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Background and objectives: As the population of U.S. service members (SMs) 
who have sustained concussions and more severe traumatic brain injuries (TBIs) 
during military service ages, understanding the long-term outcomes associated 
with such injuries will provide critical information that may promote long-term 
assessment, support, and rehabilitation following military service. The objective 
of this research was to examine whether concussion and more severe TBIs 
are associated with greater risk of precursors to dementia (i.e., mild cognitive 
impairment, memory loss), early-onset dementia, and any dementia.

Methods: This study used a retrospective cohort design wherein archival medical 
and career records from 1980 to 2020 identified U.S. military personnel who 
retired from military service and their corresponding Tricare-reimbursable medical 
encounters in inpatient and/or outpatient settings in military treatment facilities and/
or purchased care settings both before and after retirement. All military personnel 
who served on active duty between 1980 and 2020 and were at least 45  years of 
age by 2020 were eligible for inclusion (N  =  6,092,432). Those who were discharged 
from military service with a retirement designation, and were thus eligible for 
Tricare for Life, were included in the analytic sample (N  =  1,211,972). Diagnoses of 
concussion and more severe TBI during active duty service recorded in inpatient 
settings between 1980 and 2020 and in outpatient settings from 2001 to 2020 
were identified. Focal outcomes of interest included memory loss, mild cognitive 
impairment, Alzheimer’s, Lewy Body dementia, frontotemporal dementia, and 
vascular dementia. Dementia diagnoses before age 65 were labeled early-onset.

Results: Those with (vs. without) concussion diagnoses during military service 
were significantly more likely to be  diagnosed with memory loss and mild 
cognitive impairment and any of the dementias examined. However, they were 
not at greater risk of being diagnosed with early-onset dementia.

Discussion: Military SMs diagnosed with concussion may be at elevated risk for 
long-term neurodegenerative outcomes including memory loss, mild cognitive 
impairment, and dementia. As the population of SMs who sustained TBI during 
the Global War on Terror continue to age, the prevalence of dementia will 
increase and may bring a unique burden to the VHA.
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1 Introduction

Dementia is the result of a progressive neurodegenerative disease 
whose symptoms include memory impairment, alterations in decision 
making, diminished orientation, and neuropsychiatric symptoms (1–3). 
The risk of developing dementia increases with age; traditionally, when 
dementia symptoms emerge before age 65 it is labeled as early-onset (2, 
4). Even before an official dementia diagnosis is recorded within the 
medical record, patients may be diagnosed with memory loss and mild 
cognitive impairment in both primary care and specialized settings 
(5–8). The risk for these dementia precursors also increases with age (1, 
9–11). The American population is aging and previous research suggests 
that the prevalence of dementia diagnoses, including Alzheimer’s 
Disease, is also increasing and will result in increased healthcare 
expenditures (12, 13), including among veterans (14). Recent estimates 
suggested that the prevalence of veterans above age 65 who receive care 
at the United States Veterans Health Administration (VHA) is nearly 
10% and is anticipated to increase 22% between 2020 and 2033 (15).

Although a plethora of risk factors associated with dementia 
diagnoses (including age, genetics, environmental factors, prior medical 
conditions, and lifestyle) have been identified, risk factors associated 
with precursors to dementia are relatively understudied (1, 2, 11, 14–
21). While civilian and military populations share several of these risk 
factors, military service may place service members (SMs) and veterans 
at increased risk for others (17, 18, 22). Traumatic brain injury (TBI) is 
one such risk factor that has been associated with neurodegeneration 
generally (23, 24). Unfortunately, concussions and more severe forms of 
TBI are prevalent among SMs (25). TBIs among military personnel may 
be caused by direct impact to the head (e.g., from a motor vehicle crash, 
fall) as well as from exposure to a high-level blast (HLB; i.e., blast 
exposure resulting from incoming munitions such as an improvised 
explosive device) (26–30). Though evidence is mixed, research suggests 
that moderate and severe TBIs are associated with greater risk of 
dementia (12, 13, 17, 18, 31–43). Research by Graham and Sharp (2019) 
suggested that TBI may put people at 50% greater risk of dementia and 
may be directly attributed to 5% of dementia cases. Similarly, analysis of 
VHA medical records suggests that TBI is associated with a 60% greater 
likelihood of dementia diagnoses (44). Furthermore, a study of World 
War II Navy and Marine Corps veterans showed that those who were 
hospitalized with head injury were at significantly greater risk of 
developing dementia (32). A variety of mechanisms have been proposed 
to explain this effect including axonal damage, inflammation, protein 
accumulation, vasospasm, oxidative stress, and more (17, 18, 22, 23, 
33–35, 38, 40, 45–48).

