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Background: Migraine risk factors are associated with migraine susceptibility, 
yet their mechanisms are unclear. Evidence suggests a role for inflammatory 
proteins and immune cells in migraine pathogenesis. This study aimed to 
examine the inflammo-immune association between eight migraine risk factors 
and the disorder.

Methods: This study utilized inverse variance weighted (IVW) method and 
colocalization analysis to explore potential causal relationships between 
eight migraine risk factors, migraine, 731 immune cells, and 91 circulating 
inflammatory proteins. Mediation Mendelian randomization (MR) was further 
used to confirm the mediating role of circulating inflammatory proteins and 
immune cells between the eight migraine risk factors and migraine.

Results: Migraine risk factors are linked to 276 immune cells and inflammatory 
proteins, with cigarettes smoked per day strongly co-localized with CD33-HLA 
DR+ cells. Despite no co-localization, 23 immune cells/inflammatory proteins 
relate to migraine. Depression, all anxiety disorders, and sleep apnea are 
correlated with migraine, and all anxiety disorders are supported by strong co-
localization evidence. However, the mediating effect of inflammatory proteins 
and immune cells between eight migraine risk factors and migraine has not 
been confirmed.

Conclusion: We elucidate the potential causal relationships between eight 
migraine risk factors, migraine, immune cells, and inflammatory proteins, 
enhancing our understanding of the molecular etiology of migraine pathogenesis 
from an inflammatory-immune perspective.
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Introduction

Migraine, with its exact pathomechanism still unknown, impacts 
more than 1.1 billion individuals globally (1). Its extensive prevalence 
and associated disability yield a spectrum of adverse and significant 
consequences not only for those directly afflicted, but also for their 
families, and society (2, 3). In 2019, the worldwide age-standardized 
point prevalence and annual incidence rate of migraines stood at 
14,107.3 and 1,142.5 per 100,000 individuals, reflecting a respective 
increment of 1.7 and 2.1% since 1990 (4). The economic ramifications 
of migraine are substantial, encompassing both direct healthcare 
expenses, such as medical consultations and medication costs, and 
indirect costs, including decreased productivity (5).

The pathogenesis of migraines is characterized by a multifaceted 
interplay of genetic predisposition, neurological dysregulation, and 
environmental influences (6). Abnormal neuronal activity precipitates 
the activation of the trigeminovascular system, instigating neurogenic 
inflammation and cerebral blood vessel vasodilation (7). The over 180 
recognized variations are part of several intricate networks of 
“pro-migraine” molecular irregularities, predominantly of neuronal 
or vascular origin (8). Identifying key risk factors associated with 
migraine susceptibility is imperative for comprehensive management 
strategies (9, 10). Factors such as alcohol dependence (11, 12), 
smoking (13), depression (14, 15), anxiety (16), insomnia or sleep 
apnea (17), obesity (18), glucocorticoid use (19, 20) have been 
implicated in migraine pathogenesis. These risk factors may contribute 
to migraines by influencing neurotransmitter control, hormonal 
disruptions, and immune system irregularities (21). Notably, pertinent 
research has uncovered the intricate connections between migraines 
and inflammatory processes as well as immune system activation (22). 
Heightened levels of inflammatory cytokines, comprising IL-6, 
TNF-α, and CGRP, play a role in pain transmission and vascular 
alterations during migraine episodes (23). Furthermore, immune cells 
such as T cells and macrophages sustain an inflammatory milieu that 
intensifies migraine symptoms (24).

Understanding the association between migraine risk factors and 
inflammatory responses is crucial for elucidating migraine 
pathophysiology. While common risk factors like depression or anxiety 
(25), insomnia (26) and obesity (27, 28) have been implicated in 
modulating immune function and promoting inflammation. 
Epidemiological research has revealed a reciprocal association between 
migraines and these risk factors, wherein individuals with one 
condition are at an increased risk of developing the other (17, 29). This 
correlation is thought to stem from common genetic influences, 
disturbances in neurotransmitter function, inflammation, hormonal 
changes, and concurrent conditions present in both disorders (6). The 
precise mechanistic interactions remain subject to ongoing 
investigation. In the pursuit of clarifying the causative relationships 
between migraine risk factors and inflammatory responses, 
methodologies such as Mendelian randomization (MR) offer promising 
avenues (30). By leveraging genetic variations associated with exposure 

factors as instrumental variables, MR enables the exploration of causal 
associations while minimizing confounding effects (31).

