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Lean body mass and stroke 
volume, a sex issue
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Introduction: Large vessel occlusions (LVO) account for over 60% of stroke-
related mortality and disability. Lean body mass (LBM) represents metabolically 
active body tissue and has been associated with reduced mortality. This study 
aimed to investigate whether body composition influences LVO stroke perfusion 
volumes and whether this effect is sex-specific.

Methods: Data were retrospectively collected from all patients admitted 
between January 2017 and January 2022 with LVO ischemic stroke at the 
Erasmus Hospital (Brussels), for whom anthropometric and perfusion data were 
available. Body mass index (BMI) and LBM were calculated using, respectively, 
the Quetelet’s and the James’ formula. Correlations between body composition 
and stroke volumes were investigated using Spearman correlations.

Results: A total of 152 patients were included in this study. Mean age 72 ± 14y, 
female ratio 62.5%, core volume 26 ± 38 mL, penumbra volume 104 ± 61 mL. 
LBM correlated significantly with stroke volumes (penumbra and core) in the entire 
group (core: p = 0.001; penumbra: p = 0.001). There was a significant sex-effect, 
with a significant correlation observed only in women (core: p = 0.008; penumbra: 
p = 0.007). BMI did not correlate with perfusion volumes at the group level nor at 
the sex-level.

Conclusion: LBM significantly impacts LVO stroke volumes, but this effect 
is observed only in women. LBM may serve as a superior indicator of body 
composition compared to BMI.
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Introduction

Large vessel occlusions of the anterior circulation (LVO) account for over 60% of stroke-related 
mortality and disability (1, 2). In stroke, sexes are not equals. Women bear a disproportionate 
burden from stroke compared to men: women display higher rates of large territorial infarcts, 
higher mortality, are less likely to achieve functional independence after ischemic stroke in general 
and after endovascular treatment (EVT) for LVO in particular. Those differences are not entirely 
accounted for the average older age at stroke onset, the elevated pre-stroke disability level or the 
higher prevalence of cardio-embolic stroke that are associated with the female sex (3–5) hinting 
that sex-specific factors may influence LVO outcomes.

Patients with LVO stand to derive optimal benefit from thrombectomy when presenting with 
a small core infarction and a substantial volume of salvageable brain tissue at the time of baseline 
imaging evaluation (6). These conditions exhibit a positive correlation with enhanced collateral 
circulation at both the arterial and cerebral brain tissue levels (7), thereby underscoring their 
significant role in predicting favorable outcomes in thrombectomy intervention. In women, a 
discernible paradox is observed in terms of prognosis following an LVO. Despite exhibiting 
ostensibly superior collaterals (8), diminished ischemic stroke core volumes and better mismatch 
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ratios (MMR) between penumbra and core volumes compared to their 
male counterparts (9), the prognostic outcomes for women following an 
LVO are notably poorer. One underexplored explanation may lie in the 
difference in body composition between male and female sexes. The body 
mass, indexed by the body mass index (BMI), is composed of the lean 
body mass (LBM), that comprises metabolically active tissues, including 
water, skeletal and smooth muscle mass and bone (10) and the fat mass 
(FM). Women have a lower proportion of LBM than men. 
Epidemiologically, an excess of FM is associated with greater 
cardiovascular morbidity (11) while higher LBM confers lower 
cardiovascular risk in both sexes (12) and is a protective factor for 
ischemic stroke (13). However, in female individuals, it has been observed 
that a heightened level of FM exerts a distinct mitigating effect on 
cardiovascular disease risk, irrespective of their level of LBM (12). These 
sex differences may contribute to the obesity paradox found in some 
studies that described better stroke and cardiovascular outcomes in 
patients with high BMI (14–17) while others fail to find such association 
(18). Similarly, in LVO, higher salvageable penumbra brain tissue was 
associated with a higher BMI in the data from The Acute STroke Registry 
and Analysis of Lausanne (19). In those studies, BMI was analysed as a 
whole and no distinctions were made between LBM, FM nor sexes which 
have blurred potentially relevant associations.

Here, we aimed to clarify the effects of gender and LBM on LVO 
strokes volumes and outcome in a large cohort of LVO using 
validated anthropometric prediction equations and perfusion 
volume assessment.

Subjects and method

Population

The studied population is derived from the stroke registry of Erasmus 
Hospital in Brussels (Belgium) where all case of acute stroke since January 
2015 are recorded, and our analysis included patients admitted between 
January 2017 and April 2022. The inclusion criteria were as follows: 
confirmed LVO-stroke, performance of a perfusion-CT during the acute 
stroke phase, recorded weight and height, and age > 18 years. Data were 
collected retrospectively from the patients’ medical records.

