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Purpose: This study aimed to assess the association between motor and non-
motor symptoms of Parkinson’s disease (PD) and iron accumulation within the 
deep gray matter of the brain by Quantitative Susceptibility Mapping (QSM).

Methods: Fifty-six PD patients and twenty-nine healthy controls were recruited 
in this study. According to the Hoehn and Yahr (H-Y) stage score, PD patients 
were divided into early stage (H-Y ≤ 2) and advanced stage (H-Y > 2) groups. 
Specifically, the Regions of Interest (ROIs) encompassed the substantia nigra 
(SN), red nucleus (RN), caudate nucleus (CN), globus pallidus (GP) and putamen 
(PT). Meanwhile, various rating scales were used to assess the clinical symptoms 
of PD.

Results: Compared to healthy controls (HCs), PD patients showed a significant 
increase in magnetic susceptibility values (MSVs) within the SN and GP. Further 
comparisons indicated that the MSVs of the SN, PT, GP and CN are all higher 
in advanced stages than in early stages. Significant positive correlations were 
observed between the MSVs of the SN and scores on the UPDRS-III, HAMA, 
and HAMD (r = 0.310, p = 0.020; r = 0.273, p = 0.042; r = 0.342, p = 0.010, 
respectively). Likewise, the MSVs of the GP demonstrated notable correlations 
with HAMA and HAMD scores (r = 0.275, p = 0.040; r = 0.415, p = 0.001). 
Additionally, a significant correlation was found between the MSVs of the PT and 
HAMD scores (r = 0.360, p = 0.006). Furthermore, we  identified a significant 
negative correlation between MMSE scores and the MSVs of both the PT and GP 
(r = −0.268, p = 0.046; r = −0.305, p = 0.022).

Conclusion: Our study revealed that QSM possesses the capability to serve as a 
biomarker for PD. Significant correlations were found between clinical features 
and the iron deposition in the nigrostriatal system.
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1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disease 
that affects approximately 2–3% of the world’s population aged 
65 years and over (1), and is characterized by the depletion of 
dopaminergic neurons in the substantia nigra (SN), leading to a 
subsequent dopamine deficiency in the striatum (2). PD is primarily 
known for its motor impairments caused by the gradual depletion of 
dopaminergic neurons. Nonetheless, individuals with PD also endure 
a wide range of disabling non-motor symptoms, such as anosmia, 
constipation, autonomic dysfunction, psychiatric manifestations and 
cognitive impairment (3), these symptoms are not directly linked to 
the degree of motor impairment and may even manifest prior to the 
appearance of motor symptoms.

Over the past few years, significant progress has been made by 
researchers in understanding the pathology of the disease. Although 
the precise mechanisms underlying PD pathology are complex and 
involve multiple factors, several molecular pathways have been 
identified as playing a role, such as the accumulation of misfolded 
α-synuclein, mitochondrial dysfunction, oxidative stress, 
inflammation, and elevated iron levels (4–7).

Research has demonstrated that iron plays a pivotal role in the cell 
death process known as ferroptosis (8), and iron deposition has long 
been suspected as a contributing factor in the damage of dopaminergic 
neurons (9). The accumulation of iron in the brains of healthy 
individuals usually increases with age (10), but this increase is notably 
less pronounced compared to that seen in patients with PD. As a 
powerful pro-oxidant, excess iron causes an increase in reactive 
oxygen species, disrupts mitochondrial function, and ultimately leads 
to cell death through iron-related mechanisms (11, 12). Furthermore, 
iron overload can facilitate the aggregation of α-synuclein (6). 
Quantitative susceptibility mapping (QSM) is a Magnetic Resonance 
Imaging (MRI) technique that can be  employed to quantify iron 
content (13). Anatomical landmarks, particularly those found in deep 
gray matter regions, can be  easily recognized using QSM. QSM 
exhibits increased precision in measuring iron concentrations in 
tissues, coupled with improved dependability and reproducibility (14). 
Additionally, the magnetic susceptibility values (MSVs) obtained 
through QSM provide useful quantifiable metrics for evaluations and 
comparisons among different groups.