In this study, we  utilized extensive genome-wide association 
studies (GWAS) summary statistics to assess the interconnections 
among 91 circulating inflammatory proteins, 731 immune cells, and 
the occurrence of migraines triggered by eight specific factors. These 
factors encompass alcohol dependence, depression, anxiety disorders, 
insomnia, sleep apnea, obesity, glucocorticoid use, and the daily 
consumption of cigarettes. Using MR and colocalization analysis, 
we  identified genetic links between migraine risk factors, 
inflammatory proteins, immune cells, and migraines. These factors 
may serve as novel biomarkers for early diagnosis, prevention, and 
monitoring of migraines.

Methods

Study design

This study conducted MR analyses to explore the inflammo-
immune perspective concerning the correlation between eight 
migraine risk factors and the occurrence of migraines, utilizing GWAS 
data on 91 circulating inflammatory proteins and 731 immune cells. 
Initially, MR analyses were conducted with the eight migraine risk 
factors serving as exposures and circulating inflammatory proteins 
and immune cells as respective outcomes. Subsequently, inflammatory 
proteins and immune cells were considered as exposure factors, and 
the risk of migraines was the primary outcome. Following the 
completion of the study, additional MR analyses were carried out, with 
migraine risk factors identified as the exposures and migraines as the 
primary outcome. The study also involved a mediation analysis aiming 
to ascertain the mediation effects of circulating inflammatory proteins 
and immune cells on the risk of migraines associated with these risk 
factors. Figure 1 depicts the design of the study.

The MR analysis hinges on three critical assumptions: relevance, 
independence, and exclusion restriction. The first assumes a strong 
association between the instrumental and exposure variables. The 
second stipulates the independence of the instrumental variable from 
confounding factors. Lastly, the exclusion restriction assumption 
ensures that the instrumental variable affects the outcome solely 
through the exposure variable, with no direct relationship to the 
outcome (32).

GWAS summary statistics in this study originated from public 
databases. Ethical approvals and informed consent from participants 
have been obtained. No further ethical approval or consent required.

Data sources of eight risk factors of 
migraine and migraine

In our study, we comprehensively included eight migraine risk 
factors, six of which were derived from the FinnGen R10 study and 
the remaining two from alternative databases (33). FinnGen, a public-
private partnership leveraging Finnish genotype and digital health 
data, aims to decipher genetic variations and disease risks in an 
isolated population. Our research capitalized on the most up-to-date 
FinnGen data, encompassing alcohol dependence, depression, all 
anxiety disorders, insomnia, sleep apnea, and obesity. The number of 

Abbreviations: IVW, Inverse variance weighted; MR, Mendelian randomization; 

GWAS, Genome-wide association studies; LD, Linkage disequilibrium; MAF, Minor 

allele frequency; MR-PRESSO, MR pleiotropy residual sum and outlier; FDR, False 

discovery rate; IL-1α, Interleukin-1-alpha; CDCP1, CUB Domain-containing protein 

1; TRAIL, TNF-related apoptosis-inducing ligand; CNS, Central nervous system.
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cases ranged significantly, from 4,801 individuals with insomnia to 
47,696 suffering from depression. The comprehensive GWAS 
summary statistics can be accessed and downloaded from: https://
finngen.gitbook.io/documentation/data-download.

The GWAS conducted on glucocorticoid use included a 
comprehensive dataset of 178,726 participants, encompassing 13,102 
cases and 165,624 controls (33), sourced from: https://www.nature.
com/articles/s41588-021-00931-x. And we incorporated data on the 
number of cigarettes smoked per day from the Within Family GWAS 
Consortium, which included 24,784 European individuals.1 Similarly, 
the migraine data were derived from the FinnGen R10 study, 
encompassing 20,908 cases, accessible at: https://finngen.gitbook.io/
documentation/data-download.

Data sources of 91 circulating 
inflammatory proteins and 731 immune 
cells

The data on circulating inflammatory proteins were derived from 
a meta-analysis of 11 cohorts, encompassing 14,824 subjects of 

1 https://gwas.mrcieu.ac.uk/datasets/ieu-b-4826/

unrelated individuals of European ancestry (34). This is a 
manifestation of proteomics. The complete protein GWAS summary 
statistics are available for download at: https://www.phpc.cam.ac.uk/
ceu/proteins and the EBIGWAS catalog (IDs: GCST90274758-
GCST90274848). The SNP data utilized for 731 immune cell analysis 
were sourced from Valeria Orrù et al.’s study, encompassing 3,757 
Sardinians (35). The statistics can be archived in the GWAS Catalog, 
with accession numbers ranging from GCST00013912 to 
GCST0002121.3 Detailed measurement methods can be found in the 
original publication.

