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In recent years, substantial advancements have been made in understanding the 
pathophysiology of ischemic stroke. Despite these developments, therapeutic 
options for cerebral ischemia remain limited due to stringent time windows and 
various contraindications. Consequently, there has been a concentrated effort 
to elucidate the underlying mechanisms of cerebral ischemic injury. Emerging 
research indicates that neutrophil extracellular traps (NETs) exacerbate 
inflammation and damage in ischemic brain tissue, contributing to neuronal cell 
death. The inhibition of NETs has shown potential in preventing thrombosis and 
the infiltration of immune cells. Central to the formation of NETs are P-selectin 
and its ligand, P-selectin glycoprotein ligand-1 (PSGL-1), which represent 
promising therapeutic targets. This review explores the detrimental impact of 
P-selectin, PSGL-1, and NETs on cerebral ischemia. Additionally, it delineates 
the processes by which P-selectin and PSGL-1 stimulate NETs production and 
provides evidence that blocking these molecules reduces NETs formation. This 
novel insight highlights a potential therapeutic avenue that warrants further 
investigation by researchers in the field.
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1 Introduction

Stroke is the leading cause of mortality worldwide (1, 2) and significantly impacts the daily 
lives of survivors due to its high incidence of disability. Ischemic stroke, which accounts for 
approximately 87% of all stroke occurrences (3), is primarily caused by the obstruction of 
blood supply to the brain. This condition arises from a combination of etiological and related 
factors. Ischemia triggers a cascade of biochemical events which includes energy depletion, 
ionic imbalances and excitotoxicity, oxidative stress, cellular death, activation of the 
complement system, initiation of inflammatory and immune responses, induction of the 
expression of adhesion molecules on activated endothelial cells, resulting in the rolling of 
blood-borne inflammatory cells, adhesion and extravasation (4–12). This series of processes 
ultimately results in permanent damage to the brain (8, 13).

Over the past decade, substantial advancements have been made in understanding the 
pathophysiology of cerebral ischemia. Despite these advancements, therapeutic options for 
stroke remain insufficient (11). Pharmacologic thrombolysis or mechanical thrombectomy is 
recommended for only a small subset of stroke patients, primarily due to time constraints and 
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other contraindications (14, 15). Furthermore, the outcomes of 
thrombolysis or thrombectomy procedures are not always favorable 
(16, 17). Consequently, there has been considerable scholarly focus on 
exploring the pathophysiological mechanisms underlying cerebral 
ischemic injury, as well as on developing interventions aimed at 
reducing the incidence of disability and mortality associated with 
ischemic stroke. Recent evidence suggests that the interplay between 
inflammation and thrombosis is critical in the pathogenesis of cerebral 
ischemic injury (18, 19). However, traditional anti-inflammatory and 
antithrombotic therapies do not adequately address these interactions. 
This underscores the necessity for the development of innovative 
therapeutic strategies that specifically target the inflammatory and 
thrombotic processes involved in cerebral ischemia (18).

It is widely recognized that platelet activation plays a crucial role 
in the development and progression of thrombosis and inflammation 
in stroke. P-selectin (CD62p, Selp) is a highly sensitive and specific 
marker of platelet activation. It facilitates the adhesion functions of 
platelets, neutrophils, and endothelial cells, thereby initiating 
thrombosis and promoting inflammatory signaling (20). PSGL-1 
serves as the primary ligand for P-selectin and is integral to its various 
functions (21). P-selectin and PSGL-1 playing pivotal roles in driving 
NETs formation (14, 22). Recent studies have demonstrated that the 
formation of neutrophil extracellular traps (NETs) exacerbates 
inflammation and thrombosis (22), which can have adverse long-term 
functional consequences after stroke in mice (23). A further study has 
shown that the presence of NETs in the brains of ischemic stroke 
patients and the inhibition of NETs represents a potential therapeutic 
strategy for ischemic stroke (24). Consequently, a more profound 
comprehension of the role of NETs in brain injury in ischemic stroke, 
along with the clarification of the underlying mechanisms, may 
facilitate the identification of novel and promising therapeutic targets. 

This review will explore how P-selectin and PSGL-1 promote NETs 
formation, leading to inflammation and thrombosis in patients with 
ischemic stroke.

