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Brain tumors are diseases characterized by abnormal cell growth within or

around brain tissues, including various types such as benign and malignant

tumors. However, there is currently a lack of early detection and precise

localization of brain tumors in MRI images, posing challenges to diagnosis and

treatment. In this context, achieving accurate target detection of brain tumors

in MRI images becomes particularly important as it can improve the timeliness

of diagnosis and the e�ectiveness of treatment. To address this challenge,

we propose a novel approach–the YOLO-NeuroBoost model. This model

combines the improved YOLOv8 algorithm with several innovative techniques,

including dynamic convolution KernelWarehouse, attention mechanism CBAM

(Convolutional Block Attention Module), and Inner-GIoU loss function. Our

experimental results demonstrate that our method achieves mAP scores of

99.48 and 97.71 on the Br35H dataset and the open-source Roboflow dataset,

respectively, indicating the high accuracy and e�ciency of this method in

detecting brain tumors in MRI images. This research holds significant importance

for improving early diagnosis and treatment of brain tumors and provides new

possibilities for the development of the medical image analysis field.
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1 Introduction

Brain tumors refer to the abnormal proliferation of cells within or surrounding the

brain, manifesting either as benign or malignant diseases (1–3). Benign tumors, such

as meningiomas, typically grow slowly and do not invade surrounding tissues; whereas

malignant tumors, such as glioblastomas, usually grow rapidly, are highly invasive, and

are difficult to completely remove. Brain tumors directly compress brain functions, leading

to increased intracranial pressure and symptoms such as headaches, blurred vision, and

changes in cognition and mood (4–6). If the tumor persists or worsens, it may cause

permanent neurological damage or fatal outcomes. Moreover, depending on the type and

location of the tumor, patients may experience a range of health issues from mild memory

loss to severe physical disabilities. For example, gliomas are the most common type of

malignant brain tumor in adults, originating from glial cells in the brain and spinal cord;

while medulloblastomas, more common in children, typically occur in the cerebellum,

affecting balance and coordination. Each type of brain tumor has its unique biological

characteristics, treatment responses, and prognoses.

In terms of treatment, the management of brain tumors typically requires a

combination of multiple therapeutic strategies. Surgery aims to remove as much of the

tumor tissue as possible, while radiation and chemotherapy are used to eliminate tiny

residual lesions or control further growth of the tumor (7–9). Early detection and precise
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localization are particularly important for the diagnosis and

treatment of brain tumors. In recent years, object detection

technology applied in the field of medical imaging, especially

in the automatic detection and localization of brain tumors,

has provided significant technical support. These technologies

use advanced image analysis and machine learning algorithms

to identify abnormal structures from complex medical imaging

data, greatly assisting physicians in making rapid and accurate

diagnoses (10–12). This not only lays the foundation for targeted

and immunotherapy for specific types of brain tumors but also

offers patients more personalized and effective treatment options.

However, despite significant progress in object detection

technology across various domains, its application in MRI image

analysis still faces some noticeable limitations. Confronted with

MRI images, current object detection algorithms primarily grapple

with the challenge of handling the inherent high heterogeneity

and complexity of these imaging techniques (13, 14). MRI

images exhibit significant differences in contrast, spatial resolution,

and presented anatomical details, posing challenges to the

universality and accuracy of algorithms. Additionally, the quality

and consistency of MRI images are influenced by various factors,

including equipment configuration, imaging technique parameters,

and patient movement during imaging (15). These factors may

lead to increased noise and contrast issues in images, thereby

affecting the performance of object detection algorithms.Moreover,

due to the immense diversity in the morphology, size, and

boundaries of brain tumors, existing algorithms often struggle to

accurately differentiate between tumor tissue and normal brain

tissue, especially in cases where tumor boundaries are unclear or

contrast with surrounding tissue is low.

In recent years, with the rapid development of deep learning

technology, various object detection algorithms have been widely

applied to the automatic detection and localization of brain tumors.

Among these, the Faster R-CNN algorithm uses its built-in Region

Proposal Network (RPN) to automatically identify candidate

regions in images, then refines the classification and bounding

box regression of these regions, enhancing detection accuracy (16).

However, Faster R-CNN has relatively slow processing speeds,

which can limit its application in real-time scenarios. The YOLO

algorithm is known for its rapid image processing capability,

dividing images into multiple grids, each predicting bounding

boxes and probabilities, facilitating fast detection (17). However,

its accuracy decreases when handling medical images with complex

backgrounds. SSD combines multi-scale feature maps to improve

detection precision, suitable for tumors of various sizes, balancing

speed and accuracy, though it still has room for improvement

in detecting very small or vague tumors. RetinaNet uses focal

loss to address class imbalance, optimizing the detection of hard-

to-recognize tumors, though it requires substantial resources

during training (18). Mask R-CNN, an extension of Faster R-

CNN, not only detects targets but also generates high-quality

segmentation masks, excelling in precisely delineating tumor and

normal tissue boundaries but requiring significant computational

resources (19). Additionally, the latest YOLOv8 stands out in

enhancing processing speed and accuracy, especially suitable for

real-time diagnostic environments (20), but it still needs further

optimization for accurately detecting highly overlapping tumor

regions and small tumors. The development of these technologies

continues to advance the field of medical imaging, and despite some

limitations, their role in future medical diagnostics is increasingly

important.

To address the limitations of existing methods, this paper

introduces the YOLO-NeuroBoost model. This model integrates

multiple innovative technologies aimed at enhancing the

detection of brain tumors in MRI images. Firstly, the model

utilizes KernelWarehouse technology, dynamically selecting and

assembling convolution kernels based on input data features,

thereby replacing traditional convolution kernels and significantly

enhancing the model’s adaptability and overall performance.

