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Objective: The aim of this study was to investigate the causal effect of immune 
cell phenotype on GBS using two-sample Mendelian randomization (MR) 
approach.

Methods: This study used MR to investigate the causal relationship between 
731 immune cell phenotypes and GBS. We  used Inverse variance weighted, 
Weighted median, MR Egger, Simple mode, Weighted mode for MR analysis. 
We  also used the Cochran Q test, MR-Egger intercept test, IVW regression 
and MR-PRESSO, leave-one-out analysis to assess the presence of horizontal 
pleiotropy, heterogeneity and stability, respectively.

Results: Our study revealed a causal relationship between 33 immune 
cell phenotypes and GBS. Twenty immunophenotypes were observed to 
be associated with GBS as risk factors. For example, CD20 on IgD+ CD38dim 
in the B cell group (OR  =  1.313, 95%CI:1.042–1.654, p  =  0.021), CD3 on CD4 
Treg in Treg cell group (OR  =  1.395, 95%CI:1.069–1.819, p  =  0.014), CD3 on TD 
CD8br in Maturation stages of T cell group (OR  =  1.486, 95%CI:1.025–2.154, 
p  =  0.037), CD16 on CD14+ CD16+ monocyte in Monocyte group (OR  =  1.285, 
95%CI:1.018–1.621, p  =  0.035), CD33dim HLA DR+ CD11b  +  %CD33dim HLA 
DR+ in Myeloid cell group (OR  =  1.262, 95%CI:1.020–1.561, p  =  0.032), HLA DR+ 
NK AC in TBNK cell group (OR  =  1.568, 95%CI:1.100–2.237, p  =  0.013). Thirteen 
immune phenotypes are associated with GBS as protective factors. For example, 
CD19 on PB/PC in the B cell group (OR  =  0.577, 95%CI:0.370–0.902, p  =  0.016), 
CD4 Treg AC in Treg cell group (OR  =  0.727, 95%CI:0.538–0.983, p  =  0.038), 
CD11c  +  monocyte %monocyte in cDC group (OR  =  0.704, 95%CI:0.514–0.966, 
p  =  0.030), CX3CR1 on CD14+ CD16− monocyte in Monocyte group (OR  =  0.717, 
95%CI:0.548–0.939, p  =  0.016), Mo MDSC AC in Myeloid cell group (OR  =  0.763, 
95%CI:0.619–0.939, p  =  0.011), CD45 on granulocyte in TBNK group (OR  =  0.621, 
95%CI:0.391–0.984, p  =  0.042).

Conclusion: The findings suggest that certain specific immune cell phenotypes, 
particularly B cell and Treg cell subpopulations, are causally associated with 
GBS, providing potential targets for the clinical treatment of GBS.
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1 Introduction

Guillain-Barré syndrome (GBS) is a peripheral neurological 
disorder that mainly involves nerve roots and peripheral nerves, and 
is usually triggered by infections, such as intestinal or respiratory 
infections (1). The onset of GBS is usually rapid, with rapid progression 
within hours to days, peaking within 2–4 weeks, and is characterized 
by symmetrical movement disorders. Typical signs and symptoms 
include weakness or paralysis of the limbs, sensory deficits, loss of 
reflexes, pain, autonomic dysfunction, facial paralysis, dysphagia and 
respiratory distress (2). Most patients with GBS partially improve or 
recover with treatment, while a few may still have prolonged weakness 
or other problems (3, 4). Epidemiological studies have shown that the 
global annual incidence of GBS is approximately 1–2/100,000 
population, with high mortality and disability rates, and that it occurs 
in males and in people over 50 years of age (5, 6).