However, it remains unclear whether the mildest severity of TBI, 
concussion, is associated with increased risk for dementia as findings 
are mixed in the literature (21, 24, 32, 49). Although some researchers 
have postulated that TBI generally hastens the onset of dementia, only 
limited evidence to date exists for such an association and findings 
with regard to concussion are not yet consistent (10, 32, 33, 37, 38, 40, 
44–46, 48, 50). Previous research methodologies have also been 
limited in important ways. For example, few studies to date have had 
access to continuous historical records of medical care while serving 
on active duty and, thus, cannot examine the association between TBI 
sustained during military service and dementia after service while 
accounting for relevant confounds (22, 51). Furthermore, sole reliance 
on inpatient medical records is limiting because concussions are often 
treated on an outpatient basis (32). It is also often difficult for 

researchers to account for other risk factors associated with dementia 
(e.g., PTSD) and thus disentangle them from TBI (14, 18, 31). 
Additionally, although case–control studies have some methodological 
advantages, researchers have noted that a combination of small sample 
size, low prevalence of TBI and/or dementia, and recall bias for 
survey-based research, have posed challenges for such methods (45).

Taken together, continued high incidence rates warrant further 
examination of long-term outcomes associated with TBI, including 
dementia and its precursors (33, 52–55). In addition to TBI, military 
personnel may be  at greater risk of dementia than their civilian 
counterparts due to greater risk of mental health conditions (e.g., 
PTSD, depression), combat experience, occupational or environmental 
exposures (e.g., Agent Orange, Gulf War Illness), and more (14, 17, 18, 
44, 47, 56, 57). One occupational exposure that warrants further 
attention is low-level blast (LLB) (26, 58–60). Whereas HLB is blast 
overpressure exposure that results from incoming munitions, LLB is 
blast overpressure exposure that results from outgoing munitions, 
such as firing heavy caliber weapons during training and in 
operational environments (26). Exposure to LLB differs across 
military occupations as warfighters in some occupations (e.g., artillery, 
special forces) are expected to fire such weapons systems more 
frequently than others (e.g., personnel and administration, food 
service) (61–63). Notably, no evidence to date has examined whether 
LLB is associated with increased risk of dementia among veterans, 
despite preliminary evidence that it is associated with memory loss 
and other neurological symptoms (26, 47, 58, 64–66). Furthermore, 
limited research to date has examined the effects of TBI on dementia 
among large samples of Global War on Terror veterans despite record 
rates of TBI likely due to their young age. Identification of risk factors 
associated with dementia and its precursors may provide opportunities 
for early intervention and decrease cumulative costs (67).

To address these gaps, we sought to determine whether concussion 
and TBIs of all severities, respectively, sustained during active military 
service were associated with a greater risk of (1) any dementia (2), 
early-onset dementia, and (3) precursors of dementia such as mild 
cognitive impairment and memory loss. To this end, we leveraged 
more than 40 years of archival military service population-level data 
from SMs that retired from service before the end of the study window. 
By examining this specific population of SMs, we  examine a 
population that was relatively young and healthy at the time TBI 
occurred, had access to consistent medical care at no cost, and 
represents the existing and future patient population that will require 
resources and care over the next few decades.

2 Method

2.1 Database

The present research utilized the Naval Health Research Center’s 
Career History Archival Medical and Personnel System (CHAMPS) 
which was established in the 1990s as a longitudinal record of 
pay-affecting career records and medical data for SMs who served on 
active duty from as early as 1980 to present (68). Career records 
include accession to military service, duty station or occupation 
changes, paygrade changes, and discharge from service. Medical 
records for Tricare-reimbursable medical encounters are integrated 
from the Military Health System Medical Data Repository (MDR). 
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Clinical diagnosis codes are available for inpatient encounters as far 
back as FY1980 and outpatient encounters back to FY2001 and were 
used to identify relevant diagnoses recorded during service. MDR data 
were also used to identify diagnoses recorded among Tricare-
reimbursable medical encounters after retirement from service. This 
study protocol and a waiver of informed consent was approved by the 
Naval Health Research Center Institution Review Board (protocol 
NHRC.2020.0013) and the manuscript was prepared according to 
RECORD guidelines.

2.2 Inclusion criteria

CHAMPS records were queried to identify military personnel 
who served on active duty and were at least 45 years old by January 1st, 
2020. Those who served in more than one branch of service or who 
had a gap in service of >30 days were excluded. Medical and career 
data during service were followed until one of the following occurred 
(1): SMs had a discharge on record (2), there were no records for a 
period of 5 years but no official discharge on record, or (3) the end of 
the study window (1/1/2020). SMs without a discharge but with no 
new records for at least a 5-year period were considered lost to 
follow-up. Inspection of the data indicated that this occurred mostly 
in the distant past (i.e., the 1980s and 1990s; 86%) compared to the 
more recent past (e.g., 2000s and 2010s; 14%), which indicates 
improvements in electronic records over time. The analytic sample 
was further limited to those who retired from military service as they 
are eligible to continue receiving care that is reimbursed by Tricare, 
thus enabling records to be available for analysis from MDR.