Secondly, by incorporating the CBAM, it strengthens the

recognition and processing of crucial image features, effectively

improving the accuracy of brain tumor detection. Lastly, the

implementation of the Inner-GIoU loss function allows for more

precise bounding box localization in complex image scenarios and

enhances sensitivity to various sized targets through adjustments

of the scaling factor ratio, further improving detection accuracy.

Through the integration of these advanced technologies, the

YOLO-NeuroBoost model provides a practical solution for

accurate and reliable brain tumor detection, significantly aiding in

early diagnosis and treatment planning for patients.

• The YOLO-NeuroBoost model is proposed, which

significantly enhances the detection capability of brain

tumors in MRI images by integrating innovative technologies

such as KernelWarehouse, CBAM, and Inner-GIoU loss

function.

• The methods proposed in this paper demonstrate strong

practicality and versatility. They can not only be applied to the

detection of brain tumors in MRI images but also extended

to other medical imaging fields, providing new insights and

methods for medical image analysis.

• Through the research presented in this paper, more accurate

and reliable methods for brain tumor detection are provided

for clinical medicine. This aids physicians in early diagnosis

and formulation of more effective treatment plans, offering

crucial support for patients with brain tumors.

Here is the structure of the remaining work. Section 2

introduces the related work in brain tumor object detection. Section

3 will elaborate on the principles of our approach. Section 4 will

describe our experimental process. Finally, Section 5 summarizes

and provides an outlook on future work.

2 Related work

2.1 Machine learning methods and their
applications in brain tumor detection in
MRI images

In the field of brain tumor detection and diagnosis, Magnetic

Resonance Imaging (MRI) has become an indispensable tool,

with machine learning methods playing a crucial role in this

process (13). Various algorithms have been developed and applied
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for the automatic detection and identification of brain tumors from

MRI images. For example, clustering algorithms based on Particle

Swarm Optimization (PSO) effectively identify tumor regions

by analyzing the centroids of numerous brain tumor patterns

obtained fromMRI images (21, 22). Additionally, Discrete Wavelet

Transform (DWT) is widely used as an initial step in feature

extraction, transforming input images to extract key information,

followed by Principal Component Analysis (PCA) to reduce

the dimensionality of the feature vectors, thereby simplifying

subsequent processing steps (23). Support Vector Machines (SVM)

are powerful classification tools commonly used to categorize

MRI brain images into normal and abnormal categories (24).

Moreover, Feedback Pulse Coupled Neural Networks (FPCNN)

are also used for the segmentation and detection of Regions of

Interest (ROI), which are crucial steps in determining the location

of brain tumors. Simultaneously, DWT continues to play a role

in the feature extraction stage, enhancing the analysis capability

of the images (25). In more complex analyses, the Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) model

is introduced to handle potential time-series data, which is

particularly important in dynamic MRI analysis (26, 27). Genetic

Algorithms (GA) combined with curve-fitting techniques and SVM

further enhance the model’s predictive accuracy and generalization

capabilities (28). The MRI image processing workflow typically

begins with image input, followed by image enhancement, skull

stripping, fuzzy C-means clustering, and feature extraction, among

other steps. These steps form a comprehensive preprocessing

workflow that lays the foundation for subsequent machine learning

analysis. Additionally, applications of Hybrid Fuzzy Segmentation-

Self Organizing Map (HFS-SOM) clustering and Gray Level Co-

occurrence Matrix provide effective means for extracting complex

texture features from MRI images (28, 29). Lastly, methods

combining Extended Kalman Filters (EKF) with Support Vector

Machines (SVM) offer a novel perspective for MRI image analysis,

dynamically updating and improving model parameters to adapt to

complex and changing image data characteristics, thus enhancing

the accuracy and efficiency of brain tumor detection (30). The

integrated application of these methods demonstrates the powerful

potential of advanced image processing and machine learning

technologies in brain tumor detection and diagnosis.

2.2 Advances in brain tumor detection in
MRI images using YOLO algorithm series

In the field of brain tumor detection in MRI images, the

YOLO (You Only Look Once) series of algorithms has made

significant advancements in accuracy, speed, and functionality

through a series of version upgrades. Initially, YOLOv3, an

early version, introduced multi-scale prediction and utilized

the Darknet-53 backbone network to extract features at three

different scales, effectively enhancing the recognition capabilities

for brain tumors of varying sizes (1, 31). Despite its substantial

improvements in detection speed and accuracy, YOLOv3 still had

room for improvement in sensitivity to very small or blurred

tumors. Subsequently, YOLOv4, while maintaining high speed,

incorporated the CSPDarknet53 backbone network along with

more data augmentation techniques and attention mechanisms,

further optimizing the network’s generalization ability (32). These

enhancements not only improved YOLOv4’s ability to capture

details of brain tumors, especially in complex backgrounds but

also enhanced the model’s stability and accuracy. Moving forward,

YOLOv5, with its more flexible and modular design, simplified

the deployment and usage of the model. By adopting a smaller

model size and automated hyperparameter optimization, YOLOv5

significantly reduced the demand on computing resources while

maintaining high accuracy, making it exceptionally effective in

real-time brain tumor detection applications (33). YOLOv6 and

YOLOv7 continued to innovate in model architecture and training

strategies, such as introducing a more advanced FPN structure

for feature processing, which enhanced the model’s capability

to recognize complex forms of brain tumors, demonstrating the

further potential of deep learning technologies (20, 27, 34). The

latest YOLOv8made significant design innovations in the backbone

network and Neck sections, such as replacing the C3 structure from

YOLOv5 with a more gradient-rich C2f structure, and optimizing

the channel numbers for different scale models. In the Head

section, by adopting a decoupled head structure (Decoupled-Head)

and shifting from an Anchor-Based to an Anchor-Free design,

combined with the use of the Task-Aligned Assigner for positive

and negative sample matching and introducing the Distribution

Focal Loss (DFL), YOLOv8 significantly enhanced the model’s

accuracy and efficiency in detecting brain tumors. Overall, the

iterative and optimized development of the YOLO algorithms

continues to push the frontiers of machine learning in medical

image analysis, particularly in the detection of brain tumors in MRI

images (20).