Unfortunately, the exact pathogenesis of GBS is not yet fully 
understood and is usually considered to be closely related to factors such 
as respiratory or intestinal infections, recent immunizations and 
autoimmune diseases. These factors may induce an abnormal immune 
system response, causing the immune system to mistakenly attack the 
peripheral nerves, which in turn destroys the myelin sheath. It is 
noteworthy that GBS is clinically categorized into demyelinating and 
axonal forms, namely, acute motor axonal neuropathy antibody-mediated 
(AIDP) and acute motor sensory axonal neuropathy (AMAN). Among 
them, anti-ganglioside antibodies, particularly anti-GM1 antibodies, are 
deeply related to the pathogenesis of AMAN. By contrast, the relationship 
between AIDP and autoantibodies has not been fully clarified, whereas 
the phagocytosis of myelin by macrophages is a well-known pathological 
feature in AIDP (7). In the initial stage of GBS, a large number of 
lymphocytes and macrophages can be seen infiltrating around the lesion 
nerve, and after activation, a large number of inflammatory cytokines can 
be  produced, resulting in demyelination and axonal damage (8). 
Immunotherapy regimens such as plasmapheresis (PE) and intravenous 
immunoglobulin (IVIG) are considered to be one of the key therapeutic 
options in the treatment of GBS (9–11). In the field of tumor 
immunotherapy, GBS is one of the adverse events of concern in immune 
checkpoint inhibitors (ICIs) (12). Each of these mechanisms involves a 
complex immune response, and it is urgent to explore the causal 
relationship between immune cells and GBS as soon as possible (13, 14).

Currently, studies surrounding the association between GBS and 
immune cells are insufficient. And the direct causal relationship 
between them is highly susceptible to the confounding factors of 
clinical research and becomes elusive. Therefore, this study took 
advantage of the fact that genetic variants are randomly assigned to 
individuals before birth, and conducted a two-sample MR analysis 
using Genome-wide association study (GWAS) data to further search 
for a causal relationship between immune cell causal relationship 
with GBS.

2 Materials and methods

2.1 Study design

This study assessed the potential causal relationship between 731 
immune cell phenotypes and GBS using two-sample MR analysis. This 
study should be guided by three basic assumptions: (1) genetic variation 

is directly related to exposure; (2) there are no potential confounders 
between genetic variation and exposure and outcome; and (3) genetic 
variation does not affect outcome through pathways other than 
exposure. The comprehensive design of this work is shown in Figure 1.

2.2 Data source for the GWAS

The GWAS data for 731 immune cell phenotypes and GBS were 
obtained from the IEU OPENGWAS database, which is publicly 
available (15). The 731 immune cell phenotypic data contained four 
immunomorphological features, namely absolute cell count (AC, 
n = 118), relative cell count (RC, n = 192), median fluorescence 
intensity (MFI, n = 389), and morphological parameters (MP, n = 32). 
Specifically, they are subdivided into seven major groups: B cell, 
T regulatory cells (Treg), classical dendritic cells (cDC), Lymphocyte 
subsets (TBNK), Maturation stages of T cell, Myeloid cell and 
Monocyte. Specific information is provided in Table 1.

2.3 Instrumental variables selection

Suitable Instrumental Variables (IVs) were obtained separately 
from different datasets for MR analysis. For IVs with immune cell 
characteristics associated with GBS we set the p-value threshold to 
5 × 10−6. We set the parameters to r2 < 0.1 and kb = 10,000 for linkage 
disequilibrium (LD) analyses, and excluded the effect of confounding 
factors. To prevent alleles from influencing the results, palindromic 
SNPs were removed by palindromic sequence detection. F > 10 were 
included for MR analysis to exclude bias in weak IVs.

2.4 Statistical analysis

In this study, five complementary methods were used for MR 
analysis: Inverse variance weighted (IVW), Weighted median, MR 
Egger, Simple mode, Weighted mode. IVW as the primary method of 
analysis, with p < 0.05 considered statistically significant and in the 
same direction as the results of the other methods of analysis, we then 
considered a causal relationship between exposure and outcome. 
We checked the heterogeneity of the IVs using the Cochran Q test, 
with Q_pval>0.05 indicating no heterogeneity. The MR-Egger 
intercept test, Mendelian randomization pleiotropy residual sum and 
outlier (MR-PRESSO) test were used to detect horizontal multiplicity 
and outliers, setting p < 0.05. Robustness and symmetry were further 
assessed by leave-one-out analysis to test whether individual SNPs 
contributed to the causal effect. All statistical analyses in this study 
were performed using the R package “TwoSampleMR.”

