corresponding MTL network

model is trained and validated. This requires a second splitting of

the full-training data (see Figures 5A, C). In this case, we again

use Monte Carlo cross-validation to split the full-training data into

training and validation sets of 75% and 25% of the full-training data

(or equivalently 60% and 20% of the original dataset). Finally, the

trained model is tested on the hold-out test set (Figure 5D). The

1 This ratio is commonly used for splitting datasets (55) and is suitable in

this case because our datasets are relatively small and so we wish to have a

large enough training data split to enable the models to train e�ciently while

still retaining a large enough test sample for evaluation.
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FIGURE 5

Flowchart of ML development for predicting HR profile. (A) Data re-sampling strategy used at each random split. (B) Task grouping search

methodologies for finding optimal groups of tasks for MTL design in (C), using data from the k-fold cross-validation sets of (A). (C) ML model design

for STLs and MTLs using the task grouping condition from (B). STL and MTL models are then trained and validated using data from Monte-Carlo

cross-validation sets in (A). (D) Testing of trained STL and MTL models from (C) using the hold-out test set from (A). (E) Evaluation of prediction

performance of the studied ML models over 50 runs of ML development, each run is a cycle of (A–D).

performance of all the studied models is averaged over 50 runs for

further evaluations (Figure 5E).

5 Methods: single- and multi-task
learning

In this section, we introduce the different methods and

modeling approaches that we use in our experiments. This includes

STL, where a separate independent prediction model is trained

for each task, the different methods we experiment with to

identify related tasks (the task-affinity grouping and Cramer’s V

task-association grouping), and the strategies we propose and assess

for constructing an MTL system.

5.1 Single-task learning

STL involves training a separate model to predict each output

item. In this study, each STL model is a multilayer perceptron

(MLP) feed-forward neural network (56) that consists of h hidden

layers. Each hidden layer is composed of r nodes. Each of these

nodes uses a Rectified Linear Unit (ReLU) activation function. The

last hidden layer is then connected to a binary or multinomial

output layer, depending on the studied output task.
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For a binary task, the output layer contains a sigmoid activation

unit and is trained with a binary cross-entropy loss. For a

multinomial output layer, we use a softmax activation function, and

this is trained with a categorical cross-entropy loss. All the STL

models are trained and are updated using the sum of all losses of

all units of the output layer (as described in Keras documentation

(57)).

In order to use STL to create a system that can predict a set of

tasks, we create an ensemble of STL models. Each STL model of

the ensemble is independently trained to predict one output task.

Figure 6A presents a brief visualization of the architecture of an

ensemble ofM STL models for predictingM output tasks.

5.2 Classic multi-task learning

MTL involves predicting multiple output items at the same

time (e.g., predicting the scores of all the BI items). MTL is

different to the more common multiclass prediction. Multiclass

prediction involves classifying an example into one of three or

more classes. When using a neural network, multiclass models

are typically implemented using a softmax output layer. It is not

possible, however, to scale a single softmax layer to MTL because a

softmax layer only returns one output per instance. This is why,

as mentioned above, the standard STL approach to handling a

multitask prediction problem is to train a separate model per task.

The drawback of this multimodel STL approach is that the separate

models cannot share the useful information gleaned from related

tasks being predicted in parallel. Consequently, to implement an

MTL neural model that can share information between tasks, it is

necessary to create a model that has multiple output layers (one

output layer per task) and several shared layers of neurons which

allows useful information to flow between the tasks. It also requires

the integration of error gradients across multiple tasks during

backpropagation through these shared layers. Figure 6B shows an

overview of an MTL architecture for predictingM output tasks.

A classic MTL neural network model has at least a single shared

layer across the different tasks followed by a set of task-specific

output layers. In our experiments, a h-hidden-layerMTL ofM tasks

consists of a shared trunk of h
2 hidden layers connected to a set of

M branches of h
2 hidden layers. Each hidden layer is composed of r

nodes and each of these nodes uses a ReLU activation function. The

last hidden layer of each of these M branches is then connected to

its corresponding output layer.

Similar to the STL, binary output layers contain a sigmoid

activation unit and are trained with a binary cross-entropy loss.

Multinomial output layers use a softmax activation function and

are trained with a categorical cross-entropy loss. MTL models are

trained and are updated using the sum of all losses of all outputs (as

described in Keras documentation (57)).

5.3 Multi-task learning with task-a�nity
grouping

The most straightforward approach to applying MTL to

develop a prediction model for a set of targets is to train a single

MTL model to predict all the items. The drawback with this

approach, however, is that training a model to predict items in

parallel that are not similar or share similar underlying structures

can result in a reduction in model performance on one or more

items (28, 38). Here, the goal of MTL with task-affinity grouping

(TAG) (38) is to identify sets of tasks that can benefit from being

learned in parallel. The selection of task grouping is done using the

TAG measurement obtained by analyzing the training dynamics of

an initial MTL model that learns all of the studied tasks at the same

time.

5.3.1 Task-a�nity grouping
TAG is a non-symmetric2 pair-wise affinity measure between

tasks where a high affinity of task iwith task j indicates that learning

task i in parallel with task j is beneficial in terms of learning task

j. The calculation of task affinity is based on the intuition that if

learning task i is beneficial for learning task j then back-propagating

the losses on task i through the shared parameters of an MTL

network should result in a reduction of the network’s error on task

j. In other words, if learning task i in parallel with task j will help to

improve model performance in predicting task j, we should expect

that if we save the state of the network during the training of a

model that is learning task i and j in parallel, and then update the

weights of the network using a loss signal from just task i, this

should result in the performance of the updated network on task

j being better than the performance of the saved network on task

j. The larger the improvement on task j caused by updating the

network parameters using the loss on task i the larger the affinity

from task i to task j.

Consequently, TAG is calculated based on the change in the

loss on one task (e.g., task j) before and after applying the gradient

descent update from the other task (e.g., task i) onto the shared

parameters. Following (38), we use the notation as below:

• θ = {θs} ∪ {θi,1≤i≤M} are the parameters of the considered

multi-task loss function, where θs represents the shared

parameters and θi represents the specific parameters of the ith

task andM is the number of tasks,

• T is the total number of training steps (or epochs),

• η is the learning rate,

• Li(χ , θs, θi) is the non-negative loss of task i for a given batch

of instances χ ,

• Lj(χ , θs, θj) is the non-negative loss of task j for a given batch

of instances χ ,

• 1θ ts|i
is the gradient/derivative of error with regard to the

shared parameters θs based solely on the loss for task i (i.e.,

Li(χ , θs, θi)) at the epoch t (1 ≤ t ≤ T, T is the maximum

number of epochs),

• θ t+1
s|i is the updated shared parameters after one step of

backpropagation of 1θ ts|i
,

• Lt+1
j|i (χ , θ t+1

s|i , θj) is the non-negative lookahead loss of task j

for a given batch of instances χ , when the shared parameters

of the network (θs) have been updated using the loss from the

task i and χ (i.e., 1θ ts|i
)

2 Unlike Cramer’s V which is a symmetric pair-wise a�nity measure.
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A B

FIGURE 6

Architecture of the (A) ensemble of STL models and the (B) MTL model for predicting a set of M tasks. Each hidden layer is annotated as hi, where i is

the ith hidden layer of the network and M is the number of output tasks.