3 Method

3.1 Overview of our network

In this study, we propose the YOLO-NeuroBoost model,

specifically innovating upon the YOLOv8 algorithm to enhance

the accuracy and efficiency of brain tumor detection in MRI

images. Our approach includes several technical innovations:

Firstly, we introduced the KernelWarehouse to replace traditional

convolutional kernels. In this enhancement, we reevaluated the

dependency relationships of convolutional parameters within and

across layers, and redefined the fundamental concepts of “kernels,”

“assembled kernels,” and “attention functions” within the context

of dynamic convolution. KernelWarehouse, as a more generalized

form of dynamic convolution, allows the model to dynamically

select and assemble the most suitable convolutional kernels based

on the characteristics of the input data, significantly improving the

model’s adaptability and performance. Secondly, to further enhance

the model’s ability to capture important features in images, we

incorporated the CBAM (Convolutional Block Attention Module)

attentionmechanism. CBAM enhances themodel’s focus on critical

areas of the image through spatial and channel attention sequences,

thereby improving the precision of brain tumor detection. Lastly,

we improved the loss function by introducing the Inner-GIoU

loss. This new loss function assists in the precise localization of

bounding boxes by calculating the IoU (Intersection over Union)
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loss, especially in complex or occluded scenarios. To adapt the

loss function to different datasets and detection requirements,

we introduced a scaling factor ratio that controls the size of the

auxiliary bounding boxes used for loss calculation, adjusting the

model’s sensitivity to targets of varying sizes. These improvements

not only enhance the accuracy of brain tumor detection but

also optimize the model’s versatility and robustness in processing

different types of MRI image data. This series of technical

innovations opens new possibilities for the application of deep

learning in the field of medical image analysis. The network

architecture of YOLO-NeuroBoost is shown in Figure 1.

3.2 YOLOv8 network

The YOLO model is a revolutionary object detection

framework known for its single-stage detection mechanism, which

achieves real-time performance while maintaining high accuracy.

YOLOv8, as the latest iteration in the series, continues to use

and improve upon the design concepts of previous versions (35).

This version features a more refined backbone network and

Neck part, inspired by the ELAN design of YOLOv7, where

the C3 module from YOLOv5 has been replaced with the C2f

module, which provides richer gradient flow, enhancing the

effect of feature extraction. Additionally, YOLOv8 has undergone

significant reforms in its head structure, introducing the currently

mainstream decoupled head structure and shifting from an

anchor-based design to an anchor-free approach, which helps

simplify the training process and enhance the model’s versatility.

In its data augmentation strategy, YOLOv8 has adopted practices

from YOLOX, particularly in disabling Mosaic enhancement in the

last 10 epochs of training, a strategy proven to effectively improve

the model’s accuracy. For our model, these improvements in

YOLOv8 have significantly enhanced the accuracy and efficiency of

detecting brain tumors in MRI images, providing strong technical

support for the early diagnosis and precise treatment of brain

tumors and showcasing the potential of deep learning in the field

of advanced medical image processing. The network architecture

of YOLOv8 is shown in Figure 2.

However, YOLOv8 also has some shortcomings. Firstly,

traditional convolutional networks may not be flexible enough

when dealing with highly heterogeneous medical images, and fixed

convolutional kernels may struggle to adapt to complex image

features. Secondly, although the basic YOLOv8 model performs

well with images that have complex backgrounds, there is still room

for improvement in sensitivity and precision for specific medical

images, such as MRI. Additionally, the standard loss functions may

be inadequate for precise boundary localization of objects within

medical images, especially in cases of unclear boundaries or partial

obstructions.

In the following sections, we will detail the improvements

made to address the aforementioned issues. These enhancements

are designed to increase the flexibility, accuracy, and efficiency

of the YOLOv8 model in processing medical images, particularly

in the detection of brain tumors in MRI scans. Through these

innovative approaches, we aim to significantly enhance the model’s

performance in medical applications, especially in handling brain

tumor images with complex backgrounds and unclear boundaries.

3.3 KernelWarehouse

The KernelWarehouse model introduces an innovative

dynamic convolution approach that enhances the capability of

convolutional neural networks to process complex images or

sequence data (36). In KernelWarehouse, the standard convolution

operation, which typically relies on fixed kernels W, is replaced by

a flexible kernel mixing mechanism. Specifically, both the input

x and the output y maintain the same spatial resolution, where

x represents the input features and y the output features, while

the kernel W is no longer static but is a linear combination of

multiple static kernels W = α1W1 + . . . + αnWn, with α1, . . . ,αn

being attention weights based on the input. Figure 3 shows the

network architecture of KernelWarehouse. This design of dynamic

convolution kernels allows KernelWarehouse to dynamically

adjust its processing core based on the features of the input

data, achieving more precise feature extraction. Compared to

traditional dynamic convolution methods, the innovation of

KernelWarehouse lies in its application of the attention-mixing

learning paradigm at a more granular kernel level.

Below we introduce the key idea of KernelWarehouse.