BMI was calculated using Quetelet’s formula. LBM was 
determined using James’ formula (20):
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Imaging

Pre-interventional imaging included non-contrast CT, CT 
angiography and CT perfusion (CTP). Ischemic core was defined as 
brain volume with cerebral blood flow (CBF) under 30% of the CBF 
of the homologous zone in the contralateral hemisphere. Ischemic 
penumbra was defined as brain volumes where the Tmax of contrast 
product arrival exceeded 6 s. Those volume were automatically 
computed with the Rapid software (21) on which the cut-offs were 
based on (22).

Statistical analysis

Clinical characteristics were reported using descriptive statistics. 
Correlations between body composition and stroke volumes were 
investigated using Spearman correlations. A Linear regression was 
performed for parameters that correlated with LBM. Finally, to further 
characterize the relationship between sex, stroke volumes, outcome 
and LBM, a median-split analysis of the LBM was performed as in 
(23). For group comparisons, when variables were continuous, a 
Mann–Whitney U test was applied. When they were discrete, a χ2 test 
was applied.

Ethics

The study was reviewed and approved by the Ethics Committee of 
Erasmus Hospital, Route de Lennik, 808, Brussels, Belgium.

Due to the retrospective and non-interventional nature of this 
study, written informed consent for participation was not required for 
this study in accordance with the national legislation and the 
institutional requirement of the Ethics Committee of Erasmus 
Hospital, Route de Lennik, 808, Brussels, Belgium.

All methods were performed in accordance with the relevant 
guidelines and regulations.

Results

Population

Of an initial population of 310 LVO, 152 patients were included 
in the final analysis (Figure 1). Mean age of patients was 72 years old 
(62.5% female). Population characteristics are detailed in Table 1.

Correlations

Significant correlations were observed between LBM and stroke 
volumes. This correlation between LBM and stroke volumes was 
sex-specific in the female sex. There was the expected negative 
correlation between LBM and age. Admission NIHSS was significantly 
correlated with lean body mass, only in the entire group. These 
correlations were not observed with BMI or 3 months modified 
Rankin Score (mRS).

Correlation analysis are summarized in Table 2.
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Lean body mass median-split

The LBM median split showed that higher LBM is associated to 
higher stroke volume in women. High LBM in women erases 
sex-differences in stroke characteristics with similar stroke volumes 
than men.

Table 3 details the LBM median-split analysis according to sex.

Linear regressions

Patients with an admission mRS score < 3, anterior LVO, and 
treated with mechanical thrombectomy were included in this study.

Significant correlations were observed between LBM and stroke 
volumes in both the entire group and the female subgroup (women’s 
core: t = 0.042, women’s penumbra: t = 0.005). In this model, LBM 
explains 6% (R2 entire group = 0.064  - R2 women = 0.096  - R2 
men = 0.005) of penumbra’s variability, while age explains only 0.6% 
(R2 = 0.006) of penumbra’s variability. A variation of 10 kg in LBM 
correlates with a proportional variation of 17 mL in penumbra.

Linear regressions of stroke volumes by BMI were evaluated. Slope 
for both penumbra (t = 0.259) and core (t = 0.827) were found to 
be statistically non-significant.

Figure  2 illustrates the regression curves for LBM and 
stroke volume.

Discussion

The main findings of this study are that higher LBM is associated 
with higher stroke volumes in LVO and that the association between 
LBM and stroke volume is specific of the female sex.

Although based on a monocentric cohort, our findings are likely 
to be valid in LVO populations. Indeed, our cohort closely matches 
the clinical characteristics of other large LVO cohorts in term of age, 
sex, stroke risk factors, admission NIHSS and functional outcomes (1, 
24–26). Similarly, perfusion parameters were within the same range 
in term of core and penumbra volume as in the meta-analysis 
performed under the HERMES collaboration that pooled patient-level 
data from all randomized controlled trials that compared endovascular 
thrombectomy with standard medical therapy (27). Furthermore, the 

clinical and imaging characteristics from our population also parallels 
the characteristics from studies that compared LVO perfusion 
parameters and outcomes in men and women (8, 9, 28, 29). Finally, 
the LBM values we report in our study correspond to the normative 
data for 70 years old male and females (30–32). All those facts concur 
to suggest that our observation apply to LVO cohorts in general.