• zti→j is the affinity of task i at a given training time-step t on

task j, and is defined as:

zti→j = 1−
Lt+1
j|i (χ , θ t+1

s|i , θj)

Lj(χ , θs, θj)
(1)

A large positive value for zti→j indicates that updating the

network shared parameters using the loss of task i improves the

model performance on j. Conversely, a large negative value for zti→j

indicates that updating the shared parameters with the loss of task

i has a negative impact on the prediction of task j. A value for zti→j

close to zero means that updating using the loss of task i does not

affect the performance on task j.

zi→j defines the task affinity from task i onto task j at a single

point during the training of a network. We generalize this affinity

measure to the full training cycle of a network by defining ẑi→j as

the average affinity of task i onto task j across multiple epochs of

training.

The procedure for calculating the ẑi→j is detailed in the

Algorithm 1. This algorithm is based on the approach proposed by

(38). A ẑi→j is calculated for each possible pair of tasks. It should be

noted that the learning rate is decreased during the training. This

decreases the changes of the parameters θ t+1
s|i when updating (step

8 of Algorithm 1), which induces a decreased difference between

Lt+1
j|i and Ltj , thus z

t
i→j tend toward 0. To get rid of this effect, at each

epoch we scale zti→j by dividing it by the learning rate η used during

that epoch. The values of ẑi→j for a studied multi-task problem can

be presented as a heatmap, for example, see the heatmap shown in

Figure 7A.

5.3.2 TAG-based MTL network design
Once all the inter-task affinities ẑi→j have been calculated, the

next step is to identify, for each task, the group of tasks it should

be learned with to maximize model prediction performance on the

task. By identifying these groups, we also define the set of MTL

models that will be trained to predict the overall patient HR profile.

In other words, the overall predicted patient HR profile is created by

aggregating the predictions from a set of MTL models where each

model is trained on a different group of items.

Since the number of tasks in one group is greater or equal to

2, the possible number of groups of tasks that we are selecting the

MTL models from is calculated as L =
∑M

m=2 mCM , where mCM

denotes the combination or the number of possible selections of m

tasks from the full set of M tasks, given that the order of selection

is unimportant. L is the sum of all the combinations mCM of varied

number of tasks going fromm = 2 tom = M. For the BI which had

10 ADL prediction target items, 1013 groups of tasks were studied,

and for each of the IST-3 datasets of 6MaS and 18MaS (6 QoL items

each), 57 groups were studied.

The inter-task affinity onto a task j in a given group of tasks

(i.e., the affinity of the other tasks i 6= j in the group in supporting

the prediction of task j) is calculated as the mean of all the possible

pairwise affinities on to this task. For the lth group containing m

tasks Gm
l
(where 2 ≤ m ≤ M, 2 ≤ l ≤ L), the inter-task affinity

onto a task j is then :

ẑj(G
m
l ) =

1

m− 1

m∑

i=1,i6=j

ẑi→j(G
m
l ) (2)

To reduce the bias in generating the final architecture and to

capture the maximum information from the full-training set, we

applied k-fold cross-validation on this set for calculating inter-

task affinity. As shown in Figure 7B, for each iteration of cross-

validation, a heatmap of ẑi→j and a list of L group of tasks with its

corresponding inter-task affinity ẑj(G
m
l
) are generated and averaged

over the number of folds k as :

ẑ′j(G
m
l ) =

1

k

k∑

i=1

ẑj(G
m
l , k) (3)
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C

FIGURE 7

Example of (A) Heatmap of inter-task a�nities ẑi→j of each task i on a given task j calculated over T training epoch, (B) Procedure for generating the

optimal ensemble of task grouping from 3-fold cross-validation, and (C) Final ensemble of TAG-based MTL models. The inter-task a�nities ẑi→j in (A)

were calculated using the first fold of the full-training set of BI data. The architecture of (C) was generated from the ensemble of groups of tasks in

(B). The random seed used for this example is 42. The grayed branch output items are the secondary branch. hi represents the ith hidden layers.

Using these averaged inter-task affinity ẑ′j , the optimal TAG-

based MTL architecture is defined as follows. From the list of L

groups, the group containing the task j which its corresponding

inter-task affinity ẑ′j(G
m
l
) is the highest among the groups is

denoted as max(ẑ′j). We then select all the groups max(ẑ′j)

for all the M tasks and we include these groups in the final

ensemble of models. This group selection process ensures that

every task appears in at least one of the selected groups. A

task may appear in more than one of the selected groups,

but only the predictions for a task made by the MTL model

trained on the group with the maximum inter-task affinity

onto that task, i.e., the group max(ẑ′j), is used in the final
aggregated prediction. The presence of a task in other groups

indicates that its presence during training aids the learning of

other tasks.

The final model for predicting the studied multiple tasks is thus
an ensemble of MTLs where the grouping of tasks in each MTL is

conditioned by TAGmethodology. EachMTLmodel is constructed
using the same parameters for structuring and training the classic

MTL (Sections 5.2). Figure 7C shows an example of a final ensemble
of TAG-based MTL models where its architecture was generated

from the same split of the BI dataset. The branches containing

grayed output items are only used to support the training of the

MTL model. The predictions of these grayed-out branches are not

used during inference.

5.4 Multi-task learning with Cramer’s V
task-association grouping

Similar to the MTL with TAG approach, the goal of MTL

with Cramer’s V task-association grouping (VTAG) is to identify

sets of tasks that are related to each other and can benefit from

being learned in parallel. Previous research has found that the

performance of MTL is improved when there exists a dependency

between the outputs (32, 33). Consequently, in this design of MTL

systems, we carry out an analysis to identify groups of items that
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1: Initialize all the weights θ = {θs} ∪ {θi,1≤i≤M}

2: for each epoch t = 1, . . . ,T do

3: Save all the weights θ t

4: Calculate the loss over all tasks Lt
total

=
∑M

i=1 Li(χ , θs, θi)
t

5: for each task i = 1, . . . ,M do

6: Load the saved weights θ t from step (3)

7: Calculate 1θ ts|i
based on Li(χ , θs, θi) at the

epoch t (i.e., Lti)

8: Update the shared parameters θs with

respect to the Lti as:

9: θ t+1
s|i = θ ts − η1θ ts|i

10: for each task j = 1, . . . ,M do

11: Calculate the lookahead loss for the

task j : Lt+1
j (χ t , θ t+1

s|i , θ tj )

12: Calculate the affinity of task i at a

given epoch t on task j:

13: zti→j = (1−
Lt+1
j (χ t ,θ t+1

s|i ,θ tj )

Ltj (χ
t ,θ tx ,θ

t
j )

)/η

14: end for

15: end for

16: Load the saved weights θ t from step (3)

17: Backpropagate and Update θ t using the losses

Lt
total

of step (4)

18: end for

19: Calculate the inter-task affinity of each task i

on a given task j over T epochs:

20: ẑi→j =
1
T

∑T
t=1 z

t
i→j

Algorithm 1. : Inter-task a�nity algorithm.

evince an association/dependency and we adopted the procedure

of TAG-based MTL for generating the optimal MTL model with

VTAG.

5.4.1 Cramer’s V: Dependence coe�cient
In the literature, multiple methods can be used to assess the

dependency between features such as Pearson’s, Spearman’s, or

Cramer’s V correlations (58, 59). In this design, we use Cramer’s

V to measure the dependency between the outputs of the tasks

for designing an MTL model since this method is appropriate for

nominal and especially for ordinal data (60), which is the data type

of the BI and EQ-5D-3L features.