The fundamental concept of kernel partitioning is to exploit the

dependencies of parameters within the same convolutional layer

explicitly. This approach aims to reduce the dimensionality of each

kernel while increasing the total number of kernels. The kernel

partitioning can be mathematically defined as follows:

W = w1 ∪ . . .∪wm, and for all i, j ∈ {1, . . . ,m}, i 6= j,wi ∩wj = ∅.

(1)

Where W: Represents the entire set of convolutional kernels.

wi: Represents a subset of the kernel set W, i indexes the subset.

m: Indicates the total number of subsets into which W is divided.

Through this kernel partitioning method, KernelWarehouse is able

to decompose a large set of convolutional kernels into smaller,

independent segments, each focusing on capturing specific features

of the input data. This strategy not only enhances themodel’s ability

to process specific data features but also optimizes overall network

parameter efficiency and learning outcomes.

Following the straightforward design principle of kernel

partitioning, the main goal of warehouse sharing in the

KernelWarehouse model is to enhance parameter efficiency and

representation capability by explicitly exploiting the dependencies

between parameters across consecutive convolutional layers. This

approach allows for a more effective sharing and utilization of

kernel subsets, optimizing the network’s performance by leveraging

learned features across different layers.

S = s1 ∪ . . . ∪ sn, where si ⊂W, for all i ∈ {1, . . . , n}. (2)

Where S, which represents a set of kernel subsets shared across

different convolutional layers, with each subset si being part of the

entire kernel setW.

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2024.1445882
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2024.1445882

FIGURE 1

The diagram of the YOLO-NeuroBoost network structure.

si ∩ sj = ∅, for all distinct i, j ∈ {1, . . . , n}. (3)

Where si is mutually exclusive from others, maintaining

independence between different shared partitions.

W′ =

n⋃

i=1

βisi, with βi being the tuning coefficients. (4)

Where si are combined to form a new effective kernel W′ used

in the convolution operations. The coefficients βi allow for dynamic

adjustment of the influence each subset has, which can be tuned

based on specific tasks or data characteristics.

3.4 Convolutional Block Attention Module

CBAM (Convolutional Block Attention Module) is an

advanced attention mechanism designed to enhance the

effectiveness of convolutional neural networks by focusing

on relevant features within the input data (37). It incorporates

attention across both spatial and channel dimensions, ensuring

that the network prioritizes the most informative parts of the input.

The CBAM module consists of two sequential components:

the Channel Attention Module (CAM) and the Spatial Attention

Module (SAM). The CAM focuses on identifying the most

informative channels. It achieves this by aggregating spatial

information through global average pooling and max pooling

operations, which emphasize significant channels by exploiting

inter-channel relationships. Following this, the SAM directs the

network’s focus to important spatial locations in the input data.

This sequential attention to both channels and spatial locations

ensures that the network adapts dynamically to focus more on

salient features that are crucial for the task at hand. Figure 4 shows

the network architecture diagram of CBAM.

In our model, the integration of CBAM has significantly

contributed to improving the overall accuracy and robustness.

By allowing the network to focus on the most relevant features

and regions, CBAM helps in reducing the influence of irrelevant

information and enhances the model’s ability to generalize across

different and challenging datasets. This makes it particularly

valuable in applications such as medical imaging and object

detection, where precision is critical. The inclusion of CBAM in

our architecture has demonstrably enhanced feature representation

capabilities, leading to better performance and more efficient

learning. Below, we introduce the mathematical formulas of the

CBAM:

First, we compute the channel attention map by combining the

features processed through two different pooling strategies:

Mc = σ (MLP(AvgPool(F))+MLP(MaxPool(F))) (5)
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FIGURE 2

The diagram of the YOLOv8 network structure (20).

FIGURE 3

Schematic illustration of KernelWarehouse (36).

Where Mc represents the channel attention map, σ is the

sigmoid function, MLP denotes a multi-layer perceptron, AvgPool

andMaxPool are average and max pooling operations respectively,

and F is the input feature map.

Next, we apply the channel attention map to the input feature

map to enhance relevant channels:

F′ = Mc · F (6)

Where F′ is the feature map after applying channel attention,

Mc is the channel attention map from the previous equation, and ·

denotes element-wise multiplication. Following channel attention,

we compute the spatial attention map, which highlights important

spatial regions using a convolutional filter applied to pooled

features:

Ms = σ (f 7×7([AvgPool(F′);MaxPool(F′)])) (7)
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FIGURE 4

The diagram of the CBAM network structure.

Where Ms is the spatial attention map, σ is the sigmoid

function, f 7×7 represents a convolution operation with a 7×7 filter,

and AvgPool, MaxPool operations are applied across the channel

dimension of F′.

The spatial attention map is then applied to the previously

refined feature map to further highlight important spatial features:

F′′ = Ms · F
′ (8)

Where F′′ is the output feature map after applying spatial

attention, Ms is the spatial attention map from the previous

equation, and · denotes element-wise multiplication.

Finally, we combine the attentively processed feature map

with the original input to ensure information continuity and

completeness:

F̂ = F′′ + F (9)

Where F̂ is the final output feature map, F′′ is the feature map

after applying spatial attention, and F is the original input feature

map, demonstrating the residual connection.

3.5 Inner-GIoU

The Inner-IoU loss function is an innovative approach

designed to address some inherent limitations in traditional IoU

(Intersection over Union) loss calculations (38), especially in

bounding box regression (BBR) tasks like those in YOLOv8.

Traditional IoU-based BBR methods often accelerate convergence

by adding new loss components but tend to overlook the limitations

of the IoU loss itself.The Inner-IoU loss function starts with an

in-depth analysis of the BBR model, revealing that differentiating

between various regression samples and using auxiliary bounding

boxes of different scales for loss computation can effectively

speed up the bounding box regression process. Specifically, for

samples with high IoU, using smaller auxiliary bounding boxes

to compute the loss can accelerate convergence; whereas for low

IoU samples, larger auxiliary bounding boxes aremore appropriate.

