
TYPE Original Research

PUBLISHED 15 January 2025

DOI 10.3389/fneur.2024.1446250

OPEN ACCESS

EDITED BY

Piotr Sobolewski,

Jan Kochanowski University, Poland

REVIEWED BY

Chaohua Cui,

A�liated Liutie Central Hospital of Guangxi

Medical University, China

Yu Wang,

Hebei Medical University, China

*CORRESPONDENCE

Jie Han

hjj.427@163.com

RECEIVED 17 June 2024

ACCEPTED 20 December 2024

PUBLISHED 15 January 2025

CITATION

Lin Y, Li Y, Luo Y and Han J (2025)

Development and validation of an explainable

machine learning prediction model of

hemorrhagic transformation after intravenous

thrombolysis in stroke.

Front. Neurol. 15:1446250.

doi: 10.3389/fneur.2024.1446250

COPYRIGHT

© 2025 Lin, Li, Luo and Han. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Development and validation of
an explainable machine learning
prediction model of hemorrhagic
transformation after intravenous
thrombolysis in stroke

Yanan Lin1, Yan Li2, Yayin Luo1 and Jie Han1*

1Department of Neurology, The First A�liated Hospital of Dalian Medical University, Dalian, China,
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Objective: To develop and validate an explainable machine learning

(ML) model predicting the risk of hemorrhagic transformation (HT) after

intravenous thrombolysis.

Methods: We retrospectively enrolled patients who received intravenous tissue

plasminogen activator (IV-tPA) thrombolysis within 4.5 h after symptom onset

to form the original modeling cohort. HT was defined as any hemorrhage on

head CT scan completed within 48h after IV-tPA administration. We utilized the

Random Forest (RF), Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost),

and Gaussian Naive Bayes (GauNB) algorithms to develop ML-HT models. The

models’ predictive performance was evaluated using confusionmatrix (including

accuracy, precision, recall, and F1 score), and discriminative analysis (area

under the receiver-operating-characteristic curve, ROC-AUC) in the original

cohort, followed by validation in an independent external cohort. The models’

explainability was assessed using SHapley Additive exPlanations (SHAP) global

feature plot, SHAP Summary Plot, and Partial Dependence Plot.

Results: A total of 1,007 patients were included in the original modeling cohort,

with an HT incidence of 8.94%. The RF-based ML-HT model showed metrics of

0.874 (accuracy), 0.972 (precision), 0.890 (recall), 0.929 (F1 score); with ROC-

AUC of 0.7847 in the original cohort and 0.7119 in the external validation

cohort. The MLP model showed 0.878, 0.967, 0.989, 0.978, 0.7710, and 0.6768,

respectively. The AdaBoost model showed 0.907, 0.967, 0.989, 0.978, 0.7798,

and 0.6606, respectively. The GauNB model showed 0.848, 0.983, 0.598, 0.716,

0.6953, and 0.6289, respectively. The explainable analysis of the RF-based ML

model indicated that the National Institute of Health Stroke Scale (NIHSS) score,

age, platelet count, and atrial fibrillation were the primary determinants for HT

following IV-tPA thrombolysis.

Conclusion: The RF-based explainable ML model demonstrated promising

predictive ability for estimating the risk of HT after IV-tPA thrombolysis and may

have the potential to assist the clinical decision-making in emergency settings.
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1 Introduction

Intravenous tissue plasminogen activator (IV-tPA)

thrombolysis remains the most effective and evidence-based

treatment for acute ischemic stroke (AIS) patients (1). Despite

its proven efficacy, IV-tPA thrombolysis carries a significant risk

of hemorrhagic transformation (HT). The National Institute of

Neurological Disorders and Stroke (NINDS) study has shown that

patients undergoing IV-tPA thrombolysis had a higher incidence

of HT compared to the placebo group (2). HT not only exacerbates

the pre-existing neurological damage but also delays the initiation

of antiplatelet or anticoagulant medications. This can lead to a

poorer prognosis and even an increased risk of death for AIS

patients receiving IV-tPA thrombolysis (3). Given the absence of

effective treatments to reverse hematoma expansion following HT,

it is crucial to screen for and predict HT after IV-tPA thrombolysis

in high-risk individuals.

