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Objective: To develop a machine learning-based model for predicting the 
clinical efficacy of acupuncture intervention in patients with upper limb 
dysfunction following ischemic stroke, and to assess its potential role in guiding 
clinical practice.

Methods: Data from 1,375 ischemic stroke patients with upper limb dysfunction 
were collected from two hospitals, including medical records and Digital 
Subtraction Angiography (DSA) reports. All patients received standardized 
acupuncture treatment. After screening, 616 datasets were selected for analysis. 
A prediction model was developed using the AutoGluon framework, with 
three outcome measures as endpoints: the National Institutes of Health Stroke 
Scale (NIHSS), Fugl-Meyer Assessment for Upper Extremity (FMA-UE), and the 
Modified Barthel Index (MBI).

Results: The prediction model demonstrated high accuracy for the three 
endpoints, with prediction accuracies of 84.3% for NIHSS, 77.8% for FMA-UE, 
and 88.1% for MBI. Feature importance analysis identified the M1 segment 
of the Middle Cerebral Artery (MCA), the origin of the Internal Carotid Artery 
(ICA), and the C1 segment of the ICA as the most critical factors influencing the 
model’s predictions. Notably, the MBI emerged as the most sensitive outcome 
measure for evaluating patient response to acupuncture treatment. Additionally, 
secondary analysis revealed that the number of sites with cerebral vascular 
stenosis (specifically 1 and 3 sites) had a significant impact on the final model’s 
predictions.

Conclusion: This study highlights the M1 segment, the origin of the ICA, and 
the C1 segment as key stenotic sites affecting acupuncture treatment efficacy in 
stroke patients with upper limb dysfunction. The MBI was found to be the most 
responsive outcome measure for evaluating treatment sensitivity in this cohort.
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Introduction

Stroke is a sudden loss of neurological function caused by a 
disturbance in cerebral blood circulation, and it is recognized by the 
World Health Organization as the second leading cause of death 
globally (1). Previous studies have indicated that the global burden of 
stroke is increasing annually (2). Stroke is characterized by a high 
incidence, disability rate, mortality rate, recurrence rate, and economic 
burden, contributing to a rising number of elderly individuals with 
disabilities (3). Residual limb dysfunction, particularly upper limb 
motor impairment, is a common sequela in the later stages of stroke 
recovery, severely affecting daily activities and significantly reducing 
quality of life (4). Clinical research has shown that recovery of lower 
limb function occurs much more rapidly than that of the upper limbs 
in stroke patients (5). After active treatment, 80% of patients still 
experience varying degrees of fine motor dysfunction in the upper 
limbs (6). Furthermore, 37% of patients continue to face challenges 
with upper limb motor control 3 months after the stroke, with only 
5–20% achieving near-normal hand function (7). Effectively 
promoting recovery of upper limb dysfunction after stroke remains a 
significant challenge.

Currently, rehabilitation is the primary treatment for limb motor 
dysfunction after ischemic stroke. Acupuncture, as a safe, effective, and 
cost-efficient traditional rehabilitation therapy, is widely used for 
treating motor, sensory, speech, cognitive, and other dysfunctions post-
stroke (8, 9). It has shown significant efficacy in promoting limb 
function recovery (10), improving abnormal muscle tone, and 
facilitating fine motor recovery of the hand. Compared to modern 
medical treatments for motor dysfunction after stroke, acupuncture has 
the advantages of personalized diagnosis and treatment, rapid response, 
and diverse therapeutic strategies (9). Additionally, acupuncture 
demonstrates superior outcomes for managing pain, muscle spasms, 
sensory dysfunction, and other comorbid symptoms (11).