Selection of instrumental variables

In the present study, the selection criteria of instrumental variable 
encompassed the following: (a) a genome-wide significant association 
with a p-value less than 5 × 10−8, (b) evidence of independent 
association linkage disequilibrium (LD) clustering, characterized by 
an r2 value below 0.001 and a distance of less than 10,000 kb, (c) a 
minor allele frequency (MAF) exceeding 0.01. All the data are openly 

2 https://www.ebi.ac.uk/gwas/studies/GCST0001391

3 https://www.ebi.ac.uk/gwas/studies/GCST0002121

FIGURE 1

Study design overview.
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accessible and exempt from ethical committee review. Furthermore, 
we assess the strength of the instrumental variable using the F-statistic, 
with >10 indicating strong association (F = R2(n-k-1)/k(1-R2), 
n = sample size, R2 was estimated by minor allele frequency (MAF) 
and β value: R2 = 2 × MAF × (1−MAF) × β2) (36).

MR analyses

In this study, we  conducted three MR analyses. Firstly, 
we  performed an MR analysis (MR 1) using eight risk factors of 
migraine as the exposure factor and 91 circulating inflammatory 
proteins and 731 immune cells as the outcome measures. Secondly, 
we  conducted another MR analysis (MR 2) with circulating 
inflammatory proteins and immune cells as the exposure factor and 
migraine as the outcome measure. Lastly, we performed the third MR 
analysis (MR 3) using eight risk factors of migraine as the exposure 
and migraine as the outcome.

Additionally, we  validated whether circulating inflammatory 
proteins and immune cells serve as mediators between eight risk 
factors of migraine and migraine (36, 37). We primarily comprised 
two sequential steps. Firstly, we employed the MR approach, utilizing 
the eight risk factors of migraine as the exposure variables and 
migraine as the outcome variable, to elucidate the influence of these 
risk factors on the development of migraine. Subsequently, the 
circulating inflammatory proteins and immune cells were designated 
as the exposure variables, while GWAS of migraine served as the 
outcome. Ultimately, an intermediate analysis was conducted, 
combining the identified positive risk factors of migraine and the 
inflammatory proteins and immune cells, to investigate their 
mediating effects in the pathogenesis of migraine.

In assessing the causal link between exposures and outcomes, 
we primarily utilized the inverse-variance weighting (IVW) approach, 
with MR-Egger regression (38), weighted median, and MR pleiotropy 
residual sum and outlier (MR-PRESSO) test as supplementary ones 
(38). Cochran’s Q method detected heterogeneity when its p-value was 
<0.05 (39). By utilizing the intercept of the MR-Egger regression (40), 
we  assessed whether directional pleiotropy has an impact on the 
causal estimation, and the MR-PRESSO test was used to correct 
pleiotropy effects by excluding outliers (41, 42). The false discovery 
rate (FDR) method was employed to correct for multiple comparisons, 
and the association was considered statistically significant if the PFDR 
of the IVW method was less than 0.05 (43). Additionally, a p-value of 
less than 0.05 was deemed indicative of a potential association. The 
MR analysis was performed with the TwoSampleMR package (v0.5.6) 
in R software (v4.2.2).

Colocalization analysis

Bayesian colocalization analyses was conducted to determine if 
the associations between the exposures and outcomes were motivated 
by linkage disequilibrium, considering five hypothetical scenarios: no 
association (Hypothesis 0), independent association of trait 1 
(Hypothesis 1), independent association of trait 2 (Hypothesis 2), 
association between the two traits with different causal variations 
(Hypothesis 3), and association between the two traits with identical 
causal variations (Hypothesis 4). By calculating their respective 

posterior probabilities (PPH0 to PPH4), we were able to quantify the 
likelihood of each hypothesis. When the PPH4 is greater than 0.8, it 
was considered as strong support for the colocalization of the two 
traits (44). The “coloc” package used in the analysis was downloaded 
from: https://github.com/chr1swallace/coloc.