Predictive models are essential tools in healthcare as they

help in anticipating patient outcomes based on historical data

and statistical algorithms. They can assist the clinicians in risk

assessment and enable personalized treatment. To individually

evaluate the safety of IV-tPA on an individual basis, several clinical

studies have developed predictive scores for HT following IV-

tPA thrombolysis. These models are among the earliest to be

developed and validated, offering the advantages of simplicity

and convenience. Some of these scores are still utilized to assist

physicians in the decision-making processes to evaluate the safety

of IV-tPA. These predictive scores include the HAT (Hemorrhage

After Thrombolysis) score (4), the MSS (Multicenter Stroke

Survey) score (5), the SEDAN [blood Sugar, Early infarct signs and

(hyper) Dense cerebral artery sign, Age, NIHSS (National Institutes

of Health Stroke Scale)] score (6), and the GRASPS [Glucose at

presentation, Race (Asian), Age, Sex (male), systolic blood Pressure

at presentation, and Severity of stroke at presentation (NIHSS)]

score (7). These scores have been established using traditional

statistical methods and possess several limitations. Firstly, these

predictive scores can only predict simple linear relationships

between variables. They are unable to handle complex non-linear

relationships and high-dimensional data. Secondly, these scores

lack inclusivity for data with large variations, resulting in weak

generalization capabilities for completely new populations. Thirdly,

they are sensitive to outliers and noise, which can lead to poor

accuracy and stability. Lastly, most data within the scores require

manual selection and processing, potentially introducing bias into

the predictive outcomes. These limitations highlight the need for a

more accurate prediction model to enhance the early identification

of HT in AIS patients undergoing IV-tPA thrombolysis.

Machine learning (ML), a pivotal branch of artificial

intelligence, has been applied in medical imaging diagnostics

and has demonstrated superior predictive capabilities and stability

(8, 9). Machine learning offers several advantages over traditional

statistical methods, particularly in handling complex data

patterns and high-dimensional datasets. Firstly, ML algorithms

can automatically discover patterns in data without explicit

programming. Secondly, they are capable of handling large datasets

efficiently, a capability that is beyond the reach of traditional

models. Thirdly, ML models can adapt and learn from new data,

allowing them to improve over time. Additionally, they can better

handle noise in the data compared to traditional models, which

can be sensitive to outliers. Lastly, machine learning provides a

wide range of algorithms, allowing for flexibility in selecting the

right model for a specific task (10). By leveraging these strengths of

ML, we have developed and validated an accurate and explainable

predictive model for HT following IV-tPA thrombolysis using

ML algorithm. We hope the ML-HT model can precisely identify

patients at high risk for HT, thereby enabling personalized care and

potentially enhancing the outcomes for AIS patients undergoing

IV-tPA thrombolysis.

2 Materials and methods

2.1 Study participants

We retrospectively enrolled patients with AIS who received

IV-tPA thrombolysis at the Stroke Center of the First Affiliated

Hospital of Dalian Medical University from January 2010

to December 2022, forming the original modeling cohort.

Additionally, we retrospective collected AIS patients who

underwent IV-tPA thrombolysis at the Third People’s Hospital

of Dalian from January 2020 to December 2022, serving as the

external validation cohort. For both the original modeling cohort

and the external validation cohort, the inclusion criteria were as

follows: (1) age ≥ 18 years; (2) fulfillment of diagnostic criteria for

AIS (1); (3) treatment with IV-tPA thrombolysis within 4.5 h from

symptom onset. The exclusion criteria were as follows: (1) patients

who underwent endovascular therapy; (2) patients diagnosed with

stroke mimics; (3) patients with missing data; (4) patients lost

to follow-up. The study was conducted in compliance with the

Declaration of Helsinki and approved by the Ethics Committee

of the First Affiliated Hospital of Dalian Medical University

(Approval Number: PJ-KS-KY-2023-08).