2.5 Reverse MR analysis

We investigated whether immune cell characteristics are affected 
by GBS using inverse MR analysis, further validating the directionality 
of the causal effect. We performed a reverse MR analysis with GBS as 
the exposure factor and the above immune cell profile as the outcome 
to further validate the directionality of the causal effect of immune cell 
profile and GBS.
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FIGURE 1

Schematic of MR analysis of 731 immune cell phenotypes causally associated with GBS. SNPs, single-nucleotide polymorphisms; Linkage 
disequilibrium (LD), Mendelian randomization (MR), Inverse variance weighted (IVW).
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3 Results

3.1 Causal relationship between immune 
cells and GBS

A total of 33 immune cell phenotypes were identified by the 
IVW method as being causally associated with the development 
of GBS, setting p < 0.05. The 33 immune cell types included 20 
risk factors and 13 protective factors. There were 9 cases in the 
Treg cell group, 7 cases in the B cell group, 5 cases in the 
Maturation stages of T cell group, 4 cases in the TBNK group, 3 
cases in the cDC cell group, 3 cases in the Monocyte group and 2 
cases in the Myeloid cell group. Twenty immunophenotypes were 
found to be associated with GBS as risk factors using the IVW 
method. For example, in the B cell group, CD20 on IgD+ CD38− 
naïve (OR = 1.412, 95%CI:1.001–1.991, p = 0.049), CD20 on IgD+ 
CD38dim (OR = 1.313, 95%CI:1.042–1.654, p = 0.021), IgD− 
CD38dim %B cell (OR = 1.500, 95%CI:1.031–2.183, p = 0.034), 
IgD+ CD24+ %B cell (OR = 1.648, 95%CI:1.031–2.634, p = 0.037). 
In the Treg cell group, CD25 on activated Treg (OR = 1.913, 
95%CI:1.020–3.589, p = 0.043), CD3 on activated and secreting 
Treg (OR = 1.293, 95%CI:1.020–1.638, p = 0.034), CD3 on CD39+ 
CD4+ (OR = 1.294, 95%CI:1.043–1.606, p = 0.019), CD3 on CD4 
Treg (OR = 1.395, 95%CI:1.069–1.819, p = 0.014), CD3 on 
secreting Treg (OR = 1.292, 95%CI:1.040–1.606, p = 0.021), 
CD39+ CD8br %T cell (OR = 1.361, 95%CI:1.009–1.837, 
p = 0.044). In the Maturation stages of T cell group, CD3 on CM 
CD8br (OR = 1.460, 95%CI:1.012–2.107, p = 0.043), CD3 on EM 
CD4+ (OR = 1.245, 95%CI:1.000–1.550, p = 0.049), CD3 on TD 
CD8br (OR = 1.486, 95%CI:1.025–2.154, p = 0.037), CM CD4+ 
%T cell (OR = 1.762, 95%CI:1.019–3.046, p = 0.043), HVEM on 
naive CD4+ (OR = 1.451, 95%CI:1.104–1.907, p = 0.007). In the 
Monocyte group, CD16 on CD14+ CD16+ monocyte (OR = 1.285, 
95%CI:1.018–1.621, p = 0.035), CD40 on CD14+ CD16+ 
monocyte (OR = 1.171, 95%CI:1.015–1.352, p = 0.030). In the 
Myeloid cell group, CD33dim HLA DR+ CD11b + %CD33dim 
HLA DR+ (OR = 1.262, 95%CI:1.020–1.561, p = 0.032). In TBNK 
group, FSC-A on NK (OR = 1.296, 95%CI:1.000–1.680, p = 0.049), 
HLA DR+ NK AC (OR = 1.568, 95%CI:1.100–2.237, p = 0.013), as 
shown in Figure 2 and Supplementary Table S1. Thirteen immune 
cell phenotypes as protective factors associated with GBS. For 
example, in the B cell group, CD19 on PB/PC (OR = 0.577, 
95%CI:0.370–0.902, p = 0.016), IgD+ CD24− %lymphocyte 
(OR = 0.554, 95%CI:0.332–0.924, p = 0.024), CD8dim %leukocyte 
(OR = 0.621, 95%CI:0.405–0.953, p = 0.029), Transitional AC 
(OR = 0.704, 95%CI:0.524–0.946, p = 0.020). In the Treg cell 
group, CD127 on CD28− CD8br (OR = 0.727, 95%CI:0.541–
0.976, p = 0.034), CD28+ CD45RA− CD8dim %T cell (OR = 0.863, 
95%CI:0.771–0.966, p = 0.010), CD4 Treg AC (OR = 0.727, 
95%CI:0.538–0.983, p = 0.038). In the cDC group, 