2.3 Demographic and military service 
characteristics

CHAMPS includes specific demographic and military service 
characteristics obtained from Defense Manpower Data Center 
records, though the nature of how these data were collected and 
reported changed over time in accordance with DoD policy and 
societal conventions. Demographic characteristics available included 
sex and race. To be consistent with modern JAMA guidelines for 
reporting race and ethnicity, we report only race (American Indian/
Alaskan Native, Asian, Black/African American, not identified, Native 
Hawaiian/Pacific Islander, White, and multiracial) because 
combinations of race/ethnicity (e.g., non-Hispanic White) were not 
possible. We combined individuals with more than one race on record 
into a single “multiracial” category for parsimony because the 
database retains the specific intersectionality of multiple races, though 
sample sizes for certain combinations (e.g., “American Indian/
Alaskan Native, Asian, Black/African American” as a combined 
category) were too small to permit data analysis in accordance with 
privacy standards.

Military service characteristics included branch of service, 
paygrade classification, and occupational risk of LLB. Service branch 
was identified at initial accession into the military; those who changed 
branches were excluded. Participants were identified as officers or 
enlisted personnel based on rank at time of accession into military 
service. As with previous epidemiological research on LLB, military 
occupational specialty (MOS) was used to identify those with high-vs. 

low-risk occupational risk of LLB exposure, which has been described 
in detail in previous literature (26, 61, 62).

2.4 Diagnoses of interest

Flags for relevant diagnoses during and after service, respectively, 
were identified using ICD-9 and ICD-10 codes, and the earliest date 
of diagnosis was retained. In addition to the focal diagnoses of interest 
(i.e., TBI and dementia), a variety of conditions known to be associated 
with dementia were identified (69–72). TBI and mental health 
diagnoses were identified in accordance with case criteria provided by 
the Armed Forces Health Surveillance Branch (61, 73). Dementia and 
other conditions associated with dementia (henceforth referred to as 
covariates, e.g., cardiovascular disease, diabetes) were identified in 
accordance with previously published research and VHA Directive 
1140.12 where possible (5, 9, 44, 74–77). See the 
Supplementary material for the full list of diagnoses.

2.5 Statistical analyses

Frequencies were calculated for demographic and military service 
characteristics for those in the overall sample and those who retired, 
respectively. Chi-square analyses were used to examine differences 
between the full sample and the retirees. Frequencies are reported for 
the diagnoses of interest. For the entire sample, only medical diagnoses 
reported during service are provided; for those who retired, 
frequencies of diagnoses recorded during service and after service 
(i.e., as a retiree) are provided separately. Examinations of whether 
retirees were diagnosed with early-onset dementia were conducted, 
followed by whether retirees had been diagnosed with any of the 
conditions of interest examined (regardless of the age at diagnosis). In 
each set of analyses, diagnoses for medical conditions that may 
be associated with dementia (e.g., cardiovascular disease, diabetes) 
were entered as separate variables and coded in a binary fashion 
(yes/no).

2.5.1 Logistic regression for early-onset
Whether participants received diagnoses of any dementia 

(excluding memory loss and mild cognitive impairment) and 
Alzheimer’s before age 65, respectively (yes = 1, no = 0), were regressed 
on history of concussion or any TBI during service, respectively. 
Subsequently, analyses were repeated to examine occupational risk of 
LLB while adjusting for branch of service, year of birth, sex, paygrade 
classification, race, and flags for diagnoses of the covariates (during or 
after service) listed previously.

2.5.2 Cox proportional hazards analysis
In order to examine whether any TBI and concussions were 

sustained during active duty service were associated with significantly 
greater risk of diagnosis of dementia, separate Cox (proportional 
hazards) regression analyses were used in which the diagnoses of 
interest (e.g., any dementia, any Alzheimer’s) were regressed on any 
TBI diagnosis or concussion diagnoses in separate analyses. Cox 
regressions, which are a type of survival analysis (a collection of analytic 
methods that allow researchers to examine the time until a certain 
event occurs while accounting for the fact that some data may 

https://doi.org/10.3389/fneur.2024.1442715
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Belding et al. 10.3389/fneur.2024.1442715

Frontiers in Neurology 04 frontiersin.org

be censored), were used in order to account for differences in duration 
of follow up over the study period. For more information on survival 
analysis in general and hazard analyses specifically, readers are referred 
to work by Clark, Bradburn, and colleagues (78, 79). When these 
analyses included MCI and memory loss, we refer to it as cognitive 
disorders; when excluding diagnoses of MCI and memory loss, we refer 
to the relevant diagnoses as dementia. For analyses of any dementia 
excluding memory loss and MCI, participants with a diagnosis of 
memory loss and/or MCI were not excluded from the analyses; rather, 
those with diagnosis of memory loss or MCI were coded as non-cases 
unless there was also a diagnosis of one of the dementia diagnoses in 
their medical record. These analyses were repeated to examine 
occupational risk of LLB and adjusted for branch of service (referent: 
Army), year of birth, paygrade classification (referent: enlisted only), 
race (referent: White), sex (referent: male) and flags for diagnoses of 
the covariates listed previously (referent: no diagnosis on record). These 
analyses were also repeated stratifying by branch of service.