2.2 Data collection

Two trained neurologists collected the data. All data were

collected prior to IV-tPA administration and served as predicted

variables for the model development. These included: (1)

demographic data: gender and age; (2) medical history data:

hypertension, diabetes, atrial fibrillation, coronary disease, stroke,

antiplatelet therapy, smoking, and alcohol consumption; (3) clinical

data: baseline systolic blood pressure (SBP), diastolic blood

pressure (DBP), onset-to-treatment time (OTT), baseline NIHSS

score, total dose of tPA, tPA dose type (0.9 or 0.6 mg/kg); (4)

laboratory data: white blood cell count (WBC), platelet count

(PLT), activated partial thromboplastin time (APTT), thrombin

time (TT), prothrombin time (PT), international normalized ratio

(INR), fibrinogen (Fib), blood glucose (BG); (5) imaging data: the

hyperdense middle cerebral artery sign (HMCAS) (11), the massive

cerebral infarction (MCI) sign characterized by hypodensity

involving more than 1/3 of the middle cerebral artery territory (6),

and Alberta Stroke Program Early CT Score (ASPECTS) on the

non-contrast head CT scan (12).
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FIGURE 1

Flowchart of acute ischemic stroke patients selection in original modeling cohort. AIS, acute ischemic stroke; IV, intravenous; tPA, tissue plasminogen

activator; HT, hemorrhagic transformation.

2.3 Definition of HT

HT was utilized as the objective variable, defined as any

hemorrhage detected on the secondary head CT scan conducted

within 48 h after IV-tPA thrombolytic treatment, according to the

Heidelberg classification (13).

2.4 Statistical analysis

Statistical analyses were conducted using SPSS version 26.0.

Continuous variables were presented as medians (interquartile

ranges, IQRs), and Mann-Whitney test was used to compare

between the groups. Categorical variables were presented as counts

with percentages, and either Pearson’s chi-square test or Fisher’s

exact test was used to compare between the groups. All statistical

analyses were two-sided. A significance level was set at P-value

< 0.05.

2.5 Machine learning modeling

All ML models were developed using scikit-learn package in

Python version 3.0. Four ML algorithms were chosen for the

modeling, including Random Forest (RF), Multilayer Perceptron

(MLP), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes

(GauNB). We conducted a comprehensive evaluation of ML

models, addressing the issue of data imbalance by employing

the normalization method. To ensure the robustness of our

assessments, we employed stratified K-fold cross-validation. In this

process, we randomly divided both the HT and non-HT samples

into K equal parts. For each iteration of the K-fold cross-validation,

we used (K-1) parts for both HT and non-HT samples as the

training set, and the remaining single part of each category as the

testing set. This validation was repeated K times, and the results

from all iterations were synthesized to assess the performance of

the ML model. In our study, the value of K was set to 10.

We evaluated the predictive performance of ML models

using several methods. Firstly, we utilized a confusion matrix

to calculate metrics such as accuracy, precision, recall, and the

F1 score. Secondly, we conducted discriminative analysis using

the area under the receiver operating characteristic curve (ROC-

AUC). Thirdly, we compared the predictive performance of the

ML models with traditional scoring models using ROC-AUC.

Lastly, we performed external validation using the independent

cohort, which was assessed with both a confusion matrix

and ROC-AUC.

To analyze the explainability of the ML models, we employed

SHapley Additive exPlanations (SHAP) Global Feature Importance

Plot, SHAP Summary Plot, and Partial Dependence Plot. These

were used to identify and visualize the effects of the predictive

variables on the ML models.

3 Results

3.1 The baseline characteristics of AIS
patients in original modeling cohort

The study initially collected 1,161 AIS patients who received

IV-tPA thrombolytic treatment within 4.5 h. After excluding

72 patients who underwent endovascular treatment, 9 patients

diagnosed with strokemimics, 39 patients withmissing data, and 34

patients lost to follow-up, a total of 1,007 patients were ultimately

included in the original modeling cohort (Figure 1). Patients had a

median age of 67 years (IQR 59-73), and 60.4% were male. Among

them, 90 patients developed HT (8.94%). Patients with HT showed

statistically significant differences in terms of age, atrial fibrillation,

NIHSS, WBC, PLT, HMCAS, and ASPECTS (P < 0.05) compared

to patients without HT (Table 1).
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TABLE 1 The baseline characteristics of AIS patients in original modeling cohort.