CD11c + monocyte %monocyte (OR = 0.704, 95%CI:0.514–0.966, 
p = 0.030), CD62L− myeloid DC AC (OR = 0.694, 95%CI:0.493–
0.978, p = 0.037), CD86 on monocyte (OR = 0.737, 95%CI:0.544–
0.999, p = 0.049). In the Monocyte group, CX3CR1 on CD14+ 
CD16− monocyte (OR = 0.717, 95%CI:0.548–0.9939, p = 0.016). 
In the Myeloid cell group, Mo MDSC AC (OR = 0.763, 
95%CI:0.619–0.939, p = 0.011). In the TBNK group, CD45 on 
granulocyte (OR = 0.621, 95%CI:0.391–0.984, p = 0.042), as 
shown in Figure 3 and Supplementary Table S2.

3.2 Sensitivity analysis

Further sensitivity analyses of the results of the significant causal 
relationship between immune cell phenotype and GBS using 
Cochran’s Q test showed that Q_pval was >0.05 in all cases and there 
was no significant heterogeneity, no outliers were found in the 
MR-PRESSO results, and there was no level of The intersection of the 
MR-Egger regression pleiotropy (pval >0.05) as shown in Figures 4, 5 
and Supplementary Table S3. Leave-one-out analyses provide some 
evidence of the robustness of the results of this part of the study, as 
shown in Figures 6, 7.

3.3 Inverse MR analysis results

To investigate the causal relationship between GBS and immune 
phenotypes, we used inverse MR to study the effect of GBS on immune 
phenotype cells. The results showed that there was no causal 
relationship between GBS and any of the 33 immune cells 
mentioned above.

4 Discussion

The GBS usually develops after infection and affects the 
peripheral nervous system, resulting in muscle weakness and sensory 
abnormalities, with the condition progressing gradually from mild 
muscle weakness to severe generalized paralysis. In recent years, the 
scientific hypothesis that “the immune system attacks the nervous 
system to cause disease” has gradually come to the forefront of 
researchers’ minds as studies on the pathogenesis of GBS continue 
to deepen. This study analyzed the potential causal relationship 
between 731 immune cell phenotypic markers and GBS using MR 
methods based on a large amount of publicly available genetic data. 
The results of the analysis showed that a total of 33 immune cell 
phenotypes were included in this study, 20 immune cell phenotype 
markers were considered as risk factors for the development of GBS 
and 13 immune cell phenotype markers were considered as 
protective factors for the development of GBS. There were 9 cases in 

TABLE 1 Summary information on GWAS data.

GWAS data Sample size Population Data sources SNP(n) Year

Immune cells 3,757 European
ebi-a-GCST0001391-

ebi-a-GCST0002121
About 2,000,000 2020

Guillain-Barré syndrome 215,931 European finn-b-G6_GUILBAR 16,380,463 2021
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FIGURE 2

Forest plot for the causal effect of 20 immune cell features as risk factors for GBS using 5 methods including MR Egger, Weighted median, Inverse 
variance weighted, Simple mode, Weighted mode.
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FIGURE 3

Forest plot for the causal effect of 13 immune cell characteristics as protective factors for GBS using 5 methods including MR Egger, Weighted median, 
Inverse variance weighted, Simple mode, Weighted mode.
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the Treg cell group, 7 cases in the B cell group, 5 cases in the 
Maturation stages of T cell group, 4 cases in the TBNK group, 3 cases 
in the cDC cell group, 3 cases in the Monocyte group and 2 cases in 
the Myeloid cell group.