By introducing a scaling factor ratio to control the scale of the

auxiliary bounding boxes used for loss computation, the bounding

box regression process is optimized. Figure 5 illustrates the concept

of Inner-IoU.

The introduction of the Inner-IoU loss function has

significantly enhanced the accuracy and efficiency of our

model in detecting brain tumors in MRI images. Through a refined

loss calculation strategy, our model can adjust bounding boxes

more quickly and accurately, thereby improving the robustness

and precision of detection. The incorporation of the scaling factor

ratio allows the model to dynamically adjust the loss calculation

method when handling different IoU samples, resulting in greater

adaptability and exceptional performance in various complex

scenarios.Below, we introduce the main mathematical derivation

process of Inner-IoU.IoU is defined as follows:

IoU =
|B ∩ Bgt|

|B ∪ Bgt|
(10)

Where B and Bgt represent the predicted box and the ground

truth (GT) box, respectively. Additionally, GIoU was developed to

address the problem of gradient vanishing when the anchor box and

the GT box have zero overlap. The GIoU loss function is defined as

follows:

LGIoU = 1− IoU +
|C − B ∩ Bgt|

|C|
(11)

To derive Inner-IoU in more detail, we need to understand the

following concepts. The ground truth (GT) box and anchor are

denoted as Bgt and B, respectively. The center points are (xgtc, ygtc)

for the GT box and (xc, yc) for the anchor. The width and height of

the GT box are wgt and hgt , while those of the anchor are w and h.

The variable "ratio" is the scaling factor, typically between [0.5, 1.5].

The specific expressions are as follows:

b
gt

l
= x

gt
c −

wgt ∗ ratio

2
, b

gt
r = x

gt
c +

wgt ∗ ratio

2
(12)

b
gt
t = y

gt
c −

hgt ∗ ratio

2
, b

gt

b
= y

gt
c +

hgt ∗ ratio

2
(13)

bl = xc −
w ∗ ratio

2
, br = xc +

w ∗ ratio

2
(14)

bt = yc −
h ∗ ratio

2
, bb = yc +

h ∗ ratio

2
(15)
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FIGURE 5

Description of Inner-IoU (38).

inter = (min(b
gt
r , br)−max(b

gt

l
, bl)) ∗ (min(b

gt

b
, bb)−max(b

gt
t , bt))

(16)

union = (wgt ∗ hgt) ∗ (ratio)
2 + (w ∗ h) ∗ (ratio)2 − inter (17)

The final formula for Inner-IoU is as follows:

IoUinner =
inter

union
(18)

Through extensive experiments, we finally combined Inner-

IoU with GIoU, resulting in the final loss function as follows:

LInner−GIoU = LGIoU + IoU − IoUinner (19)

Where LInner-GIoU represents the Inner-GIoU loss proposed in

this paper, IoUinner represents Inner-IoU, and LGIoU represents the

GIoU loss. By incorporating KernelWarehouse, CBAM, and Inner-

GIoU, we successfully enhanced the accuracy and efficiency of

brain tumor detection inMRI images. KernelWarehouse optimized

the flexibility of convolutional kernels, CBAM improved feature

extraction capabilities, and Inner-GIoU refined the loss function

calculation. These innovations combined to enable our model to

excel in processing complex medical images, providing stronger

technical support for clinical diagnosis.

4 Experiments

4.1 Datasets

In this experiment, we used two datasets to validate the

effectiveness of our method: the Br35H dataset (39) and the open-

source Roboflow dataset (40). Figure 6 shows samples from these

datasets.

The Br35H dataset is an MRI image dataset for brain tumor

detection and classification, containing 801 brain MRI images.

These images are divided into three parts: 561 images for training,

160 images for testing, and 80 images for validation. The images

are classified into categories of with tumor and without tumor.

The Br35H dataset provides a moderate amount of data and

diversity for deep learning-based brain tumor detection and

classification.

The Roboflow dataset is an open-source brain tumor MRI

image dataset, containing a total of 76 images. For the experiment,

the dataset is divided as follows: 60 images for training, nine images

for testing, and seven images for validation. The Roboflow dataset

also includes MRI images classified as with tumor and without

tumor, providing a rich data source for our experiments.

Table 1 shows the specific division of the datasets. Through

experiments on these two datasets, we can comprehensively

validate the effectiveness and robustness of our method under

different data conditions. The Br35H dataset offers a larger data

volume suitable for training and validating deep learning models,

while the Roboflow dataset provides additional diversity and

challenges through its smaller scale, ensuring our method performs

well under various conditions. This dual-validation strategy makes

our research results more reliable and widely applicable.
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FIGURE 6

Sample displays of the Br35H dataset and the Roboflow dataset. (A) shows a sample from the Br35H dataset. (B) shows a sample from the Roboflow

dataset.

TABLE 1 The data set partitioning is in the Br35H dataset and the

Roboflow dataset.

Dataset Training set Testing set Validation set

Br35H 561 160 80

Roboflow 60 9 7

TABLE 2 Experiment configuration environment.

Configuration Name Specific information

Hardware environment

CPU Intel(R) Xeon(R) Gold 6129 CPU

@ 2.30G Hz*32

GPU NVIDIA Tesla V100-PCIE*10

VRAM 160 GB

Memory 187 GB

Software environment

Operating system Ubuntu

Python version 3.9.18

PyTorch version 1.13.0

CUDA version 11.3

OpenCV version 4.6.0

4.2 Experiments environment

The hardware and software configurations for this experiment

are shown in Table 2. It includes a computer equipped with an

Intel(R) Xeon(R) Gold 6129 CPU, running at a frequency of

2.30 GHz with 32 cores. The system also features ten NVIDIA

Tesla V100-PCIE GPUs, totaling 160GB of VRAM, and 187GB

of memory, ensuring ample computational resources to handle

complex tasks.