To the best of our knowledge, no previous studies have evaluated 
the effect of LBM on LVO clinical and perfusion parameters at the 
acute phase. The finding that higher LBM is associated with higher 
stroke volumes seems paradoxical. Indeed increased LBM is associated 
with lower mortality rates in older individuals (33) as well as to larger 
brain grey matter volume (34) and lower rates of brain atrophy (35). 
In LVO, the level of brain atrophy is predictive of futile recanalization 
(36) and functional outcome (37). So, a variable usually associated 
with better brain trophicity would be expected to be beneficial instead 
of detrimental. The reason why LBM is associated with higher LVO 
stroke volume in women is probably not to be  found in brain 
leptomeningeal collaterality as arterial collaterality scores are better in 
women than men in LVO (8) but could relate to tissular collaterality 
issues. Indeed, brain tissular collaterality is reflected by LVO stroke 
core and penumbra volumes and while women tend to have lower 
LVO stroke volumes, women with higher LBM in our study showed 
similar stroke volumes than men. Thus, higher LBM in women seems 
to erase the sex-effect in LVO stroke volumes. This observation is not 
due to the age difference between men and women in our study, as 
regression models showed that LBM explained a ten times higher 
proportion of penumbra volume variability than age. A possible 
explanation as to why higher LBM lessens the positive female 
sex-effect on LVO stroke volumes could relate to blood pressure levels. 
Increased LBM is positively correlated with elevated mean blood 
pressure (38, 39). Furthermore, heightened blood pressure levels 
exhibit an adverse association with functional outcomes following 
LVO and an augmented burden of white matter lesions (WML). 
Cerebral blood flow is more impaired with higher burden of WML 
(40) and WML burden is significantly higher in women compared to 
men (41). This cascade of events may serve as a circumstantial 
elucidation for the observed correlation wherein elevated LBM in 
females correlates with heightened perfusion parameters in both male 
and female subjects.

Different cerebral self-regulation mechanisms in relation to LBM 
could also contribute to the sex difference we  report. Previous 
research has reported differences in the adaptability of the 

FIGURE 1

Flow chart.
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cardiovascular system to exercise, particularly in women, that were 
strongly correlated with LBM (42). Decreased LBM is associated with 
decreased cardiac output (CO) and increased peripheral vascular 
resistance, while increased LBM has shown the opposite effects on 
CO and peripheral vascular resistance (42). This raises the question 

of whether a similar phenomenon occurs at the intracranial level, 
influencing the myogenic tone of the arteries. During acute 
ischaemia, the fall in CBF induces hypoxia which favors 
vasodilatation, while the fall in pressure causes myogenic 
vasodilatation (43). In these patients, whose tone is already reduced, 

TABLE 1 Data summary.

Entire group Women Men

Age (y) mean ± sd 72 ± 14 72 ± 14 70 ± 14

BMI (kg/m2) mean ± sd 26.3 ± 4.1 26 ± 4 26.8 ± 3.7

LBM (kg) mean ± sd

median

52.2 ± 8.5

51.2

47.5 ± 5.3

47.4

60 ± 7.2

59

Admission NIHSS (n = 151) mean ± sd 15 ± 8 15 ± 8 15 ± 7

Discharge NIHSS (n = 135) mean ± sd 7 ± 7 7 ± 8 7 ± 7

Core (ml) mean ± sd 26 ± 38 21.9 ± 31.6 33.8 ± 45.2

Penumbra (ml) mean ± sd 104 ± 61 96.39 ± 54.8 117 ± 69.1

Mismatch ratio 178.5 217.7 113.2

Known atrial fibrillation n (%) 32 (21.1) 17 (17.9) 15 (26.3)

HTA n (%) 110 (72.4) 68 (71.6) 42 (73.7)

Dyslipidaemia n (%) 100 (65.8) 58 (61.1) 42 (73.7)

Type 2 Diabetes n (%) 33 (21.7) 16 (16.8) 17 (29.8)

Smoke n (%) 56 (36.8) 28 (29.5) 28 (49.1)

mRS at 3 months (n = 119) n (%) 0 13 (8.6) 11 (15.1) 2 (4.3)

1 29 (19.1) 15 (20.6) 14 (30.4)

2 21 (13.8) 13 (17.8) 8 (17.4)

3 20 (13.2) 12 (16.4) 8 (17.4)

4 8 (5.3) 6 (8.2) 2 (4.3)

5 1 (0.7) 1 (1.4) 12 (26.1)

6 27 (17.8) 15 (20.6) 2 (4.3)

Occlusion site n (%) Cervical CI 3 (2) 2 (2.1) 1 (1.8)

Terminal CI 7 (4.6) 0 (0) 7 (12.3)

Carotid T 29 (19.1) 20 (21.1) 9 (15.8)

M1 60 (39.5) 44 (46.3) 16 (28.1)

M2 38 (25) 22 (23.2) 16 (28.1)

A1 1 (0.7) 0 (0) 1 (1.8)

P1 2 (1.3) 2 (2.1) 0 (0)

P2 2 (1.3) 1 (1) 1 (1.8)

Mixed 7 (4.6) 3 (3.2) 4 (7)

M3 3 (2) 1 (1) 2 (3.5)