Treg cells play an important role in maintaining immune 
homeostasis and suppressing inflammation, and a reduction in their 
numbers or dysfunction may be  importantly linked to the 

pathogenesis of GBS. Patients with AMAN and AIDP, a common 
subtype of GBS, have significantly fewer peripheral Tregs in the acute 
phase of the disease (16). Immunosuppressive subpopulations of 
CD4+ T helper cells reduce autoimmune and inflammatory responses 
and are widely used in the treatment of neurological disorders such as 
GBS (17). It has been shown that patients with GBS treated with 
lymphoid progenitor exchange (LPE) have a significant decrease in the 

FIGURE 4

Funnel plot of 20 immune cell characteristics as risk factors for GBS. (A) CD20 on IgD+ CD38− naive. (B) CD20 on IgD+ CD38dim. (C) IgD− CD38dim 
%B cell. (D) IgD+ CD24+ %B cell. (E) CD25 on activated Treg. (F) CD3 on activated and secreting Treg. (G) CD3 on CD39+ CD4+. (H) CD3 on CD4 Treg. 
(I) CD3 on secreting Treg. (J) CD39+ CD8br %T cell. (K) CD3 on CM CD8br. (L) CD3 on EM CD4+. (M) CD3 on TD CD8br. (N) CM CD4+ %T cell. 
(O) HVEM on naive CD4+. (P) CD16 on CD14+ CD16+ monocyte. (Q) CD40 on CD14+ CD16+ monocyte. (R) CD33dim HLA DR+ CD11b  +  %CD33dim 
HLA DR+. (S) FSC-A on NK. (T) HLA DR+ NK AC.
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FIGURE 5

Funnel plot of 13 immune cell characteristics as protective factors for GBS. (A) CD19 on PB/PC. (B) IgD+ CD24− %lymphocyte. (C) CD8dim %leukocyte. 
(D) Transitional AC. (E) CD127 on CD28− CD8br. (F) CD28+ CD45RA− CD8dim %T cell. (G) CD4 Treg AC. (H) CD11c  +  monocyte %monocyte. (I) CD62L− 
myeloid DC AC. (J) CD86 on monocyte. (K) CX3CR1 on CD14+ CD16− monocyte. (L) Mo MDSC AC. (M) CD45 on granulocyte.
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percentage of Th1 and Th17 cells and an increase in Th2 and Treg cells 
in the peripheral blood among the CD4+ T-lymphocyte subsets (18). 
It follows that the role of Th17 cells in GBS should not be overlooked, 
and these cells promote GBS by mediating inflammatory and 
autoimmune responses (19).The results of another similar study 
suggest that during the acute phase of the clinical course of GBS, 
although there is a decline in the number and proportion of 

CD4 + CD25+ T cells, this decline is reversible, suggesting that the 
number and function of Treg cells may be only temporarily suppressed 
rather than permanently impaired (20). IVIG promotes proliferation 
of CD4 + CD25 + Foxp3 + and other Treg cells and secretion of anti-
inflammatory cytokines IL-10 and TGF-β1  in GBS patients (21). 
Experimental autoimmune neuritis (EAN) is an animal model of 
AIDP that induces T-cell-mediated neuritis via myelin epitopes P0 or 

FIGURE 6

Leave one out forest plot of 20 immune cell characteristics as risk factors with GBS. (A) CD20 on IgD+ CD38− naive. (B) CD20 on IgD+ CD38dim. 
(C) IgD− CD38dim %B cell. (D) IgD+ CD24+ %B cell. (E) CD25 on activated Treg. (F) CD3 on activated and secreting Treg. (G) CD3 on CD39+ CD4+. 
(H) CD3 on CD4 Treg. (I) CD3 on secreting Treg. (J) CD39+ CD8br %T cell. (K) CD3 on CM CD8br. (L) CD3 on EM CD4+. (M) CD3 on TD CD8br. (N) CM 
CD4+ %T cell. (O) HVEM on naive CD4+. (P) CD16 on CD14+ CD16+ monocyte. (Q) CD40 on CD14+ CD16+ monocyte. (R) CD33dim HLA DR+ 
CD11b  +  %CD33dim HLA DR+. (S) FSC-A on NK. (T) HLA DR+ NK AC.
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FIGURE 7