4.3 Metrics

In this experiment, our method evaluates the performance

of the model using the following metrics: Precision (PR), Recall

(RE), Sensitivity (SE), Specificity (SP), Accuracy (AC), F1-Score,

and mAP50. Below, we detail these metrics and provide the

corresponding formulas.

Precision (PR) measures the proportion of true positive

samples among the samples predicted as positive by the model. The

formula is:

PR =
TP

TP + FP
(20)

where TP (True Positive) represents the true positives, and FP

(False Positive) represents the false positives.

Recall (RE) measures the proportion of actual positive samples

correctly predicted as positive by the model. The formula is:

RE =
TP

TP + FN
(21)

where FN (False Negative) represents the false negatives.

Sensitivity (SE) is synonymous with recall, measuring the

proportion of actual positive samples correctly predicted as positive

by the model. The formula is:

SE =
TP

TP + FN
(22)

Specificity (SP) measures the proportion of actual negative

samples correctly predicted as negative by the model. The formula

is:

SP =
TN

TN + FP
(23)

where TN (True Negative) represents the true negatives.

Accuracy (AC) measures the proportion of correct predictions

among all predictions made by the model. The formula is:

AC =
TP + TN

TP + TN + FP + FN
(24)
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TABLE 3 Training parameters.

Parameter Value

Learning Rate 0.001

Batch Size 16

Weight Decay 0.0005

Epochs 300

Layers 245

Parameters 10,236,528

F1-Score is the harmonic mean of precision and recall,

providing a balance between the two metrics. The formula is:

F1 = 2 ·
PR · RE

PR+ RE
(25)

mAP calculates themean of average precisions across all classes:

mAP =
1

N

N∑

i=1

APi (26)

Where APi is the average precision for the ith class and N is the

total number of classes.

Through these metrics, we can comprehensively evaluate the

performance of the model on different datasets. These metrics help

us understand the model’s performance and reliability in various

classification tasks.

4.4 Implementation details

4.4.1 Parameter settings
In this experiment, we carefully set the model parameters

to optimize the training process and performance. The specific

parameters include: an initial learning rate set to 0.001, with a

cosine annealing scheduler gradually reducing the learning rate to

ensure stable convergence in the later stages of training; a batch

size of 16 to ensure efficient use of computational resources and

accelerate the training process; 300 epochs to ensure the model

fully learns the data features and improves generalization ability; a

weight decay coefficient of 0.0005 to prevent overfitting; the Adam

optimizer, which combines momentum and adaptive learning rates

to effectively speed up model convergence; the model consists of

245 layers with a total of 10,236,528 parameters, ensuring sufficient

complexity to capture subtle features in MRI images. The specific

settings are shown in Table 3.

4.4.2 Algorithm process
Algorithm 1 illustrates the training process of our network,

using the Br35H dataset and the open-source Roboflow dataset.

First, the model parameters and hyperparameters are initialized.

Then, for each training epoch, forward propagation, loss

calculation, and gradient updates are performed for each batch.

We introduced the Inner-GIoU loss function to improve the

accuracy of bounding box localization. The model’s performance is

continuously evaluated on the validation set, and if performance

improves, the model parameters are saved, ensuring the model’s

efficiency and accuracy under different data conditions.

Input: Br35H dataset, Roboflow dataset

Output: Trained YOLO-NeuroBoost model

Initialize model parameters W, b ;

Initialize learning rate α = 0.001 ;

Initialize batch size B = 16 ;

Initialize number of epochs E = 300 ;

Initialize weight decay λ = 0.0005 ;

for epoch = 1 to E do

for each batch bi in dataset do

X,Y ← LoadBatch(bi) ;

Ypred ← YOLO_NeuroBoost(X;W, b) ;

LGIoU =
1
N

∑N
i=1(1− IoU(Yi,Ypred,i)) ;

LInner−GIoU = LGIoU + IoU − IoU inner (27)

Ltotal = LInner−GIoU + λ

M∑

j=1

W2
j (28)

Compute gradients ∇WLtotal and ∇bLtotal ;

W ←W − α∇WLtotal (29)

b← b− α∇bLtotal (30)

end

end

while not converged do

Evaluate model on validation set ;

if performance improvement then

SaveModel(W, b) ;

end

end

Algorithm 1. Training YOLO-NeuroBoost on Br35H and Roboflow

Datasets

4.4.3 Training results
Figure 7 shows the changes in the loss functions and evaluation

metrics during the training and validation process of the YOLO-

NeuroBoost model. The figure includes the trends of the bounding

box loss, classification loss, and dynamic convolution loss on

both the training and validation sets, demonstrating that these

losses gradually decrease as training progresses. Additionally, the

figure shows the improvement trends in metrics such as Precision,

Recall, mAP50, and mAP50-95. These results indicate that our

model effectively improves the accuracy and robustness of tumor
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FIGURE 7

The results of the proposed model.

detection in brain MRI images, highlighting the strong potential of

YOLO-NeuroBoost in the field of medical image analysis.

4.5 Comparison to prior work

As shown in Table 4, the experimental section presents a

comparison of the performance of different models on the

Roboflow and Br35H datasets. We evaluated each model’s

performance across several key performance metrics, including

mean Average Precision (mAP50), Precision Rate (PR), Recall

(AC), and F1-Score. The YOLO-NeuroBoost model demonstrated

its superior performance on the Roboflow dataset, leading in all

metrics. Specifically, the model achieved an mAP50 of 97.71%,

PR of 98.67%, AC of 97.72%, and an F1-Score of 97.63%.