Results

The summary data information were presented in 
Supplementary Table S1. During the power examination of all 
instrumental variables, the minimum F-statistic exceeded 10. The 
largest sample size was for depression, with 47,696 samples, while the 
smallest sample size was for 731 immune cells, with 3,757 samples, of 
which the statistical power is relatively low.

Associations of genetic liability to eight 
migraine risk factors with 91 circulating 
inflammatory proteins and 731 immune 
cells

We performed MR analyses using eight migraine risk factors as 
exposures and 91 circulating inflammatory proteins and 731 immune 
cells as outcomes, respectively. Figure 2 and Supplementary Table S2 
shows the summary of the analysis results. When circulating 
inflammatory proteins were used as the outcomes, the number of 
cigarettes smoked per day was a potentially positive regulatory factor 
for Interleukin-1-alpha levels (OR = 1.035, 95% CI 1.006–1.065, 
p = 0.017, PFDR = 0.782) and CUB domain-containing protein 1 levels 
(OR = 1.030, 95% CI 1.005–1.055, p = 0.017, PFDR = 0.782). Moreover, 
obesity was potentially positively correlated with TNF-related 
apoptosis-inducing ligand levels (OR = 1.066, 95% CI 1.004–1.131, 
p = 0.036, PFDR = 0.695) and T-cell surface glycoprotein CD6 isoform 
levels (OR = 1.061, 95% CI 1.001–1.124, p = 0.044, PFDR = 0.695). The 
results showed no heterogeneity and pleiotropy (p-value>0.05). 
However, no potential causal relationship was found for alcohol 
dependence, depression, anxiety disorders, insomnia, sleep apnoea, or 
glucocorticoid use with inflammatory proteins, in which the p values 
before and after FDR-corrected are all greater than 0.05.

With regard to immune cells, alcohol dependence, cigarettes smoked 
per day, depression, all anxiety disorders, sleep apnoea, and obesity were, 
respectively, associated with 33, 31, 38, 62, 69, and 39 types of immune 
cells, respectively. In the heterogeneity and pleiotropy analyses, both 
p-values exceeded the significance threshold of 0.05. Among the immune 
cells related to cigarettes smoked per day, CD33- HLA DR+ Absolute 
Count highly supported the colocalization analysis (PH4 = 0.814), while 
HLA DR on CD33dim HLA DR+ CD11b + (PH4 = 0.696) and HVEM 
on naive CD4+ T cell (PH4 = 0.532) moderately supported the 
colocalization analysis in relation to obesity (Supplementary Table S5).

Associations of 91 circulating inflammatory 
proteins and 731 immune cells with the risk 
of migraine

Subsequently, we conducted a comprehensive MR analysis, with 
a focus on 91 circulating inflammatory proteins and 731 immune cells 
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as the exposures, and the risk of migraine as the outcome. The results 
of this analysis are presented in Figures  3, 4 and 
Supplementary Table S3. Our findings demonstrated a clear causal 
relationship between nine circulating inflammatory proteins and the 
risk of migraine. The increased risk of migraine was potentially 
associated with seven inflammatory proteins: T-cell surface 
glycoprotein CD6 isoform levels (OR = 1.081, 95% CI 1.038–1.126, 
p = 0.000), CUB domain-containing protein 1 levels (OR = 1.103, 95% 
CI 1.035–1.176, p = 0.002), beta-nerve growth factor levels 
(OR = 1.320, 95% CI 1.093–1.594, p = 0.004), Oncostatin-M levels 
(OR = 1.179, 95% CI 1.029–1.350, p = 0.018), Sulfotransferase 1A1 
levels (OR = 1.097, 95% CI 1.015–1.186, p = 0.020), T-cell surface 
glycoprotein CD5 levels (OR = 1.090, 95% CI 1.003–1.185, p = 0.042), 
and Fibroblast growth factor 5 levels (OR = 1.041, 95% CI 1.001–
1.083, p = 0.045). Conversely, C-C motif chemokine 19 levels 
(OR = 0.921, 95% CI 0.869–0.976, p = 0.006) and Tumor necrosis 
factor ligand superfamily member 12 levels(OR = 0.902, 95% CI 

0.829–0.981, p = 0.016) were associated with a reduced risk of 
migraine. After FDR correction, only the p-value for the isoform 
levels of T-cell surface glycoprotein CD6 is 0.01, while all other 
p-values are greater than 0.05, indicating a potential statistical 
significance. Furthermore, we  uncovered a significant causal 
association between 14 specific immune cells and the development of 
migraine. Eight immune cells were positively correlated with the risk 
of migraine, while six types of immune cells were negatively 
correlated. However, all the p-values after FDR correction are >0.05. 
Utilizing IVW as our primary analytical method, we  observed 
consistent directions in the effect size estimates when compared to 
alternative methods. This consistency strengthens the reliability of our 
results. Additionally, we did not reveal any evidence of heterogeneity 
or pleiotropy (p-value>0.05).