In recent years, data analysis technologies and artificial intelligence 
have provided new directions for clinical research. Machine learning 
methods have found broad applications in fields such as imaging 
diagnosis, disease prognosis, and big data healthcare (12). The 
individualization of acupuncture treatment adds complexity to related 
data-driven research, making traditional analytical methods 
insufficient for comprehensively exploring acupuncture’s clinical 
efficacy. Machine learning, as a flexible tool for handling complex 
medical data (13), has made strides in acupuncture research. For 
instance, Huo et al. (14) used deep learning techniques to analyze 
acupuncture treatment for neck pain and cervical spondylosis, while 
Yin et  al. (15) explored machine learning approaches to predict 
acupuncture efficacy in treating Functional Dyspepsia (FD), paving the 
way for optimizing personalized acupuncture treatment plans. These 
studies have successfully integrated clinical diagnosis and treatment 
data with machine learning technology to predict acupuncture’s 
therapeutic outcomes and disease prognosis. However, the application 
of machine learning in acupuncture research is still limited, and there 

are no studies focused on stroke. Thus, it is crucial to further investigate 
the feasibility of using machine learning to analyze acupuncture clinical 
data in stroke patients.

To adapt to the complexity of medical data, prediction models and 
hyperparameters have become increasingly diversified. The challenge 
of fine-tuning prediction models has led to the concept of AutoML in 
artificial intelligence (16). The stacking model, a prominent method 
in AutoML, typically outperforms single-model training (17). What 
sets AutoML apart from traditional stacking models is its ability to 
optimize hyperparameters for each model involved (18).

Imaging diagnosis of stroke has reached a high level of maturity, 
with common methods including CT, MRI, and DSA (19, 20). As the 
gold standard for diagnosing cerebrovascular disease (21), DSA plays 
a crucial role in the diagnosis of ischemic stroke. With the widespread 
adoption of DSA, nearly all ischemic stroke patients who undergo 
standardized treatment are diagnosed using this method. While CT 
and MRI are primarily used to determine the location and extent of 
lesions, DSA offers clear visualization of stenosis, occlusion, and 
collateral circulation of cerebral vessels (22). DSA enables rapid and 
accurate diagnosis of cerebrovascular diseases, helping physicians 
assess disease progression, formulate treatment plans, and analyze 
prognosis. Therefore, a thorough analysis of DSA diagnostic data is 
essential for evaluating treatment methods related to stroke. In this 
study, we  combined clinical efficacy evaluation data with DSA 
diagnostic reports and employed machine learning to develop a 
prediction model for acupuncture efficacy, aiming to explore its 
potential to guide clinical practice.

Data and methods

Sample data

The sample data were obtained from the Hospital of Chengdu 
University of Traditional Chinese Medicine and the Fifth People’s 
Hospital of Chengdu. This research has been approved by the Medical 
Ethics Committee of the Hospital of Chengdu University of Traditional 
Chinese Medicine (Ethics Approval No. 2023KL-023).

Inclusion and exclusion criteria

The diagnostic criteria were based on the International 
Classification of Diseases (ICD-11) and the 2018 Chinese Guidelines 
for the Diagnosis and Treatment of Acute Ischemic Stroke (23). The 
inclusion criteria were as follows: (1) A confirmed diagnosis of 
ischemic stroke, based on imaging (MRI or CT), with an onset within 
1–14 days; (2) First-time unilateral hemispheric ischemic stroke; (3) 
Age between 18 and 80 years, regardless of gender; (4) No history of 
head surgery, thrombolysis, or thrombectomy treatment following 
stroke onset; (5) Presence of upper limb dysfunction, classified as 
Brunnstrom stage II–V; (6) The patient received standardized 
acupuncture treatment during the acute phase, with a treatment 
duration exceeding 14 days; (7) The patient underwent Digital 
Subtraction Angiography (DSA) within 7 days of hospital admission.

Exclusion criteria were as follows: (1) Incomplete medical record 
data that could not meet the requirements of the study; (2) Presence 
of other serious organic diseases that could contribute to limb 

Abbreviations: DSA, Digital Subtraction Angiography; NIHSS, National Institute of 

Health Stroke Scale; FMA-UE, Fugl-Meyer Assessment Upper Extremity; MBI, 

Modified Barthel Index; ICA, Internal Carotid Artery; MCA, Middle Cerebral Artery; 

ACA, Anterior Cerebral Artery; VA, Vertebral Artery; PCA, Posterior Cerebral Artery; 

CA, Common Carotid Artery; SCA, Subclavian Artery.
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dysfunction, such as multiple sclerosis, traumatic brain injury, or 
spinal cord injury.