By definition, Cramer’s V (35, 36) is a statistical calculation

developed to measure the strength of association between two

nominal variables. Using this method, we first calculate a pairwise

Pearson’s chi-square statistical test between each pair of items to

assess whether the strength of the relationship between pairs of

output items is statistically significant. The Cramer’s V coefficient

is then calculated to measure the strength of association between

each pair of items.We denote vi,j as the Cramer’s V coefficient value

calculated for the pair of items (i, j), with 0 ≤ i, j ≤ M and i 6= j.

The value of vi,j is positive and varying from 0, as no association, to

1, as very high association (36, 58). Also, vi,j = vj,i since Cramer’s V

is a symmetric pairwise association measure. The values of vi,j for

the studied HR profile items can be presented as a heatmap, see for

example the heatmap shown in Figure 8A.

5.4.2 Cramer’s VTAG-based MTL network design
The design of a VTAG-based MTL network is inspired by the

procedure of TAG-based MTL network design (as described in

5.3.2). Using the calculated vi,j, the inter-task association on to a

task j in a given group of task Gm
l
is as follow:

vj(G
m
l ) =

1

m− 1

m∑

i=1,i6=j

vi,j(G
m
l ) (4)

From the full training set, k Cramer’s V heatmaps are generated

from k training subsets of the k-fold cross-validation sets. As shown

in Figure 8B, for each heatmap, a list of L groups of tasks is also

extracted and the corresponding inter-task association of the jth

item in the group Gm
l
is averaged over k folds as:

v′j(G
m
l ) =

1

k

k∑

i=1

vj(G
m
l , k) (5)

Using these averaged inter-task associations v′j, the optimal

VTAG-based MTL architecture is defined in the same way as for

the TAG-based MTL, i.e., from the list of L possible groups of tasks,

we select all the groups max(v′j) for all the M tasks and we include

those groups in the final ensemble of models.

The final model for predicting the studied multiple tasks is

thus an ensemble of MTLs where the grouping of tasks in each

MTL is conditioned by VTAG methodology. Each MTL model is

constructed using the same parameters for structuring and training

the classic MTL (Sections 5.2). Figure 8C shows an example of a

final ensemble of VTAG-based MTL models where its architecture

was generated from the same split of the BI dataset as used with

TAG (Figure 7). The branches containing grayed output items

are only used to support the training of the MTL model. The

predictions of these grayed-out branches are not used during

inference.

5.5 Multi-task learning with concatenation
strategy

In both the TAG- and VTAG-based MTL methods described

above, a separate MTL model is trained for each grouping of

items, and no information is shared across these models. Another

approach to creating an MTL model is to first create a single MTL

architecture for all the tasks (as per Figure 6B), and then to augment

this architecture with extra connections that concatenate the task

branches that belong to the groups identified using either TAG or

VTAG.

Concatenation is a technique of fusing information that has

been used in well-known deep neural network architectures

such as DenseNet (61), or GoogLeNet (62) and was frequently

applied in designing multi-modal deep neural network (63, 64).

Concatenation has also been used in MTL (e.g. for Alzheimer’s

disease progression detection (65) or for skin cancer diagnoses
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C

FIGURE 8

Example of (A) Heatmap of Cramer’s V association vi,j of all output item pairwise, (B) Procedure for generating the optimal ensemble of task grouping

from 3-fold cross-validation, and (C) Final ensemble of VTAG-based MTL models. The Cramer’s V coe�cient heatmap vi,j in (A) was calculated using

the first fold of the full-training set of BI data. The architecture of (C) was generated from the ensemble of groups of tasks in (B). The random seed

used for this example is 42. The grayed branch output items are the secondary branch. hi represents the ith hidden layers.

(66)) to fuse information derived from the inputs of different

modalities. By adopting this concatenation strategy into our neural

network design, the main structure and the parameters of the MTL

model (such as, the output tasks, the number of hidden layers, the

number of ReLUs per layer, the used activation for each output,

etc.) are the same as described in Section 5.2. In addition to this

architecture, the last hidden layer of the independent branches is

concatenated together prior to connecting to the output layer.

For the MTL with TAG-based concatenation strategy, the

concatenations are conditioned by the results of TAGmethodology

(as mentioned in Section 5.3.2). For each group of tasks max(ẑ′j),

if the task j in the group is used for prediction, we link

the last hidden layer of the branches corresponding to all the

tasks of this group to the output j. Similarly for the MTL

with VTAG-based concatenation strategy, the concatenations are

conditioned by the results of VTAG grouping (as described in

Section 5.4.2). Figures 9A, B respectively show an example of

the architecture of the model MTL with TAG- and VTAG-based

concatenation strategy, where h4 represent the last hidden layer

of the independent branch of each output. Those layers h4 are

concatenated and linked to the output layer for predicting the BI

items (red links). This example architecture is designed using the

BI dataset split generated from a random seed of 42.

Using this proposed architecture, we studied 2 training

techniques. In the first technique, after the concatenation layers

have been added, the whole network is initialized with random

weights and is then trained. In the second technique, prior to the

addition of the concatenation layers, we trained the MTLmodel for

all tasks. We then added the concatenation layers and initialized

these new layers with random weights but retained the trained

weights in the other layers (i.e., we retain the trained weights

from the pre-trained model (PTM)), and then trained the extended

network by applying updates to all layers. The motivation for

experimenting with this second training approach is that the TAG

methodology for identifying groups of items to train together is

based on the analysis of the dynamics of an MTL model trained on
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A B

FIGURE 9

Example of the architecture of MTL of all tasks with concatenation between last hidden layers of output branches using (A) TAG and (B) VTAG

grouping conditions. The red dashed arrows represent the concatenation links of the last hidden layers to the outputs. TAG and VTAG grouping are

generated using the full-training set of the BI data, with random seed 42. hi represents the ith hidden layers.

all tasks in parallel. Consequently, an interaction may exist between

the groups identified using TAG and the weights of the model of the

classic MTL of all tasks. Experimenting with both of these methods

for initializing the network allows us to examine whether such an

interaction exists.

5.6 Neural network development settings
and evaluation metrics

In this work, each neural network was constructed with h = 4

hidden layers and each hidden layer contains r = 100 nodes. We

used a stochastic gradient descent optimizer with a learning rate of

η = 0.0005 and a momentum of 0.9. The learning rate is decreased

by half after every 15 epochs. Early stopping is applied after 15

epochs without any improvement in loss value of validation and the

waiting time is after at least 10 epochs have been run. Every network

was trained with a maximum number of T = 200 epochs.

As discussed in Section 4, all experiments were run with 50

random seeds and for each random seed, one model of each model

type (see Sections 5.1–5.5) is created. For each random seed, 20%

of the dataset is randomly selected and kept out for testing, and

60% and 20% of the dataset are respectively used to train and

validate the model. All data was normalized prior to modeling:

continuous input features (e.g., age at stroke, NIHSS score, etc.)

were normalized to [0,1] and categorical input features (e.g., gender,

civil status, etc.) were one-hot-encoded.

The evaluation metric used in this work is the F1-score which

is the harmonic average of precision and recall (29). For the

multinomial output feature, the arithmetic average of the F1-score

over the individual F1-score of each class was used as recommended

by (67). To evaluate the performance of the studied neural network

models, the arithmetic “average F1-score overall output tasks (or

items)” was then calculated for each model.