The analysis of T-cell surface glycoprotein CD6 isoform levels 
(PH4 = 0.614) and CD8 expression on terminally differentiated CD8+ 
T cells (PH4 = 0.533) provided moderate evidence in support of the 

FIGURE 2

Associations of genetic liability to eight migraine risk factors with 91 circulating inflammatory proteins and 731 immune cells.
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FIGURE 3

Associations of 91 circulating inflammatory proteins with the risk of migraine.

FIGURE 4

Associations of 731 immune cells with the risk of migraine.
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colocalization analysis in the context of migraine 
(Supplementary Table S6).

Associations of migraine risk factors with 
the risk of migraine

Later, MR analyses were undertaken, wherein migraine risk 
factors were identified as the exposures, and migraine emerged as the 
outcome. Depression was associated with an increased risk of 
migraine (OR = 1.430, 95% CI 1.317–1.552, p = 1.165 × 10−17, 
PFDR = 9.323 × 10−17). Additionally, all anxiety disorders and sleep 
apnoea were also positively correlated with an increased risk of 
migraine, with respective ORs of 1.246 (95% CI 1.1–1.41, 
PFDR = 2.073 × 10−3) and 1.136 (95% CI 1.043–1.238, p = 3.579 × 10−3, 
PFDR = 9.544 × 10−3). Among them, all anxiety disorders highly 
supported the colocalization analysis with migraine (PH4 = 0.896). 
The details were presented in Figure 5 and Supplementary Tables S4, S7.

Mediation effects of 91 circulating 
inflammatory proteins and 731 immune 
cells on migraine risk factors – migraine 
risk

Despite a potential association between the risk factors and 
migraine, after conducting a mediation analysis that integrated 
positive migraine risk factors with circulating inflammatory proteins 
and immune cells, we discovered no indication that these proteins and 
cells mediate the risk of migraine (Supplementary Table S8).

Discussion

In this study, we have discerned the associations among eight 
migraine risk factors, the 91 inflammatory proteins and 731 immune 

cells, and migraine. MR analysis has allowed us to explore the complex 
interplay between these factors in unprecedented detail. By examining 
the associations among these different factors, we aimed to shed light 
on the complex biological processes that underlie migraines. Our 
findings provide valuable insights into the complex interplay between 
these factors.

Our investigation has unveiled correlation between eight migraine 
risk factors and the presence of circulating inflammatory proteins and 
immune cells. Specifically, cigarettes smoked per day may served as a 
potential factor in elevating in Interleukin-1-alpha (IL-1α) and CUB 
domain-containing protein 1 (CDCP1). From previous study cigarette 
smoke exposure induces inflammation marked by rapid and sustained 
neutrophil infiltration, IL-1α, release and altered surfactant 
homeostasis (45). IL-1α is a pro-inflammatory cytokine that plays a 
crucial role in the initiation and propagation of inflammatory 
responses. Upregulation of IL-1α has been associated with various 
inflammatory diseases and is now implicated in the inflammatory 
response triggered by smoking. Increased levels of IL-1α can induce 
the recruitment and activation of additional immune cells, 
perpetuating a cycle of inflammation that could potentially contribute 
to the pathogenesis of migraines (46). CDCP1 is a transmembrane 
protein that has been implicated in cell adhesion and migration (47), 
may processes integral to the inflammatory response. We supposed 
that elevated levels of CDCP1 could potentially enhance the migratory 
capacity of immune cells, facilitating their infiltration into sites of 
inflammation (48). In the context of migraines, these changes induced 
by smoking could potentially exacerbate the neurogenic inflammation 
characteristic of the condition, leading to more frequent or severe 
attacks (49). However, further research is needed to fully elucidate the 
mechanistic link between cigarette smoke, IL-1α and CDCP1 
elevation, and migraine pathogenesis.