For both sets of analyses, adjusted odds ratios (AORs) and 
adjusted hazard ratios (AHRs) are reported in the text; confidence 
intervals are available in the relevant tables. Due to the large sample 
size and large number of statistical tests, a strict p < 0.001 threshold 
was used to identify significant findings for all analyses (80, 81).

3 Results

A total of 6,092,432 SMs were identified in CHAMPS (see 
Table  1). Of these, 1,211,972 (19.9%) had a discharge code of 
retirement and were included in subsequent analyses. Each of the 
military service and demographic characteristics significantly differed 
by retirement status (all ps < 0.001). For example, whereas members of 
the Air Force were significantly more likely to retire, those who served 
in the Marine Corps, and Navy were significantly less likely to retire. 
Women and enlisted personnel were also significantly less likely to 
retire compared to men and officers, respectively. The average age of 
retirees at the end of military service was 43.2; the average age at the 
end of the study window for retirees was 65.8.

Frequency of TBIs, diagnoses of relevant covariates, and dementia 
diagnoses are reported in Table  2. Approximately 1% of the total 
sample had at least one TBI diagnosis on record, with concussions 
being the most common. As expected, the total sample was relatively 
healthy with between 0.6–7.3% having one of the diagnoses of relevant 
covariates during service; mental health diagnoses were most 
commonly reported, followed by hyperlipidemia, hypercholesterolemia, 
and sleep disturbance. TBI diagnoses and diagnoses of covariates were 
significantly higher among retirees compared to the total sample, 
which may reflect the longer monitoring period for retirees compared 
to non-retirees in this sample, thus permitting observation throughout 
the average age of onset for the covariates. As expected, diagnoses of 
dementia were very rare (<1%) during active duty service and among 
retirees; the most common diagnoses were memory loss and diagnoses 
that fell within the “other dementia” category.

3.1 Any early-onset dementia

Veterans who sustained a concussion during active duty service 
were more likely to be diagnosed with any early-onset dementia 

TABLE 1 Demographic and military service characteristics for the overall 
sample and the subset who retired from military service.

Total sample 
(N  =  6,092,432)

Retirees only 
(N  =  1,211,972)

N % N %

Branch of service

Army 2,407,041 39.5 377,142 31.1

Air Force 1,369,215 22.5 447,617 36.9

Navy 1,643,766 27.0 314,706 26.0

Marine Corps 672,410 11.0 72,507 6.0

Occupational risk of LLB

Low risk 5,136,117 84.3 1,106,719 91.3

High risk 956,315 15.7 105,253 8.7

Sex

Male 5,363,478 88.0 1,127,201 93.0

Female 728,688 12.0 84,770 7.0

Missing 266 <0.1 1 <0.1

Paygrade

Enlisted 5,476,023 89.9 923,745 76.2

Officer 568,761 9.3 255,648 21.1

Both 47,648 0.8 32,579 2.7

Race

American Indian/Alaskan 

Native

29,522 0.5 5,653 0.5

Asian 104,811 1.7 37,321 3.1

Black or African American 1,133,997 18.6 225,129 18.6

Not identified 197,825 3.2 31,347 2.6

Native Hawaiian or other 

Pacific Islander

7,788 0.1 4,734 0.4

White 4,607,727 75.6 900,731 74.3

Multiracial 10,762 0.2 7,057 0.6

Status at end of study window

Serving on active duty 30,841 0.5 0 0

Lost to attrition 128,309 2.1 0 0

Discharged 5,933,282 97.4 1,211,972 100.0

 Administrative separation 1,192,685 19.6 0 0

 Death (during service) 30,205 0.5 0 0

 Disability 409,653 6.7 0 0

 Early release 667,017 10.9 0 0

 End of active service 2,011,153 33.0 0 0

 Missing 422 <0.0 0 0

 Other 172,058 2.8 0 0

 Reenlistment 5,589 0.1 0 0

 Retirement 1,211,972 19.9 1,211,972 100.0

 Unqualified 232,528 3.8 0 0

Age M SD M SD

 Age at end of military service 29.0 8.9 43.2 4.5

  Age at end of study 

window (2020)

57.9 8.4 65.8 10.6
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(excluding memory loss and mild cognitive impairment; 
AOR = 1.13; see Table 3), though this finding did not reach our strict 
p < 0.001 threshold. In separate analyses examining TBIs of all 
severity, having sustained any TBI during service was not associated 
with early-onset dementia (AOR = 0.65). Occupational risk of LLB 
was not associated with increased likelihood of early-onset dementia 
in either analysis.

3.2 Early-onset Alzheimer’s

Retirees who sustained a concussion during military service were 
more likely to be diagnosed with early-onset Alzheimer’s (AOR = 1.14; 
see Table 3). However, having sustained a TBI of any severity was 
associated with less risk of having an early-onset Alzheimer’s diagnosis 

(AOR = 0.67). Neither of these tests achieved our strict p < 0.001 
threshold. Occupational risk of LLB was not associated with early-
onset Alzheimer’s in either analysis.