The standard treatment was based on secondary stroke prevention 
(24) and basic nursing care, employing the Xingnao Kaiqiao 
acupuncture protocol (25). Secondary stroke prevention included 
respiratory support, anti-platelet aggregation, improvement of 
cerebral blood circulation, neuroprotective therapy, control of risk 
factors, infection prevention, and treatment of complications. The 
primary acupuncture points for Xingnao Kaiqiao therapy were PC6 
(Neiguan), DU26 (Shuigou), SP6 (Sanyinjiao), DU20 (Baihui), GB20 
(Fengchi), LU5 (Chize), HT1 (Jiquan), and LI4 (Hegu). Additional 
acupoints could be added or removed based on the individual patient’s 
condition, but adjustments were made according to the syndrome 
differentiation related to upper limb dysfunction. Therefore, it was 
necessary for trained professional practitioners to screen the data 
during the subsequent data processing phase. During hospitalization, 
patients received daily acupuncture sessions, each lasting 30 min, with 
a total of over 10 treatments. The acupuncture was administered by an 
experienced practitioner with more than 5 years of expertise.

Establishment of sample data

The sample data were collected from medical records and 
diagnostic reports of inpatients in the Neurology Departments of two 
hospitals. A total of 1,375 ischemic stroke patients treated between 
2020 and 2023 were included. The data consists of three components: 
basic demographic information (gender, age), DSA diagnostic reports, 
and efficacy evaluation metrics.

The standardized DSA diagnostic report includes image 
characteristics, procedural details, postoperative treatments, and 
diagnostic conclusions. The primary data for this study includes the 
location and stenosis ratio of cerebral artery stenosis as indicated in 
the diagnostic report. The anatomical sites were classified and coded 
according to DSA cerebrovascular segmentation, which includes: (1) 
Aortic arch classification; (2) C1-C7 segments of the left and right 
Internal Carotid Artery (ICA), and the ICA bifurcation; (3) M1-M4 
segments of the left and right Middle Cerebral Artery (MCA); (4) 
A1-A5 segments of the left and right Anterior Cerebral Artery (ACA); 
(5) V1-V5 segments of the left and right Vertebral Artery (VA), and 
the VA origin; (6) P1-P4 segments of the left and right Posterior 
Cerebral Artery (PCA); (7) Left and right Common Carotid Artery 
(CCA); (8) Left and right Subclavian Artery (SCA); (9) Basilar artery.

The primary efficacy evaluation indices in this study were the 
Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Modified 
Barthel Index (MBI), and National Institutes of Health Stroke Scale 
(NIHSS). FMA-UE is a well-established scale for assessing upper limb 
movement disorders post-stroke (26). MBI reflects improvements in 
upper limb function through the evaluation of patients’ daily living 
abilities (27), while NIHSS provides a comprehensive assessment of 
stroke severity (28, 29). Efficacy data were collected from the original 
medical records at admission and discharge.

Three specialists were selected to review the original data of 
1,375 stroke patients, following strict inclusion and exclusion 
criteria. Ultimately, 616 cases met the criteria and were included for 
further analysis. To protect patient privacy, sensitive information, 
including patient details and DSA diagnostic data, was anonymized. 
The review process was divided equally between two doctors, with 

cross-validation conducted after all assessments to minimize 
subjectivity and errors. In the case of disagreements, a third specialist 
intervened for final adjudication. After data correction, the dataset 
was established and imported into Python for subsequent analysis.

This study developed prediction models using the AutoGluon 
framework. The model incorporated primary demographic data (age, 
gender), DSA diagnostic data (stenosis location and ratio), and 
admission data for the three efficacy evaluation indices (NIHSS, 
FMA-UE, MBI). The prediction endpoint was the discharge evaluation 
data for these same indices. The data processing flow is illustrated in 
Figure 1.