2 P-selectin/PSGL-1 and NETs

2.1 P-selectin and PSGL-1

P-selectin, a 140 kDa granule membrane protein, is part of the 
selectin family of adhesion molecules (25). Its expression is markedly 
elevated in the venous blood of patients with progressive ischemic 
stroke and strongly correlates with the time of disease onset (26). 
P-selectin is expressed in platelets and stored on the membranes of 
alpha granules. Upon cell activation, P-selectin translocates to the 
platelet surface, playing a critical role in the adhesion of activated 
platelets and monocytes (27, 28). It facilitates leukocyte rolling on 
post-capillary microvessels, a prerequisite for subsequent leukocyte 
recruitment to sites of inflammation or infection (20). Consequently, 
a deficiency in P-selectin results in a delayed recruitment of leukocytes 
to sites of inflammation. Additionally, the secretion of CCL2 and IL-8 
by monocytes critically depends on P-selectin, with CCL2 expression 
linked to stroke severity (1). CCL2 promotes monocyte mobilization 
from the bone marrow into the bloodstream by binding to CCR2, 
implicating the CCL2/CCR2 axis in monocyte recruitment into 
ischemic brain tissue (1, 29, 30). P-selectin regulates CCL2 expression 
to control monocyte migration (1).

PSGL-1, a 210 kDa dimeric glycoprotein, binds to P-, E-, and 
L-selectin (21, 31), facilitating neutrophil aggregation and rolling on 
endothelial surfaces (32). Its expression is upregulated during 
inflammation to enhance cell migration into inflamed tissues (21, 33, 
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34). Upon platelet activation, P-selectin is phosphorylated and 
translocated to the membrane, where it binds with PSGL-1 (1) 
(PSGL-1 acts as the primary receptor for P-selectin (35)). This 
interaction promotes neutrophil recruitment and creates a 
proinflammatory environment, exacerbating cerebral ischemic  
injury.

2.2 Neutrophil extracellular traps

Neutrophils constitute the primary host defence line against 
infection and participate in the earliest host defence responses during 
infection or injury. Neutrophils use various strategies to kill microbes, 
including phagocytosis, degranulation, production of reactive oxygen 
species (ROS), production of chemokines and cytokines, and the 
release of NETs to enhance their anti-microbial properties (36, 37). 
NETs were first discovered in 1996 (38), Brinkmann et al. (39–42) 
provide further details of the process and named it NETosis. The 
release of NETs depends on activation of the NADPH oxidase complex 
(NOX), which is initiated by the protein kinase C (PKC)-Raf/MERK/
ERK cascade (40). PSGL-1 (the primary receptor for P-selectin) has 
the capacity to activate the ERK pathway (43), thereby facilitating the 
release of NETs. Furthermore, this complex triggers the activation of 
enzymes such as myeloperoxidase (MPO), neutrophil elastase (NE), 
and protein-arginine deaminase type 4 (PAD4) (44–47). PAD4 
catalyses histones’ citrullination promoting chromatin 
depolymerisation and cell lysis. As a result, DNA, citrullinated 
histones (citH3) and other intracellular particles are released, forming 
NETs (48–51). A further study has indicated that reducing PAD4 and 
mitigating the release of NETs may be feasible by suppressing the 
ERK1/2 signaling pathway (52).

3 NETs as a novel mechanism of 
cerebral ischemic injury

3.1 NETs induce thromboinflammation

NETs have the capability to bind to microorganisms, leading to 
their death or immobilization (41, 53). Additionally, NETs can 
promote phagocytosis by other neutrophils and phagocytes, 
contributing to the innate immune response (48, 54, 55). NETs 
exhibit both beneficial and pathological effects (40, 42, 44, 48). While 
NETs are believed to primarily capture bacteria and pathogens to 
combat infections, they exhibit neurotoxicity when formed in the 
brain parenchyma (56, 57). Excessive NETosis can be detrimental, 
resulting in uncontrolled inflammatory responses and tissue lesions 
(40). This process directly causes cell damage and subsequently 
recruits proinflammatory cells and proteins, forms immune 
complexes, induces autoantibody production, and causes further 
tissue damage (40, 58, 59). Moreover, NETs formation can also 
be stimulated by factors such as cytokines (60) and activated platelets 
(39). The interaction between neutrophils and platelets leads to the 
generation of high mobility group protein B1 (HMGB1) (61), which 
is released by platelets and triggers NETs production. NETs are also 
thought to stimulate thrombosis (62–64) by cleaving clotting factors, 
activating platelets, and enhancing thrombin generation, which can 
result in decreased blood flow and worsen tissue ischemia. This 

process can cause organ damage by promoting thrombosis and 
vascular occlusion.

In the context of cerebral ischemia, a complex pathophysiological 
cascade is initiated, involving both thrombotic and inflammatory 
pathways, which act as key contributors to ischemic damage (65). 
Thrombotic and inflammatory processes are highly intertwined 
factors contributing to cerebral vessel occlusion and stroke, which, in 
turn, elicits local and systemic inflammatory responses (66). 
Consequently, novel therapeutic options within the 
thromboinflammatory field are currently emerging (65). A recent 
study has demonstrated that post-stroke thromboinflammation may 
be  mediated by pyruvate kinase muscle 2 (PKM2). NETosis 
exacerbates inflammation and associated damage in ischemic brain 
tissue (67), and triggers neuronal death (68). Inhibition of NETosis in 
MCAO animals using PAD inhibitors markedly decreased the 
infiltration of immune cells and vascular damage (14, 69). In addition, 
NETs dissolution via DNase substantially decreases BBB injury, 
augments the coverage of microvascular cells, and improves the 
formation of new functional blood vessels, consequently reducing 
thrombosis during ischemic stroke (67, 69, 70). These results indicate 
that NETs may have a deleterious impact on ischemic stroke. 
Therefore, Denorme and colleagues concluded that innovative 
therapeutic interventions targeting the formation of NETs, hold 
promise as safe treatments for ischemic stroke and should be further 
investigated (14).