In this study, we used QSM to determine iron content in the deep 
gray matter of PD brain, with the aim of evaluating iron deposition in 
different stages of PD and its association with motor and non-motor 
symptoms of PD.

2 Materials and methods

2.1 Participants and agreements

From November 2021 to November 2023, a total of 56 patients 
were consecutively recruited from the Department of Neurology, 
Affiliated Hospital of Nantong University. The diagnosis of PD was 
made according to the MDS clinical diagnostic criteria for idiopathic 
PD (15) and was evaluated by two neurologists specializing in 
movement disorders. Additionally, 29 healthy controls (HCs), 
matched for age and gender, were included in the study, with no 
known history of clinically overt neurological or psychiatric disease. 

Patients were excluded from the study if they presented with the 
following conditions: (1) secondary parkinsonism, parkinson-plus 
syndromes and hereditary parkinson syndromes; (2) a history of 
neurological diseases, such as severe head trauma or stroke; (3) poor 
image quality; (4) general contraindications for MRI scanning, 
including claustrophobia, pacemaker, or implanted metal parts. (5) 
PD patients had comorbidities that could influence iron accumulation 
or clinical symptom expression. The Ethics Committees of the 
Affiliated Hospital of Nantong University granted approval for this 
study, and prior to participation, written informed consent was 
obtained from all subjects.

2.2 Clinical evaluations

All patients with PD were assessed within 1 week before QSM by 
a series of rating scales for evaluating the motor and non-motor 
symptoms. Severity of PD was assessed by Hoehn and Yahr (H-Y) 
stage scores, and patients with a stage ≤2 were grouped into the early 
stage PD group, while those with a stage >2 were grouped into the 
advanced stage PD group. The third part of the MDS-Unified PD 
Rating Scale (UPDRS-III) (16), served as the metric to determine the 
extent of motor symptoms. Additionally, the Mini-Mental Status 
Examination (MMSE) was used to assess cognitive impairment, while 
the Hamilton Anxiety Scale (HAMA) and the Hamilton Depression 
Scale (HAMD) were utilized to measure anxiety and depression, 
respectively.

2.3 MRI acquisition

All participants underwent MRI scans using a 3 T MR scanner 
(Signal 750w; GE Healthcare, USA) with a multi-echo gradient 
recalled echo (GRE) sequence. All PD patients discontinued dopamine 
agonists for one week prior to the scan. To prevent head movement 
and minimize scanner noise, foam pads and earplugs were used. In 
addition to the GRE sequence for QSM, routine brain MRI scans 
included T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), and T2-weighted fluid attenuated inversion recovery 
(T2-FLAIR), which would be helpful for anatomical guidance and 
lesion exclusion. The scan parameters for QSM were set as follows: 
echo time (TE) of first echo = 3.3 ms; echo spacing = 2.3 ms; total 
number of echoes = 16; repeat time (TR) = 32.5 ms; flip angle 
(FA) = 20°; field of view (FOV) = 256 × 256 mm2; matrix = 256 × 256; 
layer thickness = 1 mm; acceptance bandwidth = 62.50 Hz/Px; 
imaging time = 3 min 42 s.

2.4 MRI post processing

The phase images with multiple echoes were unwrapped using 
a Laplacian-based unwrapping technique (17). To eliminate the 
background field from the unwrapped phase image, the V-SHARP 
(variable-kernels sophisticated harmonic artifact reduction for 
phase data) method was applied in conjunction with a binary brain 
mask (18). Additionally, we utilized the STAR-QSM technique to 
further reduce streaking artifacts in the image (19). The QSM scans 
encompassed the bilaterally symmetric regions of the substantia 
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nigra (SN), red nucleus (RN), globus pallidus (GP), putamen (PT) 
and caudate nucleus (CN) (Figure  1). Cerebrospinal fluid was 
chosen as the reference region for QSM of the brain. Two 
experienced neuroradiologists, blinded to the subjects’ identity 
and clinical details, manually traced the ROIs using AW Volume 
Share 5.0 software. First, we  opened the QSM images in the 
software and adjusted the contrast of the acquired images. Then, 
we selected the most prominent layer, along with two adjacent 
layers of each nucleus, and performed manual segmentation. 
Finally, the software performed additional calculations to 
determine the average one-sided MSV of the three layers. 
Subsequently, the mean values from both sides were utilized as 
regional MSVs for further analysis. The unit for these MSVs is ppm 
(parts per million).