Leave one out forest plot of 13 immune cell characteristics as protective factors against GBS. (A) CD19 on PB/PC. (B) IgD+ CD24− %lymphocyte. 
(C) CD8dim %leukocyte. (D) Transitional AC. (E) CD127 on CD28− CD8br. (F) CD28+ CD45RA− CD8dim %T cell. (G) CD4 Treg AC. (H) CD11c  +  monocyte 
%monocyte. (I) CD62L− myeloid DC AC. (J) CD86 on monocyte. (K) CX3CR1 on CD14+ CD16− monocyte. (L) Mo MDSC AC. (M) CD45 on granulocyte.
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P2 as the primary antigen (22). Pathologically, EAN is characterized 
by rupture of the blood-nerve barrier and accumulation of 
autoreactive T cells and macrophages in the peripheral nervous 
system through chemotaxis and demyelination (23). In vitro activation 
of anti-CD3 and anti-CD28 antibodies allows IFN-γ to generate 
CD4 + CD25+ regulatory T cells (iTregs) from CD4 + CD25− T cells 
in GBS patients (24). The above further corroborates the association 
of Treg cell subtypes such as CD25 on activated Treg, CD3 on activated 
and secreting Treg, CD3 on CD4 Treg and GBS in the results.

B cells are involved in GBS pathogenesis through 
autoantibody production, antigen presentation, and inflammatory 
regulation. Flow cytometry results showed that the percentage of 
memory B cells was significantly higher in GBS patients than in 
healthy controls. Correlation analyses showed that an increase in 
the percentage of memory B cells was positively correlated with 
the clinical severity of GBS patients (25). This was similarly 
corroborated in another study, suggesting that peripheral blood 
DN (IgD− CD27−) B-cell values were significantly elevated (26). 
The decrease in the percentage of circulating memory B cells 
after administration of immunotherapies such as PE and IVIG to 
GBS patients suggests that the reduction of memory B cells is 
involved in the recovery process of the disease or is one of the key 
factors for clinical improvement. For example, the percentage of 
CD4+/CD8+ T cells and the percentage of CD4 + CD45RA + T 
cells were increased, the percentage of CD8 + T cells and 
CD4 + CD45RO + T cells were significantly decreased, and the 
number of CD19 + B cells was reduced after IVIG treatment in 
GBS patients (27). It also promotes the differentiation of CD40-
activated B cells into plasmoblasts and accelerates 
immunoglobulin synthesis and secretion (28). Large numbers of 
plasmoblasts may be  a potential biomarker for rapid clinical 
recovery. CD19 can be used as a B-cell target to treat autoimmune 
neuropathies (29). It has also been shown that an anti-CD20 
monoclonal antibody (rituximab) may be a potential target for 
the treatment of GBS (30). The results of the present study are 
broadly similar to the above, CD19 on PB/PC, CD20 on IgD+ 
CD38− naive, CD20 on IgD+ CD38dim are associated with GBS.

Myeloid cells are a group of cells that play an important role in 
the immune system and include mainly granulocytes, monocytes, 
macrophages, dendritic cells and mast cells. These cells are derived 
from hematopoietic stem cells in the bone marrow and are formed 
through a series of differentiation processes that are also closely 
linked to the pathogenesis of GBS. Antigen-presenting cell activity 
of myeloid dendritic cells may contribute to the maintenance of 
T-cell activation in GBS, with increased numbers of CD11c(+) 
myeloid DCs versus CD123(+) plasma cell-like DCs in patients 
with GBS before treatment with high-dose IVIG (31). Another 
study showed that plasma cell-like DCs were significantly elevated 
in the acute phase of GBS, and their levels were positively correlated 
with the severity of disease in GBS patients, and the expression of 
TLR9 and surface co-stimulatory molecules were significantly 
elevated in plasma cell-like DCs, suggesting that plasma cell-like 
DCs are involved in the pathogenesis of GBS (32). Atorvastatin-
modified DCs can be induced into tolerogenic DCs, which improve 
the symptoms of EAN in rats by down-regulating Th1/Th17 levels 
and increasing the number of Treg and NKR-P1+ cells (33). 
Although DCs-based immunotherapy is still at the stage of animal 
experiments, the results of existing studies suggest that DCs have a 