Variables Total AIS patients
(n = 1,007)

Patients with HT
(n = 90)

Patients without HT
(n = 917)

Z/χ2
P-value

Demographic data

Male, n (%) 608 (60.4) 61 (67.8) 547 (59.7) 2.263 0.133

Age, years, median (IQR) 67 (59, 73) 72 (65, 80) 66 (59, 75) 4.533 0.000∗

Medical history data, n (%)

Hypertension 613 (60.9) 52 (57.8) 561 (61.2) 0.398 0.528

Diabetes 260 (25.8) 23 (25.6) 237 (25.8) 0.004 0.952

Atrial fibrillation 269 (26.7) 45 (50.0) 224 (24.4) 27.377 0.000∗

Coronary disease 149 (14.8) 19 (21.1) 130 (14.2) 3.126 0.077

Stroke 242 (24.0) 22 (24.4) 220 (24.0) 0.009 0.924

Antiplatelet therapy 54 (5.4) 5 (5.6) 49 (5.3) 0.007 0.809

Smoking 345 (34.3) 28 (31.1) 317 (34.6) 0.435 0.509

Alcohol consumption 262 (26.0) 31 (27.4) 223 (26.1) 0.127 0.721

Clinical data, median (IQR)

SBP, mmHg 154 (139, 169) 151 (136, 168) 154 (139, 170) −0.715 0.474

DBP, mmHg 87 (78, 97) 85 (72, 95) 87 (79, 97) −1.522 0.128

OTT, min 160 (120, 210) 180 (130, 226) 160 (120, 210) 1.919 0.055

NIHSS, score 7 (3, 13) 15 (9, 18) 7 (3, 12) 7.008 0.000∗

tPA total dose, mg 60.0 (50.0, 67.5) 60.0 (50.0, 69.0) 60.0 (50.0, 67.5) 0.427 0.669

tPA dose type, n (%) 0.228 0.633

0.6 mg/kg 128 (12.7) 10 (11.1) 118 (12.9)

0.9 mg/kg 879 (87.3) 80 (88.9) 799 (87.1)

Laboratory data, median (IQR)

WBC, 109/L 7.33 (6.11, 9.28) 7.93 (6.45, 10.26) 7.31 (6.10, 9.16) 2.052 0.040∗

PLT, 109/L 201 (169, 240) 181 (151, 219) 204 (171, 241) −3.958 0.000∗

APTT, s 23.3 (21.1, 25.8) 23.5 (21.2, 25.8) 23.3 (21.1, 25.8) 0.385 0.700

TT, s 16.9 (15.8, 17.9) 17.0 (15.8, 17.8) 16.9 (15.8, 17.9) 0.697 0.485

PT, s 11.6 (11.0, 12.6) 11.7 (10.9, 12.8) 11.6 (11.0, 12.5) 0.641 0.522

INR 1.04 (0.97, 1.12) 1.05 (0.97, 1.15) 1.04 (0.97, 1.12) 1.059 0.290

Fib, g/L 2.66 (2.21, 3.22) 2.64 (2.21, 3.51) 2.66 (2.21, 3.21) 0.730 0.465

BG, mmol/L 6.95 (6.00, 8.96) 7.42 (6.22, 9.72) 6.93 (5.99, 8.90) 1.053 0.292

Imaging data, n (%)

HMCAS 69 (6.9) 21 (23.3) 48 (5.2) 42.062 0.000∗

MCI 17 (1.7) 2 (2.2) 15 (1.6) 0.170 0.659

ASPECTS, score, median (IQR) 10 (10, 10) 10 (10, 10) 10 (10, 10) −4.960 0.000∗

∗P < 0.05.

3.2 Predictive performance of HT models
based on di�erent ML algorithms

HT prediction models were constructed using data from all

1,007 patients and 27 predictive variables. These models were

developed using the RF, MLP, AdaBoost, and GauNB machine

learning algorithms. After adjusting and optimizing the parameters

for each algorithm, the predictive performance of the four ML-

HT models was assessed using stratified K-fold cross-validation.

This assessment included evaluation through confusion matrix,

discriminative analysis, and external validation.