Although other models, such as YOLOv8n, performed slightly less

impressively with an mAP50 of 95.92%, this still reflects a relatively

high level of accuracy. In the Br35H dataset, the advantages

of the YOLO-NeuroBoost model were even more apparent, as

it significantly outperformed other models across all assessment

metrics. Specific performances included an mAP50 of 99.52%, PR

of 99.48%, AC of 99.51%, and an F1-Score of 99.45%. While other

models also performed well on this dataset, they were significantly

behind YOLO-NeuroBoost.

YOLO-NeuroBoost demonstrated optimal performance on two

datasets with distinct characteristics. This not only validates the

model’s efficiency but also emphasizes its adaptability to different

data distributions and significant robustness. Such robustness

indicates that YOLO-NeuroBoost has the capability to maintain

stable performance in varying environments, providing a solid

foundation for its widespread use in tumor detection and other

complex application areas.

Figure 8 illustrates the detection results of YOLO-NeuroBoost,

demonstrating its clear advantage in the task of brain tumor

detection in MRI images. This further validates the outstanding

performance of the YOLO-NeuroBoost model across different

datasets, confirming its effectiveness and generalization capability.

Table 5 compares the PARAMS and FLOPs of various

models on the Roboflow and Br35H datasets, with the YOLO-

NeuroBoost algorithm demonstrating outstanding performance.

Compared to other models, YOLO-NeuroBoost exhibits lower

PARAMS and FLOPs on both datasets, yet delivers remarkable

performance, comparable to models with higher parameter counts

and computational loads. On the Roboflow dataset, YOLO-

NeuroBoost has 5.68 million parameters and performs 10.03 billion

floating-point operations, while on the Br35H dataset, it has 5.65

million parameters and 9.65 billion floating-point operations. This

indicates that YOLO-NeuroBoost maintains excellent performance

while reducing model complexity, thus providing higher efficiency

and feasibility for practical applications. Figure 9 visualizes these

data.

4.6 Ablation study

Table 6 presents the results of ablative experiments on

various components. We evaluated different configurations

of the YOLO-NeuroBoost model and classified them based

on whether they include the KernelWarehouse, CBAM, and

Inner-GIoU components. Evaluation metrics include mAP50

and mAP50-95. Each row represents a model variant, with a

checkmark indicating inclusion and a cross indicating exclusion of

components. Firstly, the YOLOv8n model performs at a baseline

level when all components are absent (YOLOv8n), with an mAP50
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TABLE 4 Comparison of model performance on Roboflow and Br35H datasets.

Roboflow dataset Br35H dataset

Models mAP50 (%) PR (%) AC (%) F1-Score (%) mAP50 (%) PR (%) AC (%) F1-Score (%)

YOLOv4 (32) 93.91 93.67 93.87 93.03 95.33 95.47 95.649 95.85

SSD (41) 94.47 94.37 94.55 94.68 96.25 96.17 96.34 96.42

YOLOv7-Tiny (42) 94.85 94.45 94.77 94.94 96.94 96.24 96.54 96.78

VitDet (29) 94.97 94.54 94.67 94.17 96.71 96.35 96.48 96.92

YOLOv5n (33) 95.67 95.57 95.87 95.77 97.45 97.35 97.63 97.53

YOLOv8n (43) 95.92 95.76 96.07 96.07 97.72 97.56 97.82 97.82

YOLO-NeuroBoost 97.71 98.67 97.72 97.63 99.52 99.48 99.51 99.45

Bold indicates the best results.

FIGURE 8

YOLO-NeuroBoost brain tumor detection visualization.

TABLE 5 Comparison of model parameters (PARAMS) and floating point

operations (FLOPs) on Roboflow and Br35H datasets.

Model
Roboflow dataset Br35H dataset

PARAMS FLOPs PARAMS FLOPs

YOLOv4 4.38 M 6.01 B 3.86 M 5.67 B

SSD 3.35 M 4.72 B 2.98 M 4.73 B

YOLOv7-Tiny 6.65 M 11.03 B 6.65 M 10.78 B

EfficientDet 8.07 M 11.03 B 7.56 M 10.21 B

VitDet 14.66 M 21.34 B 14.51 M 20.12 B

YOLOv5n 13.48 M 19.02 B 12.23 M 17.08 B

YOLOv8n 5.88 M 10.01 B 5.68 M 9.81 B

YOLO-NeuroBoost 5.68 M 10.03 B 5.65 M 9.65 B

of 83.26. Then, introducing the KernelWarehouse (YOLOv8n-

1), CBAM (YOLOv8n-2), and Inner-GIoU (YOLOv8n-3)

components individually slightly improves performance, with

limited improvement, yielding mAP50 scores of 85.32, 83.26,

and 85.34 respectively. Next, simultaneously introducing the

KernelWarehouse and CBAM components (YOLOv8n-4)

significantly boosts model performance, with an mAP50 of

90.87, indicating a significant impact of combining these two

components. Furthermore, introducing all three components

into the YOLOv8n model (YOLOv8n-5) results in even

greater performance improvement, with an mAP50 of 95.33,

demonstrating the additional effect of the Inner-GIoU component.

Finally, incorporating all three components into the YOLO-

NeuroBoost model (YOLO-NeuroBoost) achieves the highest

performance level, with an mAP50 of 97.71, showcasing the

advantage of the comprehensive interaction of components.
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FIGURE 9

Di�erent model parameter comparisons.

TABLE 6 Experiment results for each component.