Data processing and machine learning

Data preprocessing
Data preprocessing involves several steps, including data 

alignment, handling missing values, and converting data formats. 
Medical record and DSA diagnostic report data are extracted in strict 
accordance with the predefined coding schema.

The establishment of prediction model
The prediction model in this study is built using the AutoGluon 

framework (30, 31). AutoGluon utilizes an optimized k-fold cross-
validation method, which helps prevent overfitting, making it 
particularly suitable for small sample datasets. In this study, 70% of the 
samples were randomly assigned to the training set, with the remaining 
30% used for testing. Additionally, AutoGluon operates modularly, 
allowing for the easy integration of necessary models during the 
training process. The framework also facilitates out-of-fold predictions 
by stacking models, which enhances the accuracy and interpretability 
of the prediction results. The network architecture designed for this 
study, based on the AutoGluon framework, is shown in Figure 2.

In Figure 2, the dense layer performs three key functions. The first 
function involves the calculation of weights, which can be described 
as follows:

 y=Wx  (1)

In Equation 1, x represents the input data, y denotes the output 
data, and W is the learnable weight of the model, which is updated 
through backpropagation.

Any inevitable bias during training is described as follows:

 y=Wx+b (2)

In Equation 2, b represents the bias term. The final step involves 
determining the activation function, which enables the model to 
function properly and is expressed in Equation 3:

 ( )out activate y=  (3)

Different activation functions may perform better for specific 
tasks or models, but most are designed to suit a limited range of 
models. Given that the AutoGluon framework supports a variety of 
prediction models, we selected ReLU as the activation function for 
this study. To accommodate the small sample size, we constructed 
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a multi-model, three-layer AutoGluon network for the experiment, 
as shown in Figure  3. In addition to the default models in 
AutoGluon, including random forests, extremely randomized trees, 
and k-nearest neighbors, the pooling layer incorporates 12 
additional prediction models: linear regression, logistic regression, 
polynomial regression, ridge regression, support vector machines 
(with polynomial, linear, and Gaussian kernel functions), decision 
trees, and AdaBoost.

Results

Basic information

The basic information includes patient ID, name, clinic visit time, 
age, and gender. Patient ID, name, and clinic visit time do not impact 
the diagnosis or treatment process. Given the limited categories for 
age and gender, we performed frequency analysis for data processing. 

FIGURE 1

Flowchart of the data processing designed in this paper.
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The average age of the patients is 65, with a male-to-female ratio of 2:1. 
The outcome measures did not follow a normal distribution, therefore, 
the Wilcoxon rank-sum test was used for statistical analysis. The 
detailed results are presented in Table 1.

The prediction accuracy of the model

Based on the medical record data of 616 qualified patients, the 
prediction model was developed using the AutoGluon framework. 
The model incorporated primary information (age, gender), DSA 
diagnosis report data (stenosis location, stenosis ratio), and admission 
evaluation data from three efficacy indices (NIHSS, FMA-UE, MBI). 
The prediction endpoints were the discharge evaluation data for these 
same indices. Model parameters were set according to clinical 
evaluation experience and the characteristics of the efficacy indices. 
When NIHSS was used as the endpoint, the error value was 1.14, with 
a prediction accuracy of 84%. For FMA-UE, the error value was 5.15, 
and accuracy was 78%. When MBI was the endpoint, the error value 
was 6.34, with accuracy reaching 88% (Figure 4).

Weight of cerebrovascular stenosis

Building upon the three evaluation index systems from the 
previous studies, we developed three distinct prediction models and 
extracted the weights for each eigenvalue corresponding to the 
cerebrovascular stenosis sites. Given the large number of eigenvalues 
associated with cerebrovascular stenosis locations, only those with 
higher weights are presented for clarity.