2.5 Statistical analysis

All datas analyzed in this study were processed using IBM SPSS 
25.0 software. Normality tests were conducted on the continuous 
variables. Variables exhibiting a normal distribution were presented 
using mean ± standard deviation. Variables that deviated from a 
normal distribution, on the other hand, were represented by the 
median and interquartile range. Categorical variables were expressed 
as frequencies and percentages. In this study, age, UPDRS-III scores, 
HAMA scores, and regional MSVs all exhibited a normal distribution, 
while the disease duration, HAMD scores, and MMSE scores all 
followed a skewed distribution.

For continuous variables, the two datasets were compared using 
either the independent samples t-test (when the data followed a 
normal distribution) or the Mann–Whitney U-test (when the 
distribution was skewed). Pearson’s chi-square tests were used to 
compare categorical variables. Spearman or pearson correlation 
analysis was used to evaluate the correlations between MSVs and 
clinical scores. p < 0.05 was considered to be statistically significant.

3 Results

3.1 Demographic data

Demographic and clinical characteristics were summarized in 
Table 1. Compared to the HCs, the PD group exhibited statistically 
significant differences in the MSVs of the SN and GP, and the 
intercomparisons of MSVs between the two groups were performed 
controlling for age and gender. Whereas, no significant differences 
were observed in the MSVs of the RN, PT, and CN.

3.2 Comparison of MSVs in different brain 
ROIs between early PD and advanced PD

Table 2 summarizes the comparison between PD patients with 
early and advanced disease stages, indicating that patients in the 
advanced stage had higher ages, longer disease durations, and higher 
scores on the UPDRS-III, HAMA, and HAMD compared with 
patients in the early stage. Furthermore, significant differences could 
be seen when referring to iron deposition in SN, PT, GP, and CN, 
which is compliant with the progressiveness of PD. However, no 
marked differences in MSVs of RN were found between the 
two groups.

3.3 Correlation analysis between clinical 
characteristics and regional MSVs in 
patients with PD

In the PD patients recruited for the current study, Table 2 and 
Figure 2 demonstrate a significant correlation between regional MSVs 
and the scores of the UPDRS-III, HAMA, HAMD, and MMSE. The 
results turned out that the MSVs of SN were significantly and 
positively correlated with scores of UPDRS-III, HAMA and HAMD 

FIGURE 1

(A,B) The regions of interests (ROIs) were manually drawn for the substantia nigra (SN), red nucleus (RN), globus pallidus (GP), putamen (PT), and 
caudate nucleus (CN) on the QSM images.
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(r = 0.310, p = 0.020; r = 0.273, p = 0.042; r = 0.342, p = 0.010, 
respectively). Similarly, MSVs of GP also had a notable correlation 
with scores of HAMA and HAMD (r = 0.275, p = 0.040; r = 0.415, 
p = 0.001). And the MSVs of PT was significantly correlated with the 
HAMD scores (r = 0.360, p = 0.006). We also observed a significant 
negative correlation between the MMSE scores and the MSVs of PT 
and GP (r = −0.268, p = 0.046; r = −0.305, p = 0.022).

4 Discussion

Until now, the precise contributing factors in the development 
of PD remain elusive. It has been shown that in patients with PD, 
excess iron deposition has been observed in the deep gray matter 
structures of the brain, including the basal ganglia (comprising the 
GP, PT, and CN), the midbrain (including the RN and SN), and the 
dentate nucleus. Using QSM analyses to map the MSV in the 
nigrostriatal system, we found increased iron accumulation in SN 
and GP in PD patients compared with the HCs. As the disease 
progressed into the advanced stages, iron deposition extended to 
be  more severe in the SN, GP, PT, and CN regions than in the 
early stages.