Method KernelWarehouse CBAM Inner-GIoU mAP50 mAP50-95

YOLOv8n ✗ ✗ ✗ 83.26 85.37

YOLOv8n-1 ✓ ✗ ✗ 85.32 84.33

YOLOv8n-2 ✗ ✓ ✗ 83.26 85.67

YOLOv8n-3 ✗ ✗ ✓ 85.34 82.15

YOLOv8n-4 ✓ ✓ ✗ 90.87 87.66

YOLOv8n-5 ✗ ✓ ✓ 95.33 92.15

YOLO-NeuroBoost ✓ ✓ ✓ 97.71 95.32

Bold indicates the best results.

4.7 Qualitative Results

4.7.1 Detection of small tumors
Our model also performs well in detecting small tumors.

As shown in Figure 10, through testing on tumors of different

sizes, we found that the YOLO-NeuroBoost model demonstrates

outstanding performance in detecting small-sized targets. Not only

does our model excel in detecting large targets, but it also exhibits

remarkable robustness and accuracy in detecting small tumors.

This capability is particularly crucial in fields like medical image

analysis, where small anomaliesmay be harder to perceive but could

have significant clinical implications.

4.7.2 Explainability illustration
In Figure 11, we demonstrate the efficiency and interpretability

of our model through feature visualization techniques. Using Grad-

CAM (Gradient-weighted Class Activation Mapping), our model

is able to highlight key features within the tumor images, clearly

presenting these in the visualization results. The model not only

shows how it focuses on important areas within the images, such

as the boundaries and structural details of abnormal tissues, but

also aligns highly with the aspects medical experts consider in

tumor diagnosis. This interpretability is extremely important in

the medical field, as it allows doctors and specialists to deeply

understand themodel’s decision-making process by analyzing these

featuremaps, leading tomore precise diagnoses. Additionally, these

intuitive visual explanations not only enhance trust in the model’s

decision-making process but also provide valuable diagnostic

support in clinical practice.

4.7.3 Classification performance
As shown in Figure 12, our model demonstrates outstanding

classification performance. Through extensive training and

testing with large datasets, we have validated that the model
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FIGURE 10

YOLO-NeuroBoost small size brain tumor detection.

FIGURE 11

Brain tumor feature explainability display.

can accurately classify the presence of tumors under various

circumstances. Importantly, our model not only effectively

identifies and distinguishes various complex features within

tumor images but also exhibits excellent robustness when

facing challenging diagnostic scenarios. This remarkable

classification capability provides reliable support for our model

in real-world applications, meeting diverse requirements in

medical diagnosis. It offers substantial assistance to healthcare

professionals, enabling more precise and timely treatment

decisions, ultimately maximizing patients’ chances of recovery

and survival.

4.8 Discussion

We propose the YOLO-NeuroBoost model, which achieved

mAP50 scores of 97.71 and 99.52 on the Roboflow dataset and

Br35H dataset, respectively, surpassing the performance of models

such as yolov8m. This significant improvement is mainly attributed

to the KernelWarehouse convolutional operations. This module

uses precise feature extraction techniques, optimizing the model’s

ability to capture crucial information from images. Compared to

traditional dynamic convolution, our method applies attention-

based hybrid learning paradigms at a finer kernel level, dynamically

adjusting the convolutional kernel responses to achieve adaptive

feature extraction, thereby enhancing the model’s generalization

capability and efficiency.Additionally, for the problem of irrelevant

information in MRI datasets, we integrated the CBAM attention

mechanism. CBAM, through its spatial and channel attention

modules, effectively distinguishes and emphasizes the most critical

features for diagnosis in the images while suppressing irrelevant

information, further enhancing the model’s performance in

handling medical imaging data. Finally, we introduced the Inner-

GIoU loss calculation method, which improves upon traditional

IoU loss by using smaller auxiliary bounding boxes to optimize

loss calculation. This strategy not only accelerates the model’s
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FIGURE 12

Brain tumor classification performance display.

convergence speed but also improves the accuracy of target

detection in complex backgrounds.

Through ablation experiments, we found that each component

plays a critical role in enhancing the model’s performance. The

inclusion of KernelWarehouse, CBAM, or Inner-GIoU individually

results in performance improvements, but not significantly.

However, when these components are used in combination, the

model’s performance is significantly enhanced, especially when

all three components are included, where the YOLO-NeuroBoost

model outperforms other versions on these datasets. Lastly,

Figure 11 presents feature visualizations, where we observed that

the model can accurately identify and locate target objects.

This provides a reliable basis for future in-depth research and

optimization, promising further breakthroughs in MRI tumor

image recognition.

5 Conclusion

In this study, we introduce an improved YOLOv8 algorithm,

termed the YOLO-NeuroBoost model, specifically designed for

detecting brain tumors in MRI images. By integrating advanced

techniques such as KernelWarehouse, CBAM, and Inner-GIoU,

our method significantly enhances the accuracy and robustness of

tumor localization and recognition within the images. Despite the

exceptional performance of our model in most scenarios, it still

encounters challenges in cases with low contrast or high image

noise. For our research, we utilized the Br35H and Roboflow

datasets, which offer a range of MRI images. However, the diversity

of these datasets may still be insufficient to comprehensively

represent the various types, scanning parameters, and quality

of MRI images. This limitation could potentially affect the

model’s generalization capabilities and effectiveness in practical

applications.

Future endeavors will address several key areas: enhancing

image processing techniques to improve robustness against low-

quality images; expanding the dataset to include a wider variety

of MRI images with varying complexities, thereby boosting the

model’s generalizability; and exploring methods to more effectively

leverage information from multimodal MRI images to elevate

model performance. These initiatives are expected to propel

significant progress in the medical imaging domain, offering robust

support for clinical diagnostics and therapeutic applications.
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