When FMA-UE is used as the predicted clinical efficacy evaluation 
index, the corresponding eigenvalue weights are presented in Table 1. 
The results indicate that the right M1 segment, the origin of the left 
ICA, and the left M1 segment are the three most influential eigenvalues 
in the prediction model. For the MBI and NIHSS prediction models, 
the eigenvalue weights are also shown in Table 2, with the right M1 
segment, the left C1 segment, and the origin of the right ICA being 

the key factors driving the model’s predictions. Across the three 
models based on different clinical efficacy evaluation indices, the right 
M1 segment consistently holds the highest weight. When considering 
the impact of bilateral cerebrovascular locations, the M1 segment, the 
origin of the ICA, and the C1 segment emerge as the most critical 
eigenvalues affecting all three prediction models.

As shown in Table 1, the weight of the ICA (C1-C7) segment 
decreases with increasing segment number. Although the weights of 
the base artery and vertebral artery (VA) are relatively low, they still 
exert varying degrees of influence on all three prediction models. 
Additionally, the aortic arch classification, which serves as a defining 
indicator for each dataset, is assigned a higher weight in all 
three models.

The sample data for this study were collected from clinically 
measured patient data, with cerebrovascular stenosis information 
obtained from clinical DSA diagnostic reports. As such, the data is 
highly complex and high-dimensional, particularly with respect to the 
location and severity of cerebrovascular stenosis, exhibiting significant 
heterogeneity among patients. To analyze the relationship between the 
location of cerebrovascular stenosis and acupuncture efficacy, 
we divided the dataset based on the number of stenosis sites in each 
patient and performed a secondary analysis. The statistical results 
indicated that patients had between one and nine stenosis sites. 
Consequently, the dataset was split into nine sub-datasets, each 
corresponding to a specific number of stenosis sites, with each 
sub-dataset treated as an independent feature set. To maintain the 
integrity of the experiment, the data categories and specific data 
within the sub-datasets remained consistent with the original dataset. 
Additionally, the same prediction model used in the previous 
experiment was applied to ensure consistency in the data analysis 
approach. Finally, the prediction model generated eigenvalue weights 
for each of the nine sub-datasets, as shown in Figure 5.

The results indicate that the most significant increase in weight 
occurred when the number of cerebrovascular stenosis sites increased 
from 0 to 1 and from 2 to 3. This suggests that having one or three 
stenosis sites is a critical factor influencing weight change. When the 
number of stenosis sites exceeds three, the weight increase becomes 

FIGURE 2

The network structure of the AutoGluon framework.

https://doi.org/10.3389/fneur.2024.1441886
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2024.1441886

Frontiers in Neurology 06 frontiersin.org

more gradual, with the effect of additional stenosis sites on the weight 
diminishing. Furthermore, the weight difference between three and 
four stenosis sites was found to be the smallest.

Weight of efficacy evaluation index

To assess the feasibility of the efficacy evaluation indices in the 
prediction model, the admission data based on these indices were 
incorporated as one of the features in the model. The resulting weight 
values for each evaluation index are presented in Figure  6. The 
findings reveal that, when using each evaluation index for prediction, 
its weight is the highest, without significant influence from the other 
two indices. These results confirm that the predictions of the three 
efficacy evaluation indices align with clinical expectations, with MBI 
exhibiting the highest weight. Specifically, when NIHSS is used as the 

predictor, MBI’s weight exceeds that of FMA-UE; when FMA-UE is 
used as the predictor, MBI’s weight surpasses that of NIHSS; and when 
MBI is the predictor, NIHSS’s weight is higher than that of 
FMA-UE. Additionally, when comparing the weights of the three 
predictor groups horizontally, NIHSS shows the lowest overall weight, 
while FMA-UE and MBI demonstrate relatively high and closely 
aligned weight distributions.

Nomogram prediction of acupuncture 
response

The nomogram can be  used to predict the probability of 
response to acupuncture treatment for upper extremity motor 
dysfunction following a stroke (Figures  7–9). The total score is 
obtained by summing the points assigned to each variable, and the 

TABLE 1 Statistical analysis of outcome indicators.