Moreover, in the study, obesity was associated with altered levels 
of TNF-related apoptosis-inducing ligand (TRAIL) and T-cell surface 
glycoprotein CD6 isoform, aligning closely with findings from prior 
research. Obesity is a state of chronic low-grade inflammation, often 
referred to as “metaflammation.” This inflammatory state is 

FIGURE 5

Associations of migraine risk factors with the risk of migraine.
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characterized by alterations in various immune markers, including 
TRAIL and CD6. TRAIL is a cytokine known for its ability to induce 
apoptosis in cells (50). Funcke et al. found that TRAIL in regulating 
adipose tissue homeostasis by promoting the proliferation of tissue-
resident precursor cells (51). In the context of obesity, TRAIL levels 
are often dysregulated. Combined with the result in this study, the 
dysregulation may contribute to the inflammatory state observed in 
obesity, and potentially exacerbate the inflammatory response seen in 
conditions such as migraines. CD6 is a surface glycoprotein expressed 
on T cells, a type of immune cell, which plays a crucial role in 
modulating T cell activation and response, making it a key player in 
immune responses (52, 53). The use of a combined treatment 
involving anti-CD6 therapy and oral insulin immunization effectively 
reverses recent-onset diabetes in non-obese diabetic mice (54). 
Alterations in CD6 levels in obesity could potentially lead to 
dysregulated immune responses (55), thereby contributing to the 
chronic inflammation associated with obesity. Previous research has 
shown that obesity can influence the frequency and severity of 
migraines (18, 56), potentially through these inflammatory pathways. 
The alterations in TRAIL and CD6 levels could be  one of the 
mechanisms through which obesity influences migraine pathogenesis. 
However, further research is needed to fully elucidate the role of these 
markers in the link between obesity and migraines. Some potential 
causal relationship in inflammatory immunity was found for alcohol 
dependence, depression, anxiety disorders, insomnia, sleep apnoea, 
and glucocorticoid use. However, there is no evidence to support a 
strong colocalization relationship.

In the study, associations of circulating inflammatory proteins and 
immune cells with the risk of migraine were investigated. Of particular 
interest were the levels of T-cell surface glycoprotein CD6 isoform. 
Interestingly, it was found that elevated levels of this particular protein 
might increase the risk of migraines, with a p-value of less than 0.05 
after FDR correction. As mentioned above, the CD6 plays a crucial 
role in the immune response, and alterations in its expression or 
function can lead to dysregulated immune activity (52, 53). In the 
context of migraines, it is hypothesized that elevated levels of CD6 
could potentially enhance T cell activation and proliferation, 
contributing to the neurogenic inflammation characteristic of 
migraines (57, 58). However, it’s important to note that the relationship 
between CD6 levels and migraines is likely to be  complex and 
multifactorial. Moreover, combined with the above analysis results, it 
is speculated that obesity may influence the expression of CD6, and 
thus affect migraine. Further studies are needed to elucidate the 
precise mechanisms underlying this association and to explore the 
potential of CD6 as a therapeutic target for migraines.

Beyond the potential impact of CD6 levels and obesity on 
migraines, the research unveiled connections between migraine and 
other three migraine risk factors, specifically, depression, all anxiety 
disorders, and sleep apnea. The association between all anxiety 
disorders and migraine was statistically significant after FDR 
correction. Previous researches revealed that individuals afflicted by 
migraines experience elevated morbidity due to recurrent headache 
episodes inherent to the condition, disrupted sleep patterns, and a 
notable prevalence of accompanying psychosocial disorders (17).

In our study, we uncovered compelling evidence indicating that 
depression and all anxiety disorders might heighten the risk of 
experiencing migraines. The simultaneous occurrence of migraines 
and depression poses a notable clinical conundrum, as highlighted by 
numerous studies (14, 29). Although conclusive evidence supporting 