Finally, to assess the performance of a neural network model

against another we compare the F1-score of each output item

predicted by that model versus the other one, e.g., the F1-score of

Bathing of BI predicted by a classic MTL of all tasks model against

the ensemble of STL models. We then calculate the ratio between

the number of tasks that the MTL model outperformed STLs over

the total number of tasks. This so-called multi-task performance

improvement (MPI) score (sMPI) is varied from 0 to 1; where sMPI =

0 represents no improvement in the prediction of MTL model
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TABLE 1 Averaged F1-scores of the ensemble of STLs, ensemble of MTLs by TAG, ensemble of MTLs by VTAG and classic MTL of all tasks when trained on BI data.

BI item

Model Statistic Bathing Bowel Bladder Mobility Grooming Feeding Stairs Transfers Toilet Dressing Overall
(items)

eSTL Average 0.750 0.309 0.298 0.249 0.914 0.297 0.324 0.240 0.316† 0.325 0.402†

STD 0.068 0.008 0.020 0.072 0.033 0.030 0.092 0.056 0.070 0.071 0.022

CI (0.73, 0.769) (0.306, 0.311) (0.292, 0.304) (0.228, 0.269) (0.905, 0.924) (0.288, 0.305) (0.298, 0.351) (0.224, 0.256) (0.296, 0.336) (0.304, 0.345) (0.396, 0.409)

eTAG-MTL Average 0.762 0.308 0.298 0.253 0.915 0.294 0.325 0.252 0.327† 0.334 0.407†

STD 0.056 0.008 0.021 0.065 0.034 0.025 0.091 0.053 0.076 0.061 0.021

CI (0.746, 0.778) (0.306, 0.311) (0.292, 0.304) (0.234, 0.272) (0.905, 0.924) (0.287, 0.301) (0.298, 0.351) (0.236, 0.267) (0.305, 0.349) (0.317, 0.352) (0.401, 0.413)

eVTAG-MTL Average 0.755 0.308 0.298 0.247 0.915 0.297 0.313 0.243 0.322† 0.328 0.403†

STD 0.054 0.008 0.021 0.064 0.034 0.026 0.089 0.052 0.068 0.065 0.020

CI (0.74, 0.771) (0.306, 0.311) (0.292, 0.304) (0.229, 0.265) (0.905, 0.925) (0.289, 0.304) (0.288, 0.339) (0.228, 0.258) (0.302, 0.341) (0.309, 0.346) (0.397, 0.408)

MTLaT Average 0.758 0.309 0.296 0.266 0.915 0.304 0.335 0.253 0.368* 0.350 0.415*

STD 0.053 0.008 0.012 0.069 0.034 0.036 0.084 0.055 0.068 0.060 0.021

CI (0.743, 0.773) (0.306, 0.311) (0.293, 0.299) (0.246, 0.286) (0.906, 0.925) (0.294, 0.314) (0.311, 0.359) (0.237, 0.269) (0.348, 0.387) (0.333, 0.367) (0.409, 0.421)

Results are averaged over 50 Monte Carlo data splits. Values in bold and grayed are the highest mean F1-score when comparing between models.
∗Statistical significance of t-test between the F1-scores of MTL methodology and eSTL (p < 0.05).
†Statistical significance of t-test between the F1-scores of MTL methodology and MTLaT (p < 0.05).

STD, Standard deviation.

CI, Confidence interval at 95%.
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comparing to STLs, and sMPI = 1 indicates that the MTL has better

performance than the STL on all tasks.

6 Results

We structure the reporting of our results by dataset. We

begin by reporting our results on the prediction of the BI items,

first by comparing single-task modeling with multi-task modeling

and then extending the analysis to include multi-task modeling

combined with concatenation approaches. We then report the

results for the different modeling approaches when applied to the

prediction of the EQ-5D-3L questionnaire of patients at 6 and

18MaS. As our experiments compare a large number of different

modeling approaches here we define for each modeling strategy a

label that we will use to refer to it throughout the presentation of

the results.

• eSTL as the ensemble of STL models;

• eTAG-MTL as the ensemble of TAG-based MTL models;

• eVTAG-MTL as the ensemble of VTAG-based MTL models;

• MTLaT as the classic MTL of all tasks;

• MTLaT-ccTAG as MTL of all tasks with concatenation

conditioned by TAG, trained from the initialization;

• MTLaT-ccTAG-PTM as MTL of all tasks with concatenation

conditioned by TAG, trained from the PTM by loading the

parameters from the already trained classic MTL of all tasks;

• MTLaT-ccVTAG as MTL of all tasks with concatenation

conditioned by VTAG, trained from the initialization;

• MTLaT-ccVTAG-PTM asMTL of all tasks with concatenation

conditioned by VTAG, trained from the PTM by loading the

parameters from the already trained classic MTL of all tasks.

6.1 Prediction of BI items at 3MaS

This experiment aims to predict the patient’s HR profile

recorded by the BI assessment at 3MaS, based on their state at

discharge. For this, demographic and clinical information, such as

gender, age at stroke, type of ischemic stroke, civil status, NIHSS

score, and BI items scores on admission of the patients are included

in the dataset as model inputs. It should be noted that the BI total

scores are not used as our focus is on predicting the individual BI

items.

6.1.1 Application of STL, classic MTL of all tasks,
MTL with TAG and MTL with VTAG

The proposed models such as eSTL, eTAG-MTL, eVTAG-MTL

and classic MTLaT were first trained to predict all the BI items. As

shown in Table 1, the results of each method are averaged over the

50 results from the 50 data splits. The highest averaged F1-score

overall BI items of 0.415 is found with MTLaT (standard deviation

(STD) 0.021, confidence interval (CI) at 95% [0.409, 0.421]), which

is statistically higher than the results obtained from eSTL, eTAG-

MTL, and eVTAG-MTL. The second and the third best-performing

models are respectively the eTAG-MTL and the eVTAG-MTL.

In this experiment, 8 out of 10 BI items were best predicted by

MTLaT. Comparing the prediction of each item, the F1-scores of

9 (out of 10) items predicted by MTLaT were higher than those by

eSTL, thus the MPI score of MTLaT is sMPI = 0.9 (see Figure 10A).

Themodels eTAG-MTL and eVTAG-MTL have sMPI = 0.7 and 0.6,

respectively. This result shows that MTLaT has the strongest MPI

score of outperforming eSTL.

To summarize, our results indicate that MTL does improve

prediction performance for BI items. More specifically, the

MTLaT approach to MTL architecture design had the best

overall performance, followed by eTAG-MTL, eVTAG-MTL,

and eSTL.

6.1.2 Application of MTL with concatenation
strategies

The results from our first experiment on the BI indicated

that the performances of the proposed eTAG-MTL and eVTAG-

MTL are slightly higher than eSTL but this result is however not

statistically significant (at the 95% CI). On the other hand, the

classic MTLaT statistically outperforms these ensembles of MTL

models. This indicates that the training of one model for predicting

all the tasks at the same time is more powerful than training a

small group of tasks, or even an independent task, separately. Also,

given that the TAG approach for task grouping relies upon the

training dynamics of the MTLaT model, there is potentially an

interaction between the tasks of the groups selected by TAG and

the weights of the MTLaT model. Inspired by this observation,

in this section we assess the benefits of combining the MTLaT

with a concatenation strategy applied to the last hidden layers. The

selection of which task-specific branches to concatenate is based on

the task groupings identified by the TAG or VTAG methodology

(see Section 5.5). Each concatenation architecture is trained with

and without retaining the weights from the pre-trained MTLaT

model (PTM).