IVT - n (%) 89 (58.6) 48 (50.5) 41 (71.9)

EVT - n (%) 149 (98) 94 (98.9) 55 (96.5)

βTICI n (%) 0 19 (12.5) 8 (8.5) 11 (19.3)

1 1 (0.7) 1 (1.1) 0 (0)

2a 9 (5.9) 4 (4.3) 5 (8.8)

2b 38 (25) 25 (26.6) 13 (22.8)

2c 21 (13.8) 13 (13.8) 8 (14)

3 61 (40.1) 43 (45.7) 18 (31.6)
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additional myogenic vasodilatation could be  limited, effectively 
increasing the penumbra volume. To assess this hypothesis, it would 
be of interest to evaluate CBF using transcranial Doppler during the 

acute phase of LVO stroke as well as post-stroke, considering 
potential gender differences in CBF, and their association with 
varying levels of LBM.

Finally, BMI, owing to its role in defining obesity, is widely used 
to describe the weight status of patients. However, its utility is 
limited when it comes to assessing stroke volume or predicting the 
functional outcome of patients. This limitation may be attributed, at 
least in part, to the lack of representativeness of body composition 
in its calculation (44).The use of LBM could potentially serve as a 
more suitable tool for assessing body composition in stroke patients. 
One could object that in our study, we  used James’ equation to 
compute LBM and not Dual X-ray Absorptiometry (DXA) that is 
the gold-standard to assess body composition. However, DXA is not 
suited for acute stroke settings and LBM estimation equations, such 
as James’, displays 0.948 Pearson rank correlation with DXA 
measures (45) suggesting that LBM equation are effective surrogates 
to estimate LBM.

In summary, we showed that LBM has a sex specific effect on LVO 
stroke volumes in women. This observation warrants further studies 
to understand the pathophysiology behind this association and help 
understand why women fare worse after an LVO stroke than men in 
order to provide tailored care.

TABLE 2 Spearman’s correlations between LBM or BMI and age, core, penumbra, mismatch ratio, NIHSS at admission and mRS at 3 months.

Entire group Women Men

Rho p-value Rho p-value Rho p-value

LBM with Age −0.175 0.040 −0.103 0.336 −0.276 0.053

Core 0.320 < 0.001 0.281 0.008 0.080 0.579

Penumbra 0.294 < 0.001 0.286 0.007 0.184 0.200

Mismatch Ratio −0.275 0.002 −0.240 0.044 −0.064 0.661

NIHSS at admission 0.184 0.031 0.194 0.070 4.814 × 10−4 0.997

mRS at 3 months 0.080 0.409 0.162 0.179 −0.150 0.355

BMI with Age −0.075 0.383 2.556 × 10−4 0.998 −0.238 0.096

Core 0.088 0.302 0.171 0.109 −0.155 0.282

Penumbra 0.131 0.125 0.162 0.130 0.020 0.892

Mismatch Ratio −0.048 0.591 −0.150 0.188 0.162 0,265

NIHSS at admission −0,005 0,953 0,044 0,686 −0,145 0,314

mRS at 3 months −0.027 0.783 0.005 0.965 −0.076 0.641

Statistically significant values (p < 0.05) are highlighted in bold.

TABLE 3 Median split according to LBM’s median and comparisons of clinical characteristics.

Entire group Women Men

LBM m ± sd p m ± sd p m ± sd p

LowLBM HighLBM LowLBM HighLBM LowLBM HighLBM

Age* (y) 72 ± 14 69 ± 14 0.175 71 ± 14 70 ± 14 0.639 81 ± 11 69 ± 14 0.108

Sex (W%) 93% 31% <0.001

BMI* (kg/m2) 25.6 ± 4.5 27.0 ± 2.9 0.004 25.7 ± 4.4 28.3 ± 2.6 0.002 24.2 ± 6.6 26.4 ± 2.8 0.140

Core* (ml) 20 ± 28 34 ± 42 0.014 20 ± 29 29 ± 39 0.171 18 ± 13 36 ± 44 0.465

Penumbra* (ml) 93 ± 48 123 ± 66 0.007 91 ± 49 126 ± 59 0.017 114 ± 34 122 ± 70 0.867

Admission NIHSS 15 ± 8 16 ± 7 0.144 14 ± 8 17 ± 6 0.232 17 ± 7 16 ± 7 0.881

mRS at 3 months 0.554 0.16 0.41

For continuous variables(*), Mann–Whitney’s U-test was applied. For discrete variables, χ2 test was applied. Statistically significant values (p < 0.05) are highlighted in bold.

y = 1.9x + 4.9
R² = 0.064
t = 0.004
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FIGURE 2

Penumbra according to LBM. In continuous line, regression curve. In 
dotted line, croissant class of LBM curve.
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