the cause for the bidirectional link between migraine and depression is 
lacking, a disruption in the activation of the immune system has 
persistently been recognized as a significant factor (14). The 
pathophysiological basis of migraine is rooted in the local terminal 
release of products from trigeminovascular afferents, which can not 
only provoke the dilation of meningeal vessels but also induce a 
pronounced neuroinflammatory state (59). Peripheral molecular and 
cellular immune dysfunction impacts the central nervous system 
(CNS), inducing a neuroinflammatory state that is increasingly being 
understood in the context of depression (60). What’s more, previous 
study showed that anxiety exhibited a more pronounced correlation 
with the heightened risk of migraines compared to depression (61). The 
inability to effectively manage anxiety and achieve relaxation stands out 
as the predominant challenges in the psychiatric overlap with 
migraines. Physical manifestations in depression show a stronger 
association with migraines than emotional indications (61). In 
summary, our findings highlight the complex interplay between 
migraines, depression, and anxiety disorders. Functional changes at the 
molecular or cellular level in both the peripheral and central immune 
systems appear to be a critical pathophysiological feature that may 
be shared, at least in part, between migraine and depression. These 
results underscore the importance of a holistic approach to patient care, 
which takes into account not just the physical symptoms of migraines, 
but also the psychological factors that can exacerbate these symptoms.

Sleep apnea, characterized by repeated episodes of breathing 
cessation during sleep (62), was also found to significantly increase the 
risk of migraines in our study. However, a recent meta-analysis has 
found that sleep apnea does not increase the risk of headaches, which 
is attributed to the heterogeneity of the methods (63). Sleep apnea 
often results in fragmented sleep and chronic intermittent hypoxia, 
which may disrupt the normal sleep–wake cycle, leading to alterations 
in pain threshold and increased susceptibility to migraines (62). 
Recent studies using prospective, longitudinal methods are starting to 
uncover the extent and timing patterns of sleep and migraine 
interactions (64). Certain elements of brainstem-cortical networks 
associated with sleep physiology are inadvertently recognized as 
crucial components in the typical migraine pathway (65). Recent 
findings on anatomical localization, with the hypothalamus playing a 
pivotal early role in migraine pathophysiology, shared mediating 
signaling molecules like serotonin and dopamine, and the discovery 
of a novel CNS waste removal system, the glymphatic system, all 
suggest a shared pathophysiology between migraines and sleep (66).

This manuscript does not provide statistical evidence of a 
significant association between alcohol dependence (11, 12), smoking 
(13), depression (14, 15), anxiety (16), insomnia or sleep apnea (17), 
obesity (18), glucocorticoid use (19, 20), and migraine, though 
previous research has established the existence of such correlations. 
The heterogeneity in the results may be attributed to the use of MR 
methods that examine causal relationships from a genetic perspective, 
rather than in real-world settings. For instance, alcohol can trigger 
migraine attacks by causing vasodilation and stimulating pain 
receptors in the meninges through mechanical input (11, 12). 
Furthermore, alcohol consumption is a highly contentious subject, 
primarily due to the inherent challenge in establishing definitive 
guidelines for the “amounts and patterns” of its intake (67). While the 
focus of this study lies in alcohol dependency, future research 
endeavors must delve deeper into the intricacies of alcohol 
consumption quantities and patterns. Further research is warranted 
to elucidate these connections.
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Our study has limitations. Firstly, our mediated MR results did 
not find a clear mediated effect between inflammatory proteins and 
immune cells in the relationship between migraine risk factors and 
migraine itself. This could be attributed to the limited explanatory 
power of genetic variations, and the intricate interactions among the 
three factors. Future research utilizing diverse methodologies and 
larger sample sizes is required to further delve into this complex 
relationship (14). Secondly, we primarily relay on several large-scale 
GWAS datasets, yet the lack of detailed demographic information 
hinders in-depth subgroup analyses. Thirdly, migraine varies 
significantly in attack frequency and disability, affecting patients 
differently. It can be classified as acute or chronic, but in this study, 
we focus specifically on acute migraine attacks, excluding chronic 
migraine. Furthermore, due to the inherent limitations of the MR 
method, our exploration of the relationships among migraine risk 
factors, migraine, inflammatory proteins, and immune cells is solely 
genetic, whereas the actual conditions are determined by a 
combination of environmental and genetic factors. Future studies, 
using different methodologies and larger sample sizes, may be able to 
shed more light on this complex relationship.

In summary, this study sheds new light on the potential causal 
links between migraine risk factors, migraine, immune cells, and 
inflammatory proteins. This study finds migraine risk factors linked 
to 276 immune cells or inflammatory proteins. And 23 immune cells 
and inflammatory proteins, depression, all anxiety disorders, and sleep 
apnea correlate with migraine. Our results do not confirm the 
mediating role of inflammatory proteins and immune cells in these 
associations. Nonetheless, this work significantly advances our 
understanding of the molecular etiology of migraine pathogenesis 
from an inflammatory-immune perspective.
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