Several studies have documented the presence of unusual iron 
accumulations in certain deep brain nuclei of individuals with PD 

(20, 21). However, there is some inconsistency in these findings, 
which might stem from the limited sensitivity of the detection 
techniques and the relatively small number of participants. Studies 
have indicated that the SN is a crucial structure that has a 
significant impact on the pathophysiology of individuals with PD 
(22). A study utilizing QSM demonstrated that the concentration 
of iron in the SN of PD patients is significantly increased, exceeding 
the normal levels found in HCs. Furthermore, PD patients who 
exhibit more severe iron accumulation in the SN tend to score 
higher on the UPDRS motor section (20), which is consistent with 
our study.

The process of iron deposition in PD is complex, encompassing 
various mechanisms that affect iron distribution, transportation, 
storage, and circulation, ultimately resulting in iron accumulation 
within the SN and other parts of the brain (6). Previous studies 
have indeed demonstrated the existence of a diverse array of 
neural circuits, projections, and interconnected neural networks 
between the SN and the striatum. The dysfunction of dopaminergic 
striatal pathways is intricately linked to the elevated iron content 
in the SN (23). The cortical–limbic-striatal circuitry is also a 
functional brain network involved in neuromodulation. These 
intricate connections play a crucial role in the regulation and 
modulation of various motor and non-motor functions in the 
brain (24).

TABLE 1 Baseline demographic and clinical characteristics of participants.

PD (n = 56) HCs (n = 29) p

Gender (male, %) 32 (57.1%) 15 (51.7%) 0.634

Age (years) 63.04 ± 8.66 62.07 ± 10.36 0.650

SN 0.071 ± 0.026 0.055 ± 0.019 0.001

RN 0.094 ± 0.027 0.089 ± 0.022 0.390

PT 0.094 ± 0.024 0.086 ± 0.016 0.097

GP 0.140 ± 0.037 0.116 ± 0.020 <0.001

CN 0.063 ± 0.019 0.057 ± 0.020 0.189

PD, Parkinson’s disease; HCs, healthy controls; SN, substantia nigra; RN, red nucleus; GP, globus pallidus; PT, putamen; CN, caudate nucleus. The unit of MSVs is ppm.

TABLE 2 Comparisons of clinical characteristics and regional MSVs between Early PD and Advanced PD.

Early PD (n = 32) Advanced PD (n = 24) p

Gender (male, %) 19 (59.4) 13 (54.2) 0.697

Age (years) 61.28 ± 8.46 65.38 ± 8.54 0.080

Duration (years) 2.00 (0.85–3.00) 7.50 (5.00–9.75) <0.001

UPDRS-III 12.00 (9.00–17.75) 30.50 (21.50–39.25) <0.001

MMSE 26.00 (25.00–28.00) 26.00 (24.00–27.00) 0.242

HAMA 10.94 ± 4.18 13.71 ± 4.84 0.026

HAMD 4.00 (2.00–7.00) 9.50 (7.25–12.75) <0.001

SN 0.065 ± 0.023 0.079 ± 0.028 0.035

RN 0.094 ± 0.028 0.094 ± 0.025 0.996

PT 0.087 ± 0.186 0.103 ± 0.028 0.023

GP 0.131 ± 0.032 0.153 ± 0.040 0.024

CN 0.058 ± 0.018 0.070 ± 0.018 0.024

PD, Parkinson’s disease; SN, substantia nigra; RN, red nucleus; GP, globus pallidus; PT, putamen; CN, caudate nucleus; UPDRS-III, the third part of the MDS-Unified PD Rating Scale; HAMA, 
Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; MMSE, Mini-Mental Status Examination. The unit of MSVs is ppm.

https://doi.org/10.3389/fneur.2024.1442903
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2024.1442903

Frontiers in Neurology 05 frontiersin.org

The potential associations between non-motor symptoms in PD 
and the underlying nigrostriatal pathology are not well understood. 
Increasing evidence suggests that a nigrostriatal dopamine deficiency 
in PD is linked not only to motor symptoms but also to non-motor 
symptoms (25, 26). Our study revealed that there is a notable 
correlation between iron deposition within the deep gray matter and 
non-motor symptoms (including anxiety, depression, and cognitive 
impairment), which was less frequently discussed in previous studies.