Pre-treatment 
median

Post-treatment 
median

Pre-treatment 
interquartile range

Post-treatment 
interquartile range

p-value

FMA 3 2 5 4 <0.001

NIHSS 50 29 58 16 <0.001

MBI 79 86 46 28 <0.001

FIGURE 3

The experimental framework of prediction model.
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response probability is predicted based on the total score. Age is 
categorized as “1” for females and “2” for males. The values of three 
key cerebrovascular stenosis locations are represented by a scale 
based on their corresponding weight values. We constructed three 
nomograms based on three outcome measures—FMA-UE, NIHSS, 
and MBI—focusing on upper extremity motor function, 
neurological deficits, and activities of daily living, to guide clinical 
decision-making.

Discussion

This study successfully leveraged the AutoGluon framework and 33 
cerebrovascular features derived from DSA diagnostic reports to predict 
improvements in clinical symptoms and quality of life in stroke patients 
with upper limb dysfunction, both at the start and end of treatment. Key 
stenosis sites, including the M1 segment, the origin of the ICA, and the 

C1 segment, were identified as significant factors influencing the 
effectiveness of acupuncture treatment for upper limb dysfunction 
following ischemic stroke. Additionally, the MBI emerged as the most 
sensitive measure for evaluating these patients. These findings provide 
valuable insights into the clinical application of acupuncture for stroke-
related limb dysfunction. Furthermore, the predictive model developed 
in this study offers personalized acupuncture treatment 
recommendations, which can optimize therapeutic outcomes and help 
alleviate the economic burden of early-stage diagnosis for stroke patients.

This study focuses on patients with upper limb dysfunction after 
stroke treated with acupuncture. In addition to patient selection, the 
choice of acupuncture protocol is crucial. Unlike randomized 
controlled trials, which ensure uniform interventions, clinicians often 
use individualized treatment plans. To maintain authenticity, we based 
the protocol on the commonly used Xingnao Kaiqiao method for 
acute ischemic stroke, which has been proven safe and effective (32), 
with its standardized approach widely recognized internationally (33).

FIGURE 4

Scatter plot of prediction model. The dots in the figure represent the predicted value of each patient, the funnel area formed by the dotted line 
represents the acceptable error interval, and the closer the dotted line to the diagonal represents the more accurate the predicted value.

https://doi.org/10.3389/fneur.2024.1441886
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2024.1441886

Frontiers in Neurology 08 frontiersin.org

FIGURE 5

Eigenvalues weights of 9 sub data sets.

Due to the limited sample size and high-dimensional data, 
we adopted the stacking model (AutoGluon framework) to build the 
prediction model. Traditional algorithms in medical research, such as 
Random Forest (34), Support Vector Machine (35), and KNN (36), are 
often used with smaller datasets and offer advantages for clinical 
studies with limited samples. However, these algorithms rely on 
manually selected features, which can significantly impact their 
generalization performance, making them less suitable for high-
dimensional data. In contrast, the AutoGluon framework stacks 12 

prediction models and automatically selects the most suitable ones 
based on the data characteristics, enhancing the reliability of the 
analysis. This approach, widely applied in machine learning, has seen 
increasing use in the medical field in recent years. For example, Byeon 
et al. (37) developed a multi-omics model for COVID-19 severity 
prediction using AutoGluon, and Bo et  al. (38) used it to predict 
responses to Lenvatinib Monotherapy for unresectable hepatocellular 
carcinoma. This study is the first to apply AutoGluon in acupuncture-
related data analysis, yielding promising results.

TABLE 2 Eigenvalues obtained by using prediction model.