3.3 Concussion survival analysis

Veterans who sustained a concussion during active duty 
service were significantly more likely to be diagnosed with any of 
the neurodegenerative conditions of interest (including MCI and 
memory loss; AHR = 4.61), any dementia (excluding MCI and 
memory loss, AHR = 1.64), memory loss (AHR = 4.14), MCI 
(AHR = 4.44) and other dementia (AHR = 1.91; see Table  4). 
Additionally, occupational risk of LLB was associated with 
significantly greater likelihood of being diagnosed with any 

TABLE 2 Descriptive number of diagnoses recorded during and after service for the overall sample and the retiree subset.

Total sample 
(N  =  6,092,432)

Retirees (N  =  1,211,972)

During service During service After service

N % N % N %

Traumatic brain injury

Any TBI 64,065 1.1 23,185 1.9 53,746 4.4

Mild TBI (i.e., concussion) 42,970 0.7 17,477 1.4 40,726 3.4

Moderate TBI 23,298 0.4 6,624 0.5 16,427 1.4

Severe TBI 666 <0.1 137 <0.1 730 0.1

Penetrating TBI 930 <0.1 244 <0.1 904 0.1

Covariates during military service

Cardiovascular disease 138,474 2.3 74,093 6.1 493,831 40.7

Diabetes 38,394 0.6 20,486 1.7 284,021 23.4

Hypercholesterolemia 297,374 4.9 184,052 15.2 663,057 54.7

Hyperlipidemia 302,594 5.0 183,664 15.2 728,478 60.1

Mental health diagnosis 444,216 7.3 192,148 15.9 588,324 48.5

Obesity 179,482 2.9 101,286 8.4 346,104 28.6

Sleep disturbance 274,069 4.5 172,045 14.2 409,172 33.8

Substance abuse 141,213 2.3 37,087 3.1 83,391 6.9

Dementia

Any dementia (including memory loss and MCI) 22,472 0.4 10,754 0.9 70,440 5.8

Any dementia (excluding memory loss and MCI) 2,315 <0.1 751 0.1 43,573 3.6

Any Alzheimer’s 66 <0.1 - <0.1 8,129 0.7

Dementia with Lewy Bodies - <0.1 - <0.1 1,787 0.1

Frontotemporal dementia 35 <0.1 - <0.1 742 0.1

Memory Loss 20,002 <0.1 9,891 0.8 32,695 2.7

Mild Cognitive Impairment 2,053 0.3 817 0.1 7,349 0.6

Vascular dementia 260 <0.1 61 <0.1 4,224 0.3

Parkinson’s Disease 329 <0.1 122 <0.1 10,427 0.9

Other dementia 1,705 <0.1 536 <0.1 32,671 2.7

Huntington’s 40 <0.1 - <0.1 255 <0.1

Substance use-related dementia 166 <0.1 53 <0.1 1,966 0.2

-, data cannot be reported due to HIPAA guidelines as the N is < 30.
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TABLE 3 Unadjusted and adjusted ORs for concussions or any TBI sustained during active duty service and occupational risk of LLB on likelihood of 
having a diagnosis of any dementia (excluding MCI and memory loss; N  =  23,897) or Alzheimer’s (N  =  2,759) before age 65 using logistic regression.

Unadjusted Adjusted Unadjusted Adjusted

OR CI p AOR CI p OR CI p AOR CI p

Concussions during service Occupational risk of LLB

Any early-onset 

dementia 

(excluding MCI 

and memory 

loss)

0.93 0.83, 

1.04

0.22 1.13 1.00, 

1.26

0.04 1.10 1.06, 

1.15

<0.001 1.00 0.95, 

1.04

0.85

Early-onset 

Alzheimer’s

0.45 0.28, 

0.71

0.001 1.14 1.03, 

1.25

0.01 0.95 0.83, 

1.09

0.47 1.00 0.95, 

1.04

0.84

Any TBI during service Occupational risk of LLB

Any early-onset 

dementia 

(excluding MCI 

and memory 

loss)

0.99 0.90, 

1.09

0.81 0.65 0.41, 

1.04

0.08 1.10 1.06, 

1.15

<0.001 0.89 0.78, 

1.03

0.12

Early-onset 

Alzheimer’s

0.49 0.33, 

0.72

<0.001 0.67 0.46, 

1.00

0.05 0.95 0.83, 

1.09

0.47 0.89 0.78, 

1.03

0.12

cognitive disorder of interest (including MCI and memory loss, 
AHR = 1.11) and memory loss (AHR = 1.16). The associations 
between concussion during military service and occupational risk 
of LLB were not significantly associated with the other diagnoses 
of interest (e.g., Parkinson’s disease and Huntington’s disease). 
Results from analyses stratified by branch of service were 
consistent with those reported in Table  4 except that the 
association between occupational risk of LLB and any dementia 
and memory loss, respectively, were nonsignificant (data 
not shown).