Anxiety is an emotional state that can arise from the anticipation 
of a potential or envisioned future danger or threat (27). Dopamine 
is a crucial neurotransmitter found in the central nervous system 
and plays a significant role in regulating human emotions. The 
degeneration of dopaminergic neurons located in the SN is 
confirmed to be the main pathological feature of PD, and alterations 
in dopaminergic activity within the limbic cortico-striato-
thalamocortical circuits might also explain the high prevalence of 

FIGURE 2 (Continued)
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anxiety among PD patients (28). Elevated iron levels within the 
neural circuits linked to fear in the brain are associated with anxiety 
in PD (29). Avila et al. (30) indicated that dopamine interacting 
with D2 or D4 receptors in the GP might play a role in the 
manifestation of anxiety. Our study revealed that PD patients with 
greater iron deposition in the SN and GP exhibited more severe 
anxiety symptoms. This iron accumulation contributes to cellular 
and tissue damage, potentially explaining the development of 
anxiety in PD.

Correlation analysis in our study provided some objective 
evidence that iron deposition within the SN, GP, and PT was actually 
correlated with the depression symptoms of PD patients. PD patients 
with depression exhibited a more significant loss of dopaminergic 
neurons in the SN compared to those without depression (31). This 
suggests that the SN is a crucial area for mood modulation in patients 
with PD (32). Moreover, in PD patients with depression, there is a 
noticeable widespread degeneration of dopaminergic terminals 
specifically within the striatum, and more prominently in the dorsal 
caudate nucleus (33). Hamilton et al. (34) observed that the raclopride 
binding potential increased in the ventral striatum bilaterally and in 
the right dorsal striatum of depressed participants. Furthermore, the 
connectivity between these regions and cortical targets, such as the 
cortico-striatal-pallido-thalamic circuit, was decreased.

Dopamine also plays a pivotal role in modulating hippocampal-
dependent mnemonic processes, exerting distinct effects on 
multiple facets of memory and cognition (35). A previous study 
showed that striatal iron accumulations were correlated with 
dopaminergic deficits and neurophysiological signs in patients with 
PD (36). Our study found that there is a positive correlation between 
the iron deposition in the GP, PT and the severity of cognitive 
impairment in patients with PD. A recent study revealed that 
age-related alterations occur in the dopaminergic innervation of the 
striatum, resulting in decreased cognitive performance (37). 
Stögbauer et al. (38) found that the degeneration of dopaminergic 

neurons in the striatum, particularly those located in the executive 
subregion, plays a significant role in causing cognitive impairments 
observed in PD.

The current study has several limitations. First, the sample size 
utilized was comparatively small, thus future research endeavors 
involving more extensive cohorts are warranted to yield stronger 
and more reliable insights. Second, the MSV may be influenced by 
other factors such as calcium, copper, or lipid, although these 
effects are minor compared with those of iron. Third, the cross-
sectional design of this study limits our ability to reach conclusions 
about the specific role of striatal iron in the progression of PD, 
therefore, more long-term studies are needed. Additionally, our 
current post-processing software requires manual segmentation to 
delineate the ROIs and lacks automatic segmentation functionality. 
In the future, we plan to select a more advanced post-processing 
software to achieve automatic segmentation and minimize 
result errors.

In summary, we documented the substantial accumulation of 
iron in the deep gray matter of patients with PD. The progressive 
pattern of iron deposition in the SN and GP might occur throughout 
the entire course of PD. Furthermore, there was a potential 
correlation between iron content in the SN, GP, and PT and certain 
clinical symptoms, such as motor impairments, anxiety, depression, 
and cognitive impairment. These findings offer a non-invasive 
biomarker for tracking disease progression and potentially 
contribute to a deeper understanding of the clinicopathological 
mechanisms underlying PD.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

FIGURE 2

Correlation between clinical Characteristics and regional MSVs in PD patients. (A) Correlation between UPDRS-III scores and MSVs of SN. 
(B) Correlation between anxiety scores and MSVs of SN. (C) Correlation between anxiety scores and MSVs of GP. (D) Correlation between depression 
scores and MSVs of SN. (E) Correlation between depression scores and MSVs of PT. (F) Correlation between depression scores and MSVs of GP. 
(G) Correlation between MMSE scores and MSVs of PT. (H) Correlation between MMSE scores and MSVs of GP. The unit of MSVs is ppm.
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