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Editorial on the Research Topic

Epilepsy and Alzheimer’s disease: shared pathology, clinical

presentations, and targets for treatment

While epilepsy incidence peaks in older adults (1, 2), the association between epilepsy

and Alzheimer’s disease (AD) extends beyond the increased risk of AD with age. Epilepsy

and AD share clinical manifestations, with approximately 50% of epilepsy patients

demonstrating cognitive dysfunction (3, 4) and prevalence estimates of seizures in AD

ranging widely from 1.5 to 75% (5, 6). Epilepsy and AD can also have similar pathological

findings, with beta-amyloid and tau accumulation, and selective vulnerability of the

hippocampus, in both disorders (7, 8). Many questions remain unanswered, however,

regarding similarities and differences in cognitive profiles, identification of biomarkers,

underlying mechanisms, and treatment implications. Articles in this collection address

these fundamental questions.

Clinical presentations

Risks of developing epilepsy and dementia are bidirectional, with an estimated two-

fold risk of one disorder in the setting of the other (9). Hence, we must know when to

suspect a dual diagnosis. Reyes et al. described cognitive phenotypes of late onset epilepsy

(LOE), finding that 62.5% declined in cognitive performance over a median of 4 years.

The authors concluded that developing seizures in older age can accelerate cognitive

decline. Performance decrements, however, may be challenging to distinguish from AD.

Liu and Barr highlighted differing patterns of memory deficits corresponding to cell loss

in different hippocampal subfields in LOE and AD. With early neuronal loss in the dentate

gyrus and CA1/CA3 regions in temporal lobe epilepsy (TLE), there is corresponding

difficulty with separation of details, and association and consolidation between present and

past events, with relatively spared encoding and retrieval. In contrast, AD involves early cell
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loss in the entorhinal cortex, impairing all stages of memory

formation and retrieval. The authors proposed that in early stages,

TLE and AD could be distinguished based on these differing

patterns of memory dysfunction.

Biomarkers

Liu and Barr and Lu et al. reviewed similarities between AD

and epilepsy, including amyloid and tau pathology. Adults with

epilepsy can exhibit early AD pathology, including lower Aβ42

in cerebrospinal fluid (CSF) and hyperphosphorylated tau in the

temporal lobes (10, 11). AD patients with comorbid epilepsy have

greater abnormalities in CSF Aβ42, total tau, and phosphorylated

tau than AD patients without epilepsy (12). Hickman et al.

recommended that all patients with late onset epilepsy of unknown

cause (LOEU) have an evaluation for preclinical or prodromal AD

and categorized LOEU based on presence or absence of amyloid

and tau biomarkers. These categories will likely become more

refined as we develop more comprehensive biomarkers of seizure-

associated proteinopathies, including alpha-synuclein, TDP-43,

and immune factors.

Martin and Leeman-Markowski proposed a mechanism by

which hyper-phosphorylated tau and neurofibrillary tangles

accumulate in epilepsy, resulting from an imbalanced endoplasmic

reticulum stress response, inflammatory signaling, and a failed “last

ditch effort” of amyloid-beta to revert the cell to programmed cell

death. They presented a hypothesis of tau phosphorylation as an

acute neuroprotective response to seizures that may transition to

an injurious process when these pathways are chronically activated

by repeated seizures.

Leitner et al. examined proteins within the choroid plexus

(13, 14) of human post-mortem tissue. They identified protein

differences in the choroid plexus of AD compared to controls,

associated with a shift from glucose-mediated energy production

to fatty acid beta-oxidation activation and glycolysis inhibition,

coupled with activated branched-chain amino acid degradation.

Greater variability and fewer protein differences were evident in

the epilepsy group compared to controls, but similar trends in

protein changes were present in epilepsy and AD. Proteomics of

the choroid plexus and other brain regions (15) may inform future

mechanistic and therapeutic studies.

Genetics

Epigenetic regulation of gene expression can translate

intermittent seizures to long-lasting cognitive changes. The

neuronal activity-induced transcription factor 1FosB is robustly

increased in the dentate gyrus in AD and correlates with cognitive

impairment (16). Although seizure-induced 1FosB accumulation

occurs in TLE (16, 17), whether it is associated with cognitive

deficits in epilepsy is unknown. Fu et al. found increased 1FosB

expression in pediatric epilepsies that was inversely related to IQ in

patients with intellectual disabilities. Thus, 1FosB expression may

contribute to cognition in a range of epilepsy syndromes.

Multiple 1FosB target genes in the hippocampus play critical

roles in calcium handling and synaptic plasticity, which may

explain why their suppression by 1FosB leads to cognitive

deficits (16–18). However, prolonged 1FosB expression may also

enable neuroprotective and homeostatic pathways. In Clasadonte

et al., prolonged 1FosB reduction exacerbated neuroinflammatory

pathways in mouse models of epilepsy. Their newly developed

shRNA tool for reducing 1FosB expression was effective and

long-lasting, revealing that 1FosB maintains neuroprotection,

in part by limiting astrocyte and microglial engagement in

neuroinflammation. These results are consistent with prior studies

demonstrating that prolonged blockade of 1FosB exacerbates

seizures and memory deficits in an AD mouse model (19).

Together, these data reveal how engagement of1FosB by recurrent

seizures contributes to long-lasting impacts on hippocampal gene

expression and function.

Treatment

Lu et al. provided an overview of AD medication effects

on seizure threshold, which can guide clinicians when selecting

individualized treatments. We must also better understand anti-

seizure medications (ASMs) in the context of AD with epileptiform

activity. Lehmann and Barker-Haliski evaluated acute ASMpotency

and tolerability in a presenilin-2 (PSEN2) knockout (KO) early

onset-AD mouse model in comparison to wild type controls, using

a 6-Hz limbic seizure test. Acute potency and tolerability across

multiple ASMs were altered with PSEN2 loss, providing support for

targeted ASM therapy analyses in familial early-onset AD patients.

Overlapping clinical presentations and neuropathological

changes of AD and epilepsy could lead to shared treatments (20–

24). Further, interictal epileptiform discharges (IEDs), may serve as

a target for treatment in AD. Lu et al. highlighted that seizures and

IEDs in AD are associated with accelerated cognitive decline and

that ASMs may improve cognitive function in AD patients with

epileptiform activity, which is most commonly seen in sleep (25–

28). Lemus and Sarkis advised a measured approach to considering

ASMs in AD patients with IEDs, taking into account the patient’s

age and the frequency, morphology, and other characteristics of the

epileptiform activity.

Related dementias

The bidirectional risk of epilepsy and dementia is not limited

to AD (29). Vicente et al. noted the increased risk of epilepsy in

dementia with Lewy bodies (DLB). Many of the same pathological

changes and pathways are implicated in AD and DLB, including

glutamate transporter imbalance, cholinergic neuron degeneration,

mechanistic target of rapamycin (mTOR) overactivation, and

disruption of glial immunoinflammatory function, such that

mechanistic insights into epileptic activity in one disease could be

informative for the other.

Conclusion

The studies highlighted in this collection contribute

to a greater understanding of the relationships between
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epilepsy and AD, with the hope of improving diagnosis

and identifying effective treatments, so patients can have

improved cognition.
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