3.4 Any TBI survival analysis

Veterans who sustained any TBI (including concussion) were 
significantly more likely to be diagnosed with any cognitive disorder 
of interest (including memory loss and MCI, AHR = 4.60), any 
dementia (excluding memory loss and MCI, AHR = 1.58), memory 
loss (AHR = 4.38), MCI (AHR = 4.30), and other dementia 
(AHR = 1.84); they were significantly less likely to be diagnosed with 
substance-use-related dementia (AHR = 0.60; see Table  5). The 
associations between any TBI and the other diagnoses of interest were 
nonsignificant. Occupational risk of LLB was significantly associated 
with any cognitive disorder (including memory loss and MCI; 
AHR = 1.10) and memory loss (AHR = 1.14), but not any dementia 
excluding memory loss and MCI (AHR = 1.01); it was not associated 
with any of the other conditions of interest. Additional sensitivity 
analyses in which TBIs diagnosed after service were also included as 
predictors were conducted; findings were consistent with those 
reported in Table  4 and are not discussed further. Results from 
analyses stratified by branch of service were consistent with those 
reported in Table 5 except that the association between occupational 
risk of LLB and any dementia and memory loss, respectively, were 
nonsignificant (data not shown).

4 Discussion

Although prior research suggests that moderate and severe TBIs 
may be associated with dementia, relatively less work has focused 
directly on concussion and precursors to dementia (13, 36, 38, 39). 
Using a large, longitudinal cohort of >1.2 million military retirees 
spanning 40 years of consistent medical records, the present study 
investigated whether concussion and more severe TBI may 
be associated with dementia and its precursors. Findings suggested 
that retirees who sustained a concussion during active duty service 
were significantly more likely to be diagnosed with any of the cognitive 
disorders of interest (including MCI and memory loss). Although 
concussions were not associated with significantly greater risk of 
specific dementias (i.e., Alzheimer’s, dementia with Lewy Bodies, 
frontotemporal dementia, vascular dementia) or other related 
conditions (i.e., Parkinson’s, Huntington’s, substance use-related 
dementias), it was significantly associated with a single variable that 
combined all of these conditions together. Considering the average age 
of retirees in this sample (66 years old) is just barely over the range for 
late-onset dementia, it is unsurprising that the relatively small sample 
sizes in individual analyses resulted in non-significant findings while 
the relatively larger sample size of the combined group resulted in 
significant findings. Nonetheless, our results also demonstrated that 
veterans with a concussion on record were over four times more likely 
than their non-injured counterparts to be diagnosed with memory 
loss and MCI, which may be precursors to dementia (40, 42). We also 
note that similar findings were observed when we examined the effect 
of any TBI (including concussion).

An additional finding that is worthy of note is the association 
observed between occupational risk of LLB and these same precursors 
of dementia, specifically memory loss and MCI. Even when adjusting 
for a variety of military service and demographic characteristics, as 
well as relevant medical conditions, those who worked in high (vs. 
lower) risk jobs were significantly more likely to be diagnosed with 
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memory loss. This is consistent with a growing body of literature 
suggesting the association between LLB and memory issues. This is 
the first time such an association has been demonstrated using official 
diagnoses (rather than subclinical self-report) among veterans; all 
previous findings have been limited to relatively small samples of 
those actively serving in the armed forces or law enforcement 
personnel (58). However, we note that occupational risk of LLB was 
not associated with any dementia when diagnoses of memory loss or 
MCI were excluded in the present sample. There are multiple 
explanations for this pattern of results. For example, the lack of an 
association between occupational risk of LLB and dementia may 
be due to the relatively young age of the sample. Alternately, it may 
suggest that the association between occupational risk of LLB and 
memory loss occurs by a different mechanism than Alzheimer’s 
disease and other dementias. Further investigation on the long-term 
neurodegenerative outcomes associated with LLB exposure 
is warranted.

Findings from the present research should be considered in light 
of several important limitations. The population utilized for the 
present research may not generalize to service members and veterans 
more generally. For example, the prevalence of TBIs among this 
unique population (<5%) was notably lower than that reported in 
other scientific studies to date. For example, Hoge and colleagues 
reported in 2008 that 15% of soldiers returning from deployment to 

Afghanistan sustained a concussion (55). This can be explained by 
several important features of our methodology. First, the data used in 
the present research is particularly unique in that it utilized a 40 year 
time period from 1980 to 2020. Modern reports of TBI prevalence use 
a much more recent time frame during the Global War on Terror, 
which saw heightened awareness of TBI, including changes in policies 
and guidelines for identification and treatment, as well as changes in 
diagnostic coding criteria and potentially policies governing insurance 
coverage. By utilizing a time window prior to September 11th, 2001, 
and subsequent deployments, our population would be expected to 
have a lower prevalence of TBI. Second, the present sample involved 
only those who were at least 45 years of age by 2020, which means that 
some service members who served during the Global War on Terror 
were not eligible for inclusion. For example, someone who was 
20 years old when they deployed in 2008 would only be 32 at the time 
of the end of the study window and thus not be included. Third, our 
sample included only those who had been discharged with a code of 
retirement. The Military Health System provides healthcare for those 
actively serving in the U.S. military as well as for those who retire from 
service (typically after 20+ years of military service), whereas the VHA 
provides healthcare for eligible veterans more generally. Although the 
present research was intended to include healthcare reimbursement 
records from both the DoD and VHA (which would have resulted in 
inclusion of the 6.1 M veterans in the total sample), we were ultimately 