The confusion matrices for the ML-HT models were derived

through K-fold cross-validation, during which metrics such as

accuracy, precision, recall, and F1 score were calculated. As shown
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FIGURE 2

Confusion matrices for ML-HT prediction models based on RF, MLP, AdaBoost, and GauNB algorithms. This figure shows the confusion matrices for

the ML-HT models based on RF, MLP, AdaBoost, and GauNB algorithms, which were generated using K-fold cross-validation. Confusion metrics

including accuracy, precision, recall, and F1 score were calculated for each model. The ML-HT models based on RF, MLP, and AdaBoost demonstrate

relatively stable performance, while the GauNB model exhibits weaker performance. ML, machine learning; HT, hemorrhagic transformation; RF,

Random Forest; MLP, Multilayer Perceptron; AdaBoost, Adaptive Boosting; GauNB, Gaussian Naive Bayes.

in Figure 2, the average performance metrics for the ML-HT

models based on four different algorithms were as follows: RF

with accuracy: 0.874, precision: 0.972, recall: 0.890, and F1 score:

0.929; MLP with 0.878, 0.967, 0.989, and 0.978; AdaBoost with

0.907, 0.967, 0.989, and 0.978; and GauNB with 0.848, 0.983, 0.598,

and 0.716. The ML-HT models based on RF, MLP, and AdaBoost

algorithms were found to exhibit relatively favorable and stable

performance in confusion matrix, in contrast to the GauNB, which

showed weaker performance.

The discriminative analysis for the ML-HT models was

conducted on the original cohort using ROC curves. As depicted

in Figure 3, the average ROC-AUC values from K-fold cross-

validation for the ML-HT models based on RF, MLP, AdaBoost,

and GauNB algorithms were 0.7847, 0.7710, 0.7798, and 0.6953,

respectively. The ML-HT models constructed using RF, MLP, and

AdaBoost algorithms exhibited favorable discrimination (ROC-

AUC > 0.70), with the exception of the GauNB.

To compare the discrimination between the ML-HT models

and the traditional predictive scores, we tested the ROC-AUC for

the HAT, MSS, SEDAN, and GRASPS scores. The results showed

that the predictive discrimination of different scores for HT after

IV-tPA thrombolysis ranked from highest to lowest as follows:

GRASPS, MSS, SEDAN, and HAT score, with corresponding ROC-

AUC values of 0.712 (95% CI: 0.654–0.771), 0.684 (95% CI: 0.628–

0.740), 0.653 (95% CI: 0.592–0.715), and 0.643 (95% CI: 0.579–

0.707). Traditional statistical scores generally performed worse in

predictive performance compared to the ML models, suggesting

that their predictive capabilities are insufficient (Table 2).

To assess the generalization of the ML-HT models, we

conducted the external validation of their discriminative

performance using an independent cohort from another

stroke center. The ROC curves for the ML-HT models in the

external validation cohort were presented in Figure 4. In K-fold

cross-validation, the average ROC-AUC values for the ML-HT

models based on RF, MLP, AdaBoost and GauNB were 0.7119,

0.6768, 0.6606, and 0.6289, respectively. Additionally, we tested the

confusion matrices for the ML-HT models in the external cohort.

The average performance metrics for the ML-HT models based on

four different algorithms were as follows: RF with accuracy: 0.867,

precision: 0.893, recall: 0.958, and F1 score: 0.929; MLP with 0.857,

0.884, 0.967, and 0.929; AdaBoost with 0.870, 0.882, 0.987, and

0.931; and GauNB with 0.816, 0.897, 0.886, and 0.896. Notably,

only the ML-HT model using the RF algorithm demonstrated

a more favorable discrimination and stable performance in

confusion matrix in the external validation.

Taking into account the results from confusion matrices,

discriminative analysis, and external cohort validation, the ML-HT

model based on the RF algorithm emerged as the most stable with a

favorable performance. This model’s consistent high performance

across different assessment methods suggests its robustness and

potential reliability.

3.3 Explainable analysis of the ML-HT
model based on RF algorithm

The ML-HT model based on RF algorithm, demonstrated

relatively stable performance across the confusion matrix,

discriminative analysis, and external validation assessment.

Furthermore, we conducted an evaluation of its explainability

to determine the impact of different predictive variables on the

incidence of HT following IV-tPA thrombolysis.