Table 2 lists the results obtained from this experiment. The

data shows that the averaged F1-scores obtained by MTL with

concatenation approaches are statistically significantly higher than

eSTL. They also outperformMTLaT, especially theMTLaT-ccTAG-

PTM and MTLaT-ccVTAG-PTM results are statistically higher

than MTLaT. Among those trained models, the highest averaged

F1-score is obtained with MTLaT-ccTAG-PTM of 0.434 (STD

0.022, CI at 95% [0.428, 0.44]). The performance of MTLaT-

ccVTAG-PTM is the second highest with F1-score of 0.429 (STD

0.021, CI at 95% [0.423, 0.435]), followed by MTLaT-ccTAG and

MTLaT-ccVTAG.

Combining the Tables 1, 2, obtained results show that 6 out of

10 BI items are best predicted by MTLaT-ccTAG-PTM. As shown

in Figure 10A, the MPI score of outperforming eSTL of the models

of MTL of all tasks are high: MTLaT, MTLaT-ccTAG, MTLaT-

ccVTAG and MTLaT-ccVTAG-PTM have sMPI = 0.9 and MTLaT-

ccTAG-PTM has sMPI = 0.8. However, the ensembles of MTL

models of eTAG-MTL and eVTAG-MTL have low sMPI scores of 0.6

and 0.7, respectively. For the MPI score of outperforming MTLaT

(Figure 10B), the models of eSTL, eTAG-MTL and eVTAG-MTL

have the lowest sMPI ranging from 0.1 to 0.2, indicating that the

prediction of the 80-90% of the output tasks are worse. On the
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A

B

FIGURE 10

Multi-task performance improvement score (sMPI) of outperforming (A) eSTL and (B) MTLaT of prediction models when trained on BI, EQ-5D-3L at

6MaS and EQ-5D-3L at 18MaS datasets.

other hand, MTLaT-ccTAG-PTM, MTLaT-ccVTAG and MTLaT-

ccVTAG-PTM have sMPI = 0.8 andMTLaT-ccTAG has sMPI = 0.9.

These results show that the MTLs with concatenation architectures

outperform the reference eSTL and MTLaT models on more than

80% of the predicted output tasks.

To summarize, the averaged F1-scores of most of the proposed

MTL with concatenation approaches are statistically higher than

eSTL and MTLaT. Compared with the results of the other

applications (i.e., STL, classic MTL of all tasks, MTL with TAG,

and MTL with VTAG), the TAG-based MTL of all tasks with

concatenation and PTM is the best model for predicting the set of

BI items.

6.2 Prediction of EQ-5D-3L at 6MaS

For this second experiment, all the available demographic,

clinical, diagnostic, and treatment information and the stroke

outcome of the patients collected from the admission till 7DaS

(or at hospital discharge or transfer if earlier) was used to train

the model for predicting the details of the EQ-5D-3L responses at

6MaS. The prediction model can inform the clinician of the likely

future QoL state of the patient (EQ-5D-3L at 6MaS) and help the

clinician design the rehab treatment for the patient after 7DaS.

Table 3 shows the prediction performance of all the studied

models when trained on the IST-3 data for predicting EQ-5D-3L

profile at 6MaS. The obtained results show that MTLaT-ccVTAG-

PTM is the best-performing model with the highest averaged F1-

score of 0.388 (STD 0.029, CI at 95% [0.38, 0.397]). Similarly,

MTLaT-ccTAG-PTM obtains the second highest averaged F1-score

of 0.388 (STD 0.029, CI at 95% [0.379, 0.396]). All the MTL

models have a statistically significant improvement in prediction

performance compared with eSTL. Furthermore, MTLaT-ccTAG-

PTM and MTLaT-ccVTAG-PTM outperform MTLaT by a

statistically significant margin.

Regarding the prediction performance of each item, Self-care

and Activities are best predicted by MTLaT-ccVTAG-PTM and

the remaining items (Mobility, Pain, Anxiety and EQ-VAS) are

by MTLaT-ccTAG-PTM. The MPI score of outperforming eSTL

of all the MTL models is in the range of [0.833, 1], showing

that the prediction in 83% of the output tasks is improved when

comparing to eSTL (see Figure 10A). Regarding the MPI score

of outperforming MTLaT, the models of eSTL, eTAG-MTL and

eVTAG-MTL have the lowest score sMPI = 0.167 and MTLaT-

ccVTAG has a score of sMPI = 0.333 indicating that the

prediction of the majority of the output tasks are worse (see

Figure 10B). In contrast, MTLaT-ccTAG has a high score of sMPI =

0.833. Especially, the two models of MTLaT-ccTAG-PTM and
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TABLE 2 Averaged F1-scores of the MTL of all tasks with concatenation conditioned by TAG and VTAG when trained on BI data.

BI item

Model Statistic Bathing Bowel Bladder Mobility Grooming Feeding Stairs Transfers Toilet Dressing Overall
(items)

MTLaT Average 0.758 0.309 0.296 0.266 0.915 0.304 0.335 0.253 0.368* 0.350 0.415*

STD 0.053 0.008 0.012 0.069 0.034 0.036 0.084 0.055 0.068 0.060 0.021

CI (0.743, 0.773) (0.306, 0.311) (0.293, 0.299) (0.246, 0.286) (0.906, 0.925) (0.294, 0.314) (0.311, 0.359) (0.237, 0.269) (0.348, 0.387) (0.333, 0.367) (0.409, 0.421)

MTLaT-
ccTAG

Average 0.771 0.309 0.296 0.270 0.915 0.313* 0.357 0.254 0.373* 0.362* 0.422*

STD 0.045 0.008 0.012 0.069 0.033 0.048 0.083 0.052 0.068 0.066 0.022

CI (0.758, 0.784) (0.306, 0.311) (0.293, 0.3) (0.25, 0.29) (0.905, 0.925) (0.299, 0.327) (0.334, 0.381) (0.239, 0.269) (0.353, 0.392) (0.343, 0.381) (0.416, 0.428)

MTLaT-
ccTAG-PTM

Average 0.767 0.309 0.300 0.282* 0.914 0.323* 0.395*,† 0.282*,† 0.389* 0.378*,† 0.434*,†

STD 0.053 0.008 0.026 0.062 0.033 0.057 0.098 0.056 0.063 0.064 0.022

CI (0.752, 0.783) (0.306, 0.311) (0.292, 0.307) (0.264, 0.3) (0.905, 0.924) (0.307, 0.34) (0.367, 0.423) (0.266, 0.299) (0.371, 0.407) (0.359, 0.396) (0.428, 0.44)

MTLaT-
ccVTAG

Average 0.765 0.309 0.296 0.264 0.915 0.305 0.347 0.252 0.375* 0.357* 0.419*

STD 0.048 0.008 0.012 0.065 0.034 0.045 0.090 0.059 0.056 0.065 0.020

CI (0.751, 0.779) (0.306, 0.311) (0.293, 0.3) (0.246, 0.283) (0.906, 0.925) (0.292, 0.319) (0.321, 0.373) (0.235, 0.269) (0.359, 0.391) (0.339, 0.376) (0.413, 0.424)

MTLaT-
ccVTAG-
PTM

Average 0.767 0.308 0.300 0.277* 0.915 0.319* 0.381*,† 0.273* 0.392* 0.363* 0.429*,†

STD 0.050 0.008 0.026 0.067 0.033 0.056 0.097 0.055 0.056 0.059 0.021

CI (0.753, 0.781) (0.306, 0.311) (0.292, 0.307) (0.258, 0.297) (0.905, 0.924) (0.303, 0.335) (0.353, 0.409) (0.257, 0.288) (0.376, 0.408) (0.346, 0.38) (0.423, 0.435)

The results of MTLaT is added for ease of comparison. Results are averaged over 50 Monte Carlo data splits. Values in bold and grayed are the highest mean F1-score when comparing between models.
∗Statistical significance of t-test between the F1-scores of MTL methodology and eSTL (p < 0.05).
†Statistical significance of t-test between the F1-scores of MTL methodology and MTLaT (p < 0.05).