TABLE 4 Unadjusted and adjusted HRs (AHRs) for concussions sustained during active duty service and occupational risk of LLB on dementia diagnoses 
of interest.

Unadjusted models Adjusted models

Concussions during service Concussions during service Occupational risk of LLB

HR 95% 
CI LL

95% 
CI UL

p AHR 95% 
CI LL

95% 
CI UL

p AHR 95% 
CI LL

95% 
CI UL

p

Any cognitive 

disorder

3.76 3.65 3.88 <0.001 4.61 4.46 4.77 <0.001 1.11 1.08 1.14 < 0.001

Any dementia 

(excluding 

memory loss and 

MCI)

0.52 0.46 0.57 <0.001 1.64 1.47 1.83 <0.001 1.01 0.97 1.04 0.77

Any Alzheimer’s 0.20 0.14 0.30 <0.001 1.29 0.86 1.93 0.22 0.97 0.88 1.06 0.46

Dementia with 

lewy bodies

0.12 0.04 0.36 <0.001 0.78 0.25 2.44 0.67 0.96 0.78 1.18 0.71

Frontotemporal 

dementia

0.28 0.09 0.85 <0.001 0.44 0.14 1.37 0.16 0.90 0.67 1.22 0.51

Memory Loss 7.03 6.80 7.26 <0.001 4.14 4.00 4.29 <0.001 1.16 1.12 1.20 < 0.001

Mild cognitive 

impairment

5.45 5.01 5.92 <0.001 4.44 4.06 4.86 <0.001 1.07 1.00 1.16 0.06

Vascular dementia 0.22 0.13 0.38 <0.001 0.93 0.55 1.57 0.78 0.95 0.85 1.06 0.33

Parkinson’s 

disease

0.32 0.24 0.42 <0.001 1.07 0.81 1.42 0.64 1.00 0.93 1.09 0.95

Other dementia 0.56 0.49 0.63 <0.001 1.91 1.69 2.16 <0.001 1.01 0.97 1.06 0.54

Huntington’s 0.51 0.56 3.26 0.51 1.12 0.45 2.76 0.81 1.13 0.74 1.71 0.57

Substance use-

related dementia

0.44 0.26 0.76 0.003 0.60 0.34 1.03 0.07 1.06 0.91 1.23 0.45

AHRs were identified using survival analysis and are reported when controlling for branch of service, year of birth, paygrade classification, race, cardiovascular disease, diabetes, 
hypercholesterolemia, hyperlipidemia, any mental health condition, obesity, any sleep disturbance, and any substance abuse. Bold text indicates statistically significant effects.
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unable to obtain the appropriate regulatory approvals to access and 
link data from the VHA to that from the DoD. As a result, the 
participants included in the present research were generally of good 
health and able to complete 20+ years of military service to quality for 
retirement. A lower prevalence of TBI is expected in such a healthy 
population, though this may limit the generalizability of the 
present findings.

An additional important limitation of the present research is that 
it relied on ICD-9 and ICD-10 codes to identify the conditions of 
interest. The relevant codes were identified using a combination of 
DoD and VHA policies and prior scientific literature. To be included 
in these analyses, the codes were recorded in Tricare-reimbursable 
medical encounters, which assumes that the participant sought 
healthcare that was paid for by Tricare. The present research was 
unable to clinically confirm dementia diagnoses (e.g., through chart 
review or additional testing). While ICD-9 and ICD-10 diagnosis 
codes are utilized for tracking healthcare reimbursements, they have 
several limitations which have been discussed at length elsewhere 
(82, 83). For example, ICD codes do not perfectly identify cases of 
dementia, cannot distinguish between single and repeated TBI, do 
not currently provide information on mechanism of TBI (i.e., impact-
induced TBI vs. HLB-induced TBI), do not provide information on 
genetic factors associated with dementia, and have varying levels of 

sensitivity and specificity depending on the medical condition at 
hand (82, 83). In addition to limitations with the utilization of ICD 
codes more generally, the present research required only a single 
diagnosis of dementia to identify possible cases, which may result in 
misclassification bias. To address this concern, we  conducted 
sensitivity analyses in which we required more than one diagnosis of 
dementia as our case criteria; findings were consistent with those 
reported herein, though the strength of the associations between 
concussion and TBIs of any severity were attenuated. For example, 
the association between concussion and any cognitive disorder 
remained significant (AHR = 3.01, 95% CI: 2.83, 3.20). Furthermore, 
examining the differences between diagnoses of dementia recorded 
in inpatient and outpatient settings is beyond the scope of the 
present manuscript.