SHAP global feature plot and SHAP summary plot showed

the top 20 predictive variables of the ML-HT model based on

RF algorithm, highlighting their overall impact on HT following

IV-tPA thrombolysis (Figure 5). The NIHSS score had the most

significant contribution, followed by age, PLT, atrial fibrillation, and
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FIGURE 3

ROC curves for ML-HT prediction models based on RF, MLP, AdaBoost, and GauNB algorithms in the original cohort. This figure presents the ROC

curves, which assess the discriminative ability of the ML-HT models validated in the original cohort. In K-fold cross-validation, the average ROC-AUC

values for the ML-HT models based on RF, MLP, AdaBoost, and GauNB algorithms were 0.7847, 0.7710, 0.7798, and 0.6953, respectively. ROC,

receiver operating characteristic; ROC-AUC, area under the ROC curve; ML, machine learning; HT, hemorrhagic transformation; RF, Random Forest;

MLP, Multilayer Perceptron; AdaBoost, Adaptive Boosting; GauNB, Gaussian Naive Bayes; TPR, true positive rate; FPR, false positive rate.

WBC in the SHAP global feature plot (Figure 5A). However, the

SHAP summary plot indicated that, with the exception of WBC,

NIHSS score, age, PLT, atrial fibrillation, and HMCAS exhibited a

relatively consistent contribution to the model, although HMCAS

showed a more varied color distribution, suggesting a less uniform

effect (Figure 5B). Consequently, the NIHSS score, age, PLT, and

atrial fibrillation might be identified as the primary variables

influencing HT after IV-tPA thrombolysis.

The PDP illustrated the influence of individual predictive

variables on HT while holding all other variables constant, thereby

highlighting the marginal contributions (Figure 6). Specifically, it

showed the effects of the NIHSS score (Figure 6A), age (Figure 6B),

PLT (Figure 6C), and atrial fibrillation (Figure 6D) to the likelihood

of HT after IV-tPA thrombolysis. It is observed that the probability

of HT increased progressively with a NIHSS score exceeding 6

points, age above 60 years, a PLT count below 180 × 109/L, or a

history of atrial fibrillation.

4 Discussion

In this study, we constructed four post-thrombolytic HT

models based on different ML algorithms, including RF, MLP,

AdaBoost, and GauNB. Initially, we assessed their predictive

discrimination in original cohort and external independent cohort

through stratified K-fold validation. The results indicated superior

performance from the RF-based ML-HT model. Subsequently, we

performed an explainable analysis of the model, revealing that the
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baseline NIHSS score, age, PLT, and atrial fibrillation were the

primary factors contributing to HT after IV-tPA thrombolysis.

TABLE 2 Discrimination validation of traditional predictive scores for HT.

Scores ROC-AUC
(95% CI)

Cut-o� Sensitivity
(%)

Specificity
(%)

GRASPS 0.796

(0.726–0.866)

81.5 77.4 75.1

MSS 0.724

(0.644–0.804)

1.5 71.0 64.3

SEDAN 0.715

(0.619–0.811)

1.5 60.2 65.7

HAT 0.714

(0.611–0.817)

1.5 45.2 89.1

Unlike traditional statistical analysis methods, ML offers

distinct advantages. ML algorithms can learn directly from data,

balancing the impacts of various factors on target event, rather

than relying on a few factors to determine the probability of

that event. This capability enables the creation of more precise

predictive models that exhibit strong generalization for unknown

datasets. Moreover, as datasets are updated with samples of

diverse distributions, ML models can continuously self-adjust

and optimize, thereby enhancing the accuracy and stability of

their predictions. Additionally, ML can reduce errors caused

by human factors and mitigates selection bias (9). Several

studies have proposed that integrating ML with clinical data to

develop decision-making models can manage larger-scale, multi-

dimensional data, while also enabling automated and visualized

result outputs, which in turn boosts the efficiency of clinical

workflows (10). In recent years, a limited number of studies have

FIGURE 4

ROC curves for ML-HT prediction models based on RF, MLP, AdaBoost, and GauNB algorithms in the external validation cohort. This figure displays

the ROC curves that assess the generalization of the ML-HT models as validated in an independent external cohort. In K-fold cross-validation, the

average ROC-AUC values for the ML-HT models based on RF, MLP, AdaBoost, and GauNB were 0.7119, 0.6768, 0.6606, and 0.6289, respectively.