promising application in the clinical treatment of GBS (34). 
CD16 + 56, CD4+ and CD8+ levels were lower and IgG levels were 
higher in children with GBS spectrum disease variant than in the 
control group, suggesting that both cellular and humoral immune 
functions were disturbed in children with GBS spectrum disease 
variant and were involved in the development of the disease (35). 
Single-cell RNA sequencing of peripheral blood mononuclear cells 
(PBMC) from patients with GBS revealed a new clonally-expanded 
CD14+ CD163+ monocyte subset in the peripheral blood of 
patients with AIDP and it was enriched for cellular responses to IL1 
and chemokine signaling pathways (36). In addition, the researchers 
found that the neutrophil/lymphocyte ratio (NLR) may be  an 
independent risk factor for GBS and a predictor of severe 
dysfunction, severe frailty and short-term prognosis (37). 
Macrophages can be  divided into two main phenotypes, 
pro-inflammatory macrophages (M1) and anti-inflammatory 
macrophages (M2), which play a decisive role in the initiation and 
development of GBS. Macrophages may induce inflammatory or 
anti-inflammatory effects in M1 and M2 by secreting pro- or anti-
inflammatory cytokines (TNF-α, IL-12, IL-10, etc.), and induce 
activation of T cells to mediate immune responses or to promote 
GBS disease recovery. Currently, the role of macrophages in, e.g., 
GBS cannot be explained simply by the M1–M2 dichotomy, and 
how macrophages are involved in degeneration and regeneration of 
the peripheral nervous system, how macrophage polarization can 
be  shifted toward the M2 phenotype, and how to improve the 
outcome of GBS need to be explored in further studies (38). The 
relevant results of the present study on myeloid cell categories are 
in general agreement with the literature, suggesting that the 
phenotypes: CD11c + monocyte %monocyte, CX3CR1 on CD14+ 
CD16− monocyte, CD16 on CD14+ CD16+ monocyte, etc., may 
be closely related to the GBS.

In addition, reverse MR analyses were performed for further 
validation of the positive results of this study. The results showed that 
there was no causal relationship between GBS and any of the 33 
immune cells. The reason for this may be  that genetic variants 
predominantly precede disease, and the sequence of the two cannot 
usually be reversed.

In summary, this work differs from traditional observational 
studies that address the relationship between one or more immune 
cells and GBS. It used MR analysis with SNPs as IVs to investigate 
causal associations between 731 immune cell phenotypes and GBS, 
reducing confounding variables, reverse causation, and other factors 
interfering with the results. The results suggest a causal link between 
33 immune cell manifestations and GBS. They may play a defensive or 
pathogenic role by activating different immune functions, and the 
B-cell and Treg cell groups dominate the exposure factors for 
GBS. These findings provide a theoretical basis for the development 
of early detection reagents and late treatment strategies.

In this study, Mendelian randomization (MR) analysis was used 
to investigate the relationship between GBS and immune cell 
phenotypes. Although this analysis provides important information 
on causality, the following limitations exist. For example, the data on 
731 immune cell phenotypes and GBS were derived from studies of 
European populations, and the presence of similar genetic variants in 
other populations needs to be further explored. If the selected SNPs 
affect multiple biological pathways, their effects on immune cell 
function may not be exclusive, potentially introducing a horizontal 
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confounding bias, which in turn affects the accuracy of the MR 
analysis. Synergistic effects between different immune cell phenotypes 
were not discussed in this study, and their impact on the findings 
cannot be ignored. Due to these limitations, future clinical studies 
with more ethnic groups, more comprehensive genotypic data, and 
more scientific methods of statistical analyses are needed to enhance 
the ability of MR in explaining the relationship between GBS and 
immune cell phenotypes.
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