The limitations of ICD-9 and ICD-10 codes notwithstanding, 
ICD codes have been utilized in a variety of research studies such 
as those to estimate incidence, prevalence, and global burden of 
disease for certain health conditions (84). Additionally, ICD 
diagnoses have been noted as being particularly useful for 
examining the health of older and disabled populations (84, 85), 
including for examination of neurological conditions specifically 
(86). Although the use of ICD codes may be imperfect and result in 
misclassification bias, they enabled the present population-based 

TABLE 5 Unadjusted and adjusted HRs (AHRs) for any TBI sustained during active duty service and occupational risk of LLB on dementia diagnoses of 
interest.

Unadjusted models Adjusted models

Any TBI during service Any TBI during service Occupational risk of LLB

HR 95% 
CI LL

95% 
CI UL

p AHR 95% 
CI LL

95% 
CI UL

p AHR 95% 
CI LL

95% 
CI UL

p

Any cognitive 

disorder

3.76 3.66 3.87 <0.001 4.60 4.47 4.74 <0.001 1.10 1.07 1.13 < 0.001

Any dementia 

(excluding 

memory loss and 

MCI)

0.55 0.50 0.60 <0.001 1.58 1.44 1.73 <0.001 1.01 0.97 1.04 0.78

Any Alzheimer’s 0.21 0.15 0.29 <0.001 1.14 0.81 1.61 0.46 0.97 0.88 1.06 0.47

Dementia with 

Lewy bodies

0.12 0.04 0.31 <0.001 0.67 0.25 1.80 0.43 0.96 0.78 1.18 0.71

Frontotemporal 

dementia

0.34 0.14 0.83 0.02 0.52 0.22 1.27 0.15 0.91 0.67 1.22 0.51

Memory loss 7.10 6.90 7.32 <0.001 4.38 4.24 4.53 <0.001 1.14 1.11 1.18 < 0.001

Mild cognitive 

Impairment

5.21 4.83 5.62 <0.001 4.30 3.96 4.66 <0.001 1.07 0.99 1.15 0.10

Vascular dementia 0.24 0.16 0.37 <0.001 0.86 0.55 1.34 0.50 0.95 0.85 1.06 0.33

Parkinson’s 

Disease

0.33 0.26 0.42 <0.001 1.02 0.80 1.30 0.89 1.00 0.93 1.09 0.94

Other dementia 0.60 0.54 0.66 <0.001 1.84 1.66 2.04 <0.001 1.01 0.97 1.06 0.55

Huntington’s 1.22 0.54 2.73 0.64 1.00 0.44 2.29 >0.99 1.13 0.75 1.72 0.56

Substance use-

related dementia

0.51 0.33 0.80 0.003 0.60 0.38 0.93 0.02 1.06 0.91 1.23 0.45

AHRs were identified using survival analyses and are reported when controlling for branch of service, year of birth, paygrade classification, race, cardiovascular disease, diabetes, 
hypercholesterolemia, hyperlipidemia, any mental health condition, obesity, any sleep disturbance, and any substance abuse. The categories listed in the rows below denote that those 
diagnostic categories were examined as outcomes in separate analyses (e.g., any dementia was examined as the dependent variable in one analysis and any Alzheimer’s was examined as a 
dependent variable in a separate analysis). Bold text indicates statistically significant effects.
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study of relatively young and healthy U.S. veterans over a 40 year 
timespan. However, the present research was not able to differentiate 
whether the TBIs examined using ICD codes herein were associated 
with medical retirement from service. The present findings likely 
underestimate the true association between concussions and more 
severe TBIs and dementia. Future research would benefit from 
inclusion of medical records from the VHA. Considering the aging 
population of military veterans, looking at historical data, even if 
imperfect, provides an opportunity to gain valuable insight into the 
scope of the potential cost associated with providing care for an 
aging population of service members and veterans over time. Future 
research could also examine whether the association between TBI 
and neurodegeneration differs based on the range of diagnoses (e.g., 
neurodegeneration associated with memory loss versus motor 
neuron disease).

When taken together, these findings add to a growing body of 
evidence on the association between concussions and 
neurodegenerative conditions. Importantly, we have demonstrated 
that veterans who sustained a concussion during active duty service 
were significantly more likely to be diagnosed with any of the cognitive 
disorders of interest as well as precursors to dementia, including 
memory loss and mild cognitive impairment, though it was not 
associated with early-onset dementia specifically. As the population of 
SMs diagnosed with TBI during the Global War on Terror continues 
to age, the prevalence of dementia will continue to increase and may 
bring a unique burden to the VHA medical system. The information 
provided here will serve to better inform long-term assessment, 
support, and rehabilitation programs for all individuals affected by 
TBI, both military and civilian.
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