ROC, receiver operating characteristic; ROC-AUC, area under the ROC curve; ML, machine learning; HT, hemorrhagic transformation; RF, Random

Forest; MLP, Multilayer Perceptron; AdaBoost, Adaptive Boosting; GauNB, Gaussian Naive Bayes; TPR, true positive rate; FPR, false positive rate.
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FIGURE 5

SHAP global feature plot (A) and SHAP summary plot (B) for the ML-HT model based on RF algorithm. (A) The SHAP global feature plot displays the

average importance of the top 20 predictive variables in the model. Each bar corresponds to a predictive variable, and the bar’s height signifies its

global importance, ranked from the largest to the least. (B) SHAP summary plot shows the marginal contribution of the top 20 predictive variables in

the model. The horizontal distribution of points along the X-axis corresponds the SHAP values of the predictive variables, indicating their marginal

contributions to the model. The color of the points denotes the actual values, with red signifying high and blue signifying low values. A clear

separation in the distribution of points suggests a consistent contribution to the model, whereas overlapping color distributions imply an ambiguous

contribution. The Y-axis ranks the predictor variables by their contribution to the model, from the greatest to the least. SHAP, SHapley Additive

exPlanations; ML, machine learning; HT, hemorrhagic transformation; RF, Random Forest; NIHSS, National Institute of Health Stroke Scale; PLT,

platelet; WBC, white blood cell; HMCAS, hyperdense middle cerebral artery sign; DBP, diastolic blood pressure; OTT, onset-to-treatment time; TT,

thrombin time; INR, international normalized ratio; BG, blood glucose; PT, prothrombin time; Fib, fibrinogen; SBP, systolic blood pressure; ASPECTS,

Alberta Stroke Program Early CT Score; APTT, activated partial thromboplastin time.

applied ML algorithms to predict different types of HT after

intravenous thrombolysis, with quite promising outcomes (14–18).

Our study yielded several novel findings. Initially, we assessed

the predictive performance of fourML algorithms, integrating their

capabilities to select the most optimal ML-HTmodel. Additionally,

all models employed stratified K-fold cross-validation to ensure

robustness. Compared to existing predictive scores, the ML-

HT models developed in this study incorporated data from 27

pre-thrombolysis predictive variables, thus minimizing selection

bias. Lastly, we identified the ML-HT model with the superior

performance and conducted explainable analysis to point out the

primary factors.

NIHSS score is a reliable and sensitive scale for evaluating

neurological deterioration, reflecting the severity of neurological

impairment in AIS patients and demonstrating a good inter-

rater consistency (19). Previous studies have utilized the baseline

NIHSS score as a primary predictive factor for HT after IV-tPA

thrombolysis, with higher baseline NIHSS scores indicating an

elevated risk of HT (20–25). Consistent with previous studies,

the explainable analysis of ML-HT model in present study

showed that the baseline NIHSS score was a major factor

for HT. Furthermore, PDP analysis demonstrated the marginal

contribution of baseline NIHSS score to the ML-HT model,

revealing that when the NIHSS score exceeded 6 points, its

impact on the likelihood of HT after IV-tPA thrombolysis

became more pronounced. In addition to the baseline NIHSS

score, we frequently utilize early indicators from pre-thrombolysis

imaging assessments to evaluate the severity of neurological

deterioration in AIS patients. These early imaging indicators

include the MCI sign (6), HMCAS (11), and ASPECTS score

(12). They can reflect the extent of brain tissue ischemia and

the compensatory capacity of collateral circulation (22, 23), and

they have been confirmed by various studies as significant factors

affecting HT following IV-tPA thrombolysis (4, 6, 12, 26–28).

However, discrepancies in imaging interpretation among different

observers have been noted, potentially impacting the reliability

of these results (29, 30). The explainable analysis of the ML-HT

model in present study showed that HMCAS was a relatively

stable, but modestly contributing, factor influencing HT. This

suggested that once the early signs of infarction from imaging are

accurately assessed, they can be factored into the evaluation of HT

risk post-thrombolysis.
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FIGURE 6

Partial Dependence Plot (PDP) for the ML-HT model based on RF algorithm. (A) PDP for feature “NIHSS;” (B) PDP for feature “age;” (C) PDP for feature

“PLT;” (D) PDP for feature “atrial fibrillation.” The X-axis represents the range of values for each predictive variable, while the Y-axis indicates the

probability of HT. Each PDP curve illustrates the trend of how probability of HT changes with respective predictive variable. The shaded area

represents the 95% confidence interval, indicating the reliability of prediction. ML, machine learning; HT, hemorrhagic transformation; RF, Random

Forest; PDP, Partial Dependence Plot; NIHSS, National Institute of Health Stroke Scale; PLT, platelet.