STD, Standard deviation.

CI, Confidence interval at 95%.
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TABLE 3 Averaged F1-scores of the ensemble of STLs, TAG-based MTLs, VTAG-based MTLs, classic MTL of all tasks, MTL of all tasks with concatenation conditioned by TAG and VTAG with and without PTM when

trained on IST-3 data of EQ-5D-3L at 6MaS.

EQ-5D-3L item

Model Statistic Mobility Self-care Activities Pain Anxiety EQ-VAS Overall (items)

eSTL Average 0.341† 0.287† 0.359† 0.346† 0.316† 0.240 0.315†

STD 0.055 0.044 0.061 0.038 0.039 0.034 0.027

CI (0.326, 0.357) (0.275, 0.3) (0.342, 0.377) (0.336, 0.357) (0.305, 0.327) (0.23, 0.249) (0.307, 0.323)

eTAG-MTL Average 0.365*,† 0.306† 0.389*,† 0.357† 0.323† 0.238 0.33*†

STD 0.053 0.054 0.062 0.037 0.041 0.039 0.029

CI (0.35, 0.38) (0.29, 0.321) (0.371, 0.407) (0.346, 0.367) (0.311, 0.335) (0.227, 0.249) (0.321, 0.338)

eVTAG-MTL Average 0.366*,† 0.307*,† 0.391*,† 0.356† 0.32† 0.238 0.33*†

STD 0.053 0.054 0.063 0.040 0.042 0.036 0.029

CI (0.351, 0.381) (0.292, 0.323) (0.373, 0.409) (0.345, 0.368) (0.308, 0.332) (0.227, 0.248) (0.321, 0.338)

MTLaT Average 0.391* 0.335* 0.428* 0.383* 0.354* 0.236 0.355*

STD 0.039 0.056 0.060 0.034 0.037 0.041 0.027

CI (0.38, 0.402) (0.319, 0.351) (0.411, 0.445) (0.373, 0.393) (0.344, 0.365) (0.225, 0.248) (0.347, 0.363)

MTLaT-ccTAG Average 0.395* 0.373*,† 0.429* 0.385* 0.36* 0.235 0.363*

STD 0.038 0.066 0.068 0.030 0.033 0.032 0.031

CI (0.384, 0.406) (0.354, 0.392) (0.41, 0.449) (0.376, 0.393) (0.35, 0.369) (0.226, 0.244) (0.354, 0.372)

MTLaT-ccTAG-PTM Average 0.42*,† 0.427*,† 0.471*,† 0.396*,† 0.37*,† 0.241 0.388*,†

STD 0.043 0.064 0.057 0.028 0.027 0.035 0.029

CI (0.408, 0.432) (0.409, 0.446) (0.455, 0.488) (0.388, 0.404) (0.362, 0.378) (0.231, 0.251) (0.379, 0.396)

MTLaT-ccVTAG Average 0.386* 0.376*,† 0.432* 0.382* 0.353* 0.234 0.36*

STD 0.041 0.064 0.068 0.030 0.035 0.034 0.032

CI (0.375, 0.398) (0.358, 0.394) (0.412, 0.452) (0.373, 0.391) (0.343, 0.363) (0.224, 0.243) (0.351, 0.37)

MTLaT-ccVTAG-PTM Average 0.413*,† 0.44*,† 0.475*,† 0.395* 0.367* 0.240 0.388*,†

STD 0.036 0.065 0.057 0.029 0.028 0.035 0.029

CI (0.403, 0.424) (0.421, 0.458) (0.459, 0.492) (0.387, 0.404) (0.359, 0.375) (0.23, 0.25) (0.38, 0.397)

Results are averaged over 50 Monte Carlo data splits. Values in bold and grayed are the highest mean F1-score when comparing between the all the studied models.
∗Statistical significance of t-test between the F1-scores of MTL methodology and eSTL (p < 0.05).
†Statistical significance of t-test between the F1-scores of MTL methodology and MTLaT (p < 0.05).

STD, Standard deviation.

CI, Confidence interval at 95%.
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MTLaT-ccVTAG-PTM have the highest score of 1 when compared

to eSTL or MTLaT.

In summary, we obtain similar results as with the BI data and

STL is the least optimal architecture for predicting EQ-5D-3L at

6MaS, and the optimal model is MTLaT-ccVTAG-PTM. Themodel

MTL of all tasks with concatenation and initialized by MTLaT

weights gives the best results when compared to the classic STL and

MTL of all tasks.

6.3 Prediction of EQ-5D-3L at 18MaS

Similar to the last experiment, all the available information and

the stroke outcome of the patients collected from the admission

till 6MaS was used to train the models to predict the patient EQ-

5D-3L responses at 18MaS. The clinician can use this model to

be informed about the likely future HR profile of the patient at

18MaS after collecting their EQ-5D-3L assessment at 6MaS, which

can help the clinician design the rehab treatment and follow up on

the progress of the treatment on the patient after 6MaS.

Table 4 shows the prediction performance of all the studied

models when trained on IST-3 data of EQ-5D-3L profile at 18MaS.

Here, MTLaT-ccTAG-PTM is the best-performing model with the

highest averaged F1-score of 0.462 (STD 0.029, CI at 95% [0.454,

0.47]). MTLaT-ccVTAG-PTM is the model with the second highest

averaged F1-score of 0.462 (STD 0.030, CI at 95% [0.453, 0.47]).

The prediction of all the MTL models is statistically significantly

higher than eSTL and compared to MTLaT, all the MTL models

with concatenation strategy statistically significantly outperform

MTLaT.

For the prediction of each item, Mobility, Self-care, and

Activities are best predicted by MTLaT-ccVTAG-PTM and the

remaining items (Pain, Anxiety, and EQ-VAS) are by MTLaT-

ccTAG-PTM. The MPI scores of outperforming eSTL of all the

MTL models are in the range of [0.833, 1] as shown in Figure 10A.

This suggests that the prediction of 83% of the output tasks is

improved, especially eTAG-MTL model achieves an MPI score

sMPI = 1 indicating that this model outperforms eSTL on all tasks

for predicting the EQ-5D-3L items at 18MaS. Regarding the MPI

score of outperforming MTLaT, the models of eSTL, eTAG-MTL

and eVTAG-MTL have the lowest sMPI = 0.167. However, all the

MTL models with concatenation strategies have the highest score

of sMPI = 1 (see Figure 10B).

In summary, we obtain similar results as the other experiments

and eSTL is the least optimal architecture for predicting EQ-5D-

3L at 18MaS and the optimal model is MTLaT-ccTAG-PTM. The

models of MTL of all tasks with concatenation and initialized by

MTLaT weights outperform the prediction of all the tasks when

compared to the reference models eSTL and MTLaT.

6.4 Comparison between neural network
models

To evaluate the performance of the studied neural architectures,

we compare the performance of each architecture for each applied

dataset. Figure 11A shows the multiple-bar plots of the mean

performance of the eight architectures trained on BI, EQ-5D-

3L at 6MaS and EQ-5D-3L at 18MaS datasets. For each dataset,

each plotted value is calculated as the mean of the “average

F1-scores over all the output items” of the given architecture.