Features Classification Weights

NIHSS FMA-UE MBI

Aortic arch classification / 8.027393 30.664173 39.434749

The beginning of the ICA Left 5.380544 30.96917 34.187723

Right 6.217616 22.654181 37.382045

C1 Left 6.251932 22.160501 37.904647

Right 5.020586 14.511791 27.64551

C2 Right 2.731205 / /

C4 Left / 8.446753 10.292958

C5 Left 2.047457 / /

C6 Right 2.352296 9.300368 15.404309

C7 Left 2.304183 10.21609 14.800577

Right 2.16399 12.807273 13.993051

M1 Left 5.406385 23.719628 32.219586

Right 7.352477 32.14579 55.975485

M2 Left 4.815944 13.600412 14.236988

Right 2.420018 8.375285 15.923479

A1 Left / 8.736165 11.08119

The beginning of the VA Left 2.968495 11.171888 21.107765

Right 5.485185 17.20229 26.422733

Base artery / 2.453823 10.367592 19.15955
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We developed prediction models using three efficacy evaluation 
indices (NIHSS, FMA-UE, MBI) to predict the impact of acupuncture 
on upper limb motor dysfunction after ischemic stroke, achieving high 
prediction accuracy, with MBI reaching 88%. The model analysis 
identified three cerebrovascular stenosis sites that significantly influenced 
the predictions: the M1 segment, the origin of the ICA, and the C1 
segment, with the M1 segment having the highest weight (Figure 10). 
These sites are common stenosis locations in ischemic stroke patients 

and correspond to areas of the brain responsible for limb motor function, 
aligning with clinical practice. This suggests that acupuncture may offer 
better therapeutic outcomes for patients with stenosis in these regions.

Further analysis of cerebrovascular stenosis revealed that the 
number of stenosis sites most significantly impacted the model when 
there were 1, 3, or 4 sites, as shown in Figure  5. These findings 
suggest that patients with fewer than four stenosis sites, including 
one or more of the M1, ICA origin, or C1 segments, may be more 

FIGURE 6

Eigenvalues weights of Efficacy evaluation index.

FIGURE 7

Nomogram for predicting the location characteristics of cerebrovascular stenosis based on FMA-UE.
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FIGURE 9

Nomogram for predicting the location characteristics of cerebrovascular stenosis based on NIHSS.

suitable candidates for acupuncture treatment. Additionally, 
sensitivity analysis of the clinical efficacy indices showed that MBI 
had the highest sensitivity, followed by FMA-UE and NIHSS. MBI 
has been shown to be  a reliable tool for evaluating acute stroke 

patients (27), with high sensitivity in detecting even minor 
improvements in daily living abilities (39, 40). These results 
demonstrate the potential of DSA diagnosis for screening patients, 
assisting clinicians in tailoring individualized acupuncture 

FIGURE 8

Nomogram for predicting the location characteristics of cerebrovascular stenosis based on MBI.
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treatments, improving patient outcomes, and minimizing 
unnecessary use of medical resources.

This study introduces new clinical data to explore, for the first 
time, the relationship between acupuncture’s effect on upper limb 
dysfunction after ischemic stroke and cerebrovascular conditions. To 
optimize data analysis, we  employed the flexible stacking model 
(AutoGluon framework), which enhances the reliability of our results. 
However, several limitations remain. First, further evidence is needed 
to support the association between acupuncture efficacy and 
cerebrovascular stenosis location, including the use of Arterial Spin 
Labeling (ASL) for evaluating cerebral vascular remodeling (41) and 
Diffusion Tensor Imaging (DTI) for assessing cerebral structural 
plasticity (42). Additionally, our study focused on stenosis of larger 
vessels and did not evaluate microcirculation or collateral circulation. 
Future studies will address this gap through DSA image analysis. 
Furthermore, due to the small sample size, the strength of the evidence 
is limited, and the reliability of the sample size test model should 
be improved in subsequent research. Future randomized controlled 
trials based on our study’s inclusion and exclusion criteria will help 
verify whether these findings are applicable in clinical practice.

Conclusion

The M1 segment, the origin of the ICA, and the C1 segment are 
key stenosis sites that significantly influence the effectiveness of 
acupuncture treatment in patients with upper limb motor dysfunction 
following ischemic stroke. Additionally, the MBI demonstrated the 
highest sensitivity in evaluating these patients.
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