Age has been established by numerous studies to be associated

with HT after IV-tPA thrombolysis (20–23), possibly due to the

reduced vascular elasticity, increased vascular fragility, diminished

blood-brain barrier function, and alterations in coagulation

mechanisms among the elderly (31). The European Cooperative

Acute Stroke Study (ECASS)-III, which extended the treatment

time window to 3–4.5 h after symptoms onset for AIS patients

undergoing IV-tPA thrombolysis, specifically excluded patients

over the age of 80, identifying advanced age as a risk factor

for HT after thrombolysis (32). In explainable analysis of the

ML-HT model in present study, age emerged as a significant

contributor to the likelihood of HT. PDP analysis of the ML-

HT model showed that when age exceeded 60, the incidence of

HT would gradually increase. As the global population continues

to age, an increasing number of elderly AIS patients will be

candidates for IV-tPA thrombolysis. Given the findings of this

study, it is recommended that elderly patients should be screened

for thrombolysis according to the guidelines, taking into account

both the selection criteria and the potential benefits of intravenous

thrombolysis treatment.

Atrial fibrillation is one of the risk factors for ischemic

stroke and is also a major influencing factor for HT after IV-

tPA thrombolysis for AIS patients (20–23, 33, 34). Consistent

with previous findings, the explainable analysis of the ML-

HT model in present study showed that a history of atrial

fibrillation played a crucial role in HT risk prediction of the

ML-HT model. Atrial fibrillation may raise the risk of HT after

intravenous thrombolysis through various mechanisms, including

damaging the integrity of the blood-brain barrier, exacerbating

ischemic vascular endothelial cell damage, increasing inflammatory

responses, and enhancing capillary permeability. Furthermore,

when atrial fibrillation results in cardioembolism, the larger

ischemic area and inadequate collateral circulation can worsen

reperfusion injury and other pathological changes, potentially

leading to post-thrombolytic HT (35, 36). Despite atrial fibrillation

elevating the risk of HT, it is essential to weigh the potential

benefits and risk of intravenous thrombolysis for patients with

this condition.

Platelet count is an indicator for assessing coagulation function,

participating in thrombus formation in the coagulation process.

A low platelet count may increase bleeding tendency and may

consequently elevate the risk of HT after IV-tPA thrombolysis.

Currently, in the treatment guidelines for AIS patients, platelet

count is considered a potential risk factor for HT after intravenous

thrombolysis. However, whether to regard platelet count as an

independent risk factor is still unclear (19, 37). In explainable
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analysis of our ML-HT model, platelet count emerged as one

of the key decision-making factors influencing the risk of HT

after intravenous thrombolysis, aligning with the findings from

the MSS (5). Nonetheless, in clinical practice, it is imperative

to consider a comprehensive range of coagulation-related factors,

including platelet function, the patient’s history of antiplatelet and

anticoagulant medication use, and any history of hematological

disorders. Platelet count alone should not be the sole determinant

in assessing risk. The ML-HT model can be instrumental in

decision-making, providing a more nuanced assessment of the risk

for HT after IV-tPA thrombolysis.

There are several limitations in the present study. First,

our findings were limited by the nature of the retrospective

study, with the potential for recall bias. Second, the single-center

design of our research may restrict the generalizability of our

results. Therefore, further validation is still needed in prospective,

multi-center cohorts. Lastly, although our ML-HT model was

semi-automated, because the imaging data still required manual

interpretation, which could introduce inter-observer variability.

Future enhancements could potentially increase the model’s

automation by integrating deep learning algorithms, renowned for

their powerful imaging recognition capabilities.

5 Conclusion

In this study, we developed and validated an accurate ML-HT

model for predicting HT following IV-tPA thrombolysis based on

RF algorithm. The explainable analysis of the model revealed that

the baseline NIHSS score, age, PLT, and atrial fibrillation were the

primary factors contributing to HT.
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