3.2 P-selectin/PSGL-1 regulates NETs as a 
novel mechanism of cerebral ischemic 
injury

When adhering to leukocytes, activated platelets prompt 
leukocytes to undergo inflammatory processes (71). Research 
indicates that activated platelets can induce the formation of 
neutrophil extracellular traps (NETs) even in the absence of infection, 
potentially presenting high mobility group box 1 (HMGB1) to 
neutrophils to facilitate this process (72, 73). HMGB1 plays a critical 
role in enhancing the production of P-selectin (74), which is essential 
for the activation of platelets to induce NETs formation (22). P-selectin 
activates leukocytes through signaling via PSGL-1 (22, 75), promoting 
the expression of PAD4 and activating the histone citrullination 
pathway (14, 76), thereby triggering NETosis (22).

In vitro (77), P-selectin activates inflammation-related genes in 
neutrophils via PSGL-1, and the signaling of PSGL-1 promotes the 
formation of NETs. In vivo experiments showed (78) that 
Antiphospholipid Syndrome (APS) IgG significantly increased 
thrombosis in WT mice (which did not have PSGL-1 knocked out), 
while it had no significant impact on PSGL-1 knockouts. Furthermore, 
the thrombotic phenotype was restored in PSGL-1-deficient mice 
following the infusion of WT neutrophils, the anti-PSGL-1 
monoclonal antibody also inhibited APSIgG-induced thrombosis in 
WT mice. Further research has demonstrated that the suppression of 
PSGL-1 leads to a decrease in plasma-based NETs biomarkers, such 
as myeloperoxidase-DNA, in acute lung inflammation and sepsis 
animal models (22, 79). Blocking neutrophil PSGL-1 entirely 
suppressed citrullination of histone H3, as induced by activated 
platelets. Citrullination of histone is believed to be the most reliable 
biochemical marker of NETs (80). Thus, these findings propose that 
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the interaction between P-selectin and PSGL-1 activates signals for 
histone citrullination. This evidence indicates that P-selectin and 
PSGL-1 have potential as a therapeutic approach to inhibit the 
formation of NETs and to reduce pathological thrombosis and 
inflammation (22, 78).

4 Conclusion and future directions

In recent years, a growing number of researchers have investigated 
the role and mechanisms of NETs in disease. NETs have been detected 
in numerous organ tissues and inflammatory diseases. The approach 
to managing different ailments is increasingly focused on regulating 
NETs as a therapeutic objective. The pathogenesis and treatment 
strategies of neuroinflammation and thrombosis in cerebral ischemia 
are important areas of research. However, the molecular mechanisms 
underlying these conditions are not yet fully comprehended 
by researchers.

Following an episode of cerebral ischemia, it is possible that NETs 
act as the initial trigger for neuroinflammation and thrombosis. This 
process is regulated by P-selectin/PSGL-1 and presents a potentially 
effective therapeutic target for the treatment of cerebral ischemia, 
using techniques for inhibiting P-selectin or PSGL-1. Nevertheless, the 
evidence from a murine model of lupus indicates that PSGL-1 
deficiency is associated with a reduction in stroke size. However, this 
is accompanied by an exacerbation of nephritis (81). In light of this 
limitation, further studies are necessary to assess the mode of action 
of these inhibitory methods and their impact on the immune system, 
to select effective treatments devoid of harmful effects.

Our team has long been dedicated to investigating treatments for 
cerebral ischemic injury (82, 83). Whole transcriptome gene 
sequencing studies have revealed that numerous inflammatory factors, 
chemokines, and selectins exhibit differential expression in the brain 
tissue of MCAO rats compared to control rats. Notably, 
electroacupuncture treatment significantly modulated the expression 
of these differentially expressed genes in the brain tissue of MCAO 
rats (82). Our next objective is to elucidate the biological processes by 
which P-selectin/PSGL-1 regulates NETs and to conduct a 

comprehensive investigation into the role and mechanisms of 
electroacupuncture in mitigating cerebral ischemic damage. 
We anticipate that in the future, targeting P-selectin/PSGL-1 or NETs 
will have broad applicability in the treatment of cerebral ischemia.
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