The corresponding STD is presented as the error bars in the

same plot. Here, eSTL is shown to be the weakest architecture

on any of the datasets. The next higher architectures are

eVTAG-MTL and eTAG-MTL, where eTAG-MTL is slightly better

than eVTAG-MTL.

For the green bar of MTLaT, this classic architecture of MTL

outperforms the ensemble of STLs and MTLs. Similar results are
obtained with all the architectures with concatenation strategy

(i.e. MTLaT-ccTAG, MTLaT-ccTAG-PTM, MTLaT-ccVTAG and
MTLaT-ccVTAG-PTM) which outperform the ensemble of STLs

and MTLs. We have also found that the MTL with concatenation

methodology tends to work best when we initialize the model with
the pre-trained parameters from the corresponding MTLaT model.

This can be seen in the blue and violet bars in the plot, especially
the dark blue and dark violet are the highest in any dataset and
represent respectively the mean performance of MTLaT-ccTAG-

PTM and MTLaT-ccVTAG-PTM. Compared to eSTL, the use

of a concatenation strategy with PTM improves performance by

more than 6%, 23%, and 29% when training on BI, EQ-5D-

3L at 6MaS and EQ-5D-3L at 18MaS, respectively; and when

comparing with MTLaT the concatenation with PTM strategy

improves performance by more than 3%, 9% and 13%.

Although our results indicate that the use of a concatenation

strategy consistently improves performance on all datasets, the

selection of which task grouping strategy (TAG or VTAG) will

give the best results is dependent on the data. Especially for IST-

3 data, the prediction performance between MTLaT-ccTAG and

MTLaT-ccVTAG, and between MTLaT-ccTAG-PTM and MTLaT-

ccVTAG-PTM are very comparable.

Figure 11B shows the average number of parameters of

each of the studied neural network architectures, where each

plotted value is the mean of the number of parameters of

all studied networks. The corresponding standard deviation is

also measured and presented as the error bars in the same

plot (the details of the number of parameters for each model

are shown in Supplementary Table S8). Here, MTLaT has the

lowest number of parameters. eVTAG-MTL and eTAG-MTL have

respectively the highest and second-highest number of parameters

in these experiments.

It should be noted that the ensemble of groups of tasks

generated by TAG and VTAG on the studied datasets are all

ensembles of 2-tasks groups. However, the number of groups of

tasks selected by VTAG is usually greater than by TAG resulting

in the fact that eVTAG-MTL has a higher number of parameters

than eTAG-MTL. Furthermore, some groups of tasks may contain

tasks that are not used during inference but are only for supporting

the training of other tasks in the group as part of the MTL

process. This is why the number of parameters in models based

on the eTAG-MTL and eVTAG-MTL architecture can grow. The

models that have the third highest number of parameters is eSTL.

Interestingly, the networks of MTL of all tasks (with and without

concatenation) are shown to be the ones that have the fewest

parameters while keeping the best performance on all the studied

output tasks.
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TABLE 4 Averaged F1-scores of the ensemble of STLs, TAG-based MTLs, VTAG-based MTLs, classic MTL of all tasks, MTL of all tasks with concatenation conditioned by TAG and VTAG with and without PTM

application when trained on IST-3 data of EQ-5D-3L at 18MaS.

EQ-5D-3L item

Model Statistic Mobility Self-care Activities Pain Anxiety EQ-VAS Overall (items)

eSTL Average 0.415† 0.305† 0.438† 0.375† 0.346† 0.267 0.358†

STD 0.054 0.054 0.062 0.044 0.048 0.052 0.032

CI (0.4, 0.43) (0.289, 0.32) (0.42, 0.456) (0.362, 0.388) (0.332, 0.36) (0.252, 0.282) (0.348, 0.367)

eTAG-MTL Average 0.448*,† 0.34*,† 0.472* 0.405*,† 0.37*,† 0.267 0.384*,†

STD 0.043 0.071 0.057 0.043 0.052 0.052 0.034

CI (0.436, 0.461) (0.319, 0.36) (0.455, 0.488) (0.393, 0.417) (0.355, 0.385) (0.252, 0.282) (0.374, 0.393)

eVTAG-MTL Average 0.445*,† 0.34*,† 0.474* 0.375† 0.345† 0.270 0.375*,†

STD 0.042 0.072 0.060 0.041 0.053 0.052 0.035

CI (0.433, 0.457) (0.319, 0.361) (0.457, 0.491) (0.363, 0.387) (0.33, 0.36) (0.255, 0.285) (0.365, 0.385)

MTLaT Average 0.476* 0.388* 0.475* 0.433* 0.414* 0.263 0.408*

STD 0.042 0.071 0.057 0.042 0.044 0.050 0.031

CI (0.463, 0.488) (0.368, 0.408) (0.458, 0.491) (0.421, 0.445) (0.401, 0.427) (0.248, 0.277) (0.399, 0.417)

MTLaT-ccTAG Average 0.478* 0.434*,† 0.499* 0.436* 0.416* 0.284† 0.424*,†

STD 0.041 0.081 0.074 0.035 0.044 0.050 0.035

CI (0.466, 0.49) (0.41, 0.457) (0.478, 0.52) (0.425, 0.446) (0.403, 0.429) (0.27, 0.299) (0.414, 0.435)

MTLaT-ccTAG-PTM Average 0.495*,† 0.517*,† 0.55*,† 0.451*,† 0.443*,† 0.315*,† 0.462*,†

STD 0.037 0.080 0.063 0.031 0.035 0.051 0.029

CI (0.485, 0.506) (0.494, 0.54) (0.532, 0.568) (0.442, 0.46) (0.433, 0.453) (0.3, 0.33) (0.454, 0.47)

MTLaT-ccVTAG Average 0.481* 0.436*,† 0.495* 0.434* 0.415* 0.282 0.424*,†

STD 0.043 0.078 0.070 0.039 0.046 0.054 0.036

CI (0.469, 0.493) (0.413, 0.458) (0.475, 0.515) (0.423, 0.445) (0.401, 0.428) (0.267, 0.298) (0.413, 0.434)

MTLaT-ccVTAG-PTM Average 0.496*,† 0.519*,† 0.552*,† 0.448* 0.44*,† 0.314*,† 0.462*,†

STD 0.041 0.080 0.067 0.033 0.033 0.053 0.030

CI (0.485, 0.508) (0.496, 0.542) (0.533, 0.572) (0.438, 0.457) (0.43, 0.45) (0.299, 0.329) (0.453, 0.47)

Results are averaged over 50 Monte Carlo data splits. Values in bold and grayed are the highest mean F1-score when comparing between the all the studied models.
∗Statistical significance of t-test between the F1-scores of MTL methodology and eSTL (p < 0.05).
†Statistical significance of t-test between the F1-scores of MTL methodology and MTLaT (p < 0.05).

STD, Standard deviation.

CI, Confidence interval at 95%.
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A

B

FIGURE 11

Comparison of (A) averaged prediction performance and (B) averaged number of trainable variable between the proposed models when trained on

BI, EQ-5D-3L at 6MaS and EQ-5D-3L at 18MaS datasets. Error bars represent the standard deviation calculated over 50 random initializations.

7 Discussion

The main clinical purpose of this work is to develop a

prediction model that can predict a set of items of the HR profile,

(i.e., a set of HR items either of QoL or of iADL) of a patient at the

post-acute stage. The idea of predicting the score of each HR profile

item is to show the clinician both the activities that the patient is

likely to improve on and also the tasks that the patient is likely

to struggle with. Identifying the activities that a patient will likely

struggle with helps the clinician focus the post-stroke treatment

program on the exercises and care that will help the patient improve

on these ADL items.

For this, we initially used a dataset provided by the Guttmann

Hospital and developed a methodology for creating models to

predict the outcomes of BI items of the patient at 3MaS. All of

the model architectures developed to predict BI were next trained

on two different datasets of IST-3 for predicting the set of EQ-

5D-3L items of patients at 6 and 18MaS. By gathering the results

across the BI and IST-3 prediction tasks, we analyzed the benefit

of using an MTL model for all tasks versus STL for predicting HR

profiles. Then, we explored the advantages of different variants of

MTL compared with the classic MTL and STL models.

When training the classic STL and MTL of all task models on

the three studied datasets, the prediction performance of MTL of

all tasks is consistently and statistically higher than STLs. Also, the

MTL predictions have higher averaged F1-scores on the majority of

tasks compared to the STL predictions. These results demonstrate

that learningmultiple tasks at the same time usingMTL is beneficial

for prediction, as previously published in the literature (7, 28).

Furthermore, recent MTL studies suggest that training an MTL

model on selected groups of related tasks may help to improve

the prediction (37, 38). Building on the initial framework for the

prediction of structured outputs (24), we adopted inter-task affinity

(for TAG) and Cramer’s V (for VTAG) to calculate the inter-

dependence between tasks and we use these metrics to select groups

of tasks to train together.

Using the groups identified by TAG or VTAG, it is possible

to define ensembles of MTLs to predict an HR profile where each

MTL model is trained independently for a small number of tasks.

This is different to the classic MTL approach (MTLaT) of training

a single model on all tasks simultaneously. Focusing specifically

on TAG or VTAG methodologies to identify groups of tasks that

benefit from being trained in parallel (i.e., excluding the use of

layer concatenation or PTM for now), our results indicate that

using an approach to model design based on first assessing task

inter-dependence and then tailoring the model architecture based

on the identified inter-dependencies, results in MTL models that

consistently outperform STL models. This procedure improves the

“average F1-scores over all the output items” and also improves

the prediction of the majority of tasks across the three datasets.
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However, these ensembles of MTLs require a relatively large

number of parameters and these models under-perform the classic

MTL of all tasks.

The fact that the classic MTL of all tasks outperforms the

ensembles of STLs, of TAG- and VTAG-based MTLs shows a

beneficial impact of learning all the related tasks in parallel (layers

h3 and h4 for each task, Figure 6B) while using one shared

representation (layers h1 and h2 prior to connecting to the output

tasks, Figure 6B). This allows thus the sharing of information

to enhance the prediction of all the studied tasks. However,

the shared representation aggregates all the information from all

the tasks without emphasizing the inter-dependence information

between the most related tasks. To address these shortcomings,

we kept the idea of tailoring the MTL architecture based on

the interdependence between tasks and extended the tailoring

approach by using a concatenation method. This results in building

up a model of MTL of all tasks, augmented with the concatenation

links between the last hidden layer and the output layer for highly

inter-dependent tasks (see Section 5.5).

Specifically, we pre-train the MTL of all task architecture

and then use the tuned weights of the PTM to initialize the

corresponding weights in the concatenated model. The results

obtained by these MTL concatenations with pre-trained weights

models are consistently higher than the classic MTL of all tasks and

the STLs. In general, the performance of both of the concatenation

strategies (TAG or VTAG-based) combined with PTM strategies

is very similar. Our results indicate that an MTL approach that

combines concatenation with PTM improves the prediction of

the majority of tasks across the three datasets. Notably, for the

two datasets of the IST-3 trial, the prediction of all the tasks by
these MTL concatenations with PTM models were all improved

indicating that there is no “Robin Hood effect”.

Concatenation is one of the fusion techniques in deep learning
that is beneficial for improving the performance of prediction

models (64). However, this technique is usually applied to
concatenate the information of multiple inputs from different

modalities (63, 64) regardless of the inter-dependence between the
output tasks. To tackle this limitation, the proposed concatenation

between the last hidden layers increases the variation in the input of
the output layers and fuses with the inter-dependence between tasks

discovered by TAG or VTAG. Therefore, the output layer acquires

collective knowledge from all the previous layers and improves

efficiency.

Additionally, the performance of MTL of all tasks with

concatenation is improved when PTM is applied. PTM is a

well-known ML approach that involves re-using the weights of

one model to initialize the training of another on the same

problem (68). Here, we use the already trained weights of the

best-performing MTL of all tasks to initialize the weights of the

concatenation model and then continue training the concatenation

model, which improves the prediction of all tasks. This fits with the

assumption in the literature where PTM leads to positive effects on

various artificial intelligence tasks (68).

In summary, all the studied MTLs outperform STLs, regardless

of the used grouping strategies, proving the advantage of MTL

for improving data efficiency through shared representations and

fast learning by leveraging auxiliary information as discussed by

Crawshaw (7). In particular, the proposed approach of MTL of all

tasks coupled with concatenation strategy and PTM technique has

shown to be the most successful model development methodology

for this study.

8 Conclusion

In conclusion, our results indicate that MTL can outperform

STL when predicting patient profiles measured using clinical

instruments based on structured questionnaires. The particular

use case we have based our analysis on is the BI questionnaire

responses for patients between 70 and 120 days post-stroke, and

the EQ-5D-3L responses at 6 and 18MaS. For this use case, our

results suggest that a modeling approach that combines a pre-

trained MTL network for all tasks with a concatenation strategy

conditioned by a task grouping method (using TAG or VTAG)

improves performance over an STL and a classic MTL baseline

when predicting the future health-state of the patient. This work is

the first research to predict the individual QoL or ADL items using

MTL neural networks.

Our motivation for proposing an MTL approach is that our

analysis revealed associations between items in the BI and EQ-

5D-3L questionnaires, and MTL enabled us to leverage these

associations to improve model performance. More generally, we

believe that associations of these types are present in many of the

questionnaires used to assess patient profiles (e.g., FIM, SS-QoL,

SF-36) and that where these associations exist, MTL is a useful

(often overlooked) strategy for the development of clinical decision

support systems designed to predict patient outcomes.

Admittedly, the overall average F1-scores of the studied models

are not high, which we attribute to the small size of the datasets

and the complexity of predicting multiple tasks some with very

imbalanced distributions. Consequently, further optimization work

is needed to fine-tune the hyper-parameters of the models. Another

notable limitation is the exclusion of critical variables such as

pathophysiology, pre-morbid conditions, psycho-social status, and

access to rehabilitation care in the development of our MTL

models. These factors are undeniably central to comprehensively

understanding and predicting stroke recovery trajectories. Their

exclusion was primarily due to the availability and challenges in

quantifying such complex, multifaceted data within the scope of

our current dataset. Recognizing that these omissionsmay affect the

model’s general ability and depth of prediction, a future direction

of our research is to incorporate these dimensions. Integrating

a broader range of features will not only enhance the model’s

performance but also increase its clinical relevance by providing a

more holistic view of patient recovery.

For future work, we are actively seeking collaborations and

data sources that could enable us to include these critical variables

in our analysis, thereby overcoming the current limitations and

significantly enriching our predictive capabilities.
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