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fMRI in cervical spondylosis 
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Background: Resting-state functional magnetic resonance imaging (rs-fMRI) 
reveals diverse neural activity patterns in cervical spondylosis (CS) patients. 
However, the reported results are inconsistent. Therefore, our objective was to 
conduct a meta-analysis to synthesize the findings from existing rs-fMRI studies 
and identify consistent patterns of neural brain activity alterations in patients 
with CS.

Materials and methods: A systematic search was conducted across PubMed, 
Web of Knowledge, Embase, Google Scholar, and CNKI for rs-fMRI studies that 
compared CS patients with healthy controls (HCs), up to January 28, 2024. 
Significant cluster coordinates were extracted for comprehensive analysis.

Results: We included 16 studies involving 554 CS patients and 488 HCs. CS 
patients demonstrated decreased brain function in the right superior temporal 
gyrus and left postcentral gyrus, and increased function in the left superior 
frontal gyrus. Jackknife sensitivity analysis validated the robustness of these 
findings, and Egger’s test confirmed the absence of significant publication bias 
(p  >  0.05). Meta-regression showed no significant impact of age or disease 
duration differences on the results.

Conclusion: This meta-analysis confirms consistent alterations in specific brain 
regions in CS patients, highlighting the potential of rs-fMRI to refine diagnostic 
and therapeutic strategies.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, 
identifier CRD42024496263.
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1 Background

Cervical Spondylosis (CS) is a prevalent age-related chronic condition characterized 
primarily by stiffness and pain in the neck and upper back. Due to its high incidence rate, 
unsatisfactory treatment options, significant healthcare burdens, and impact on quality of 
life, CS has emerged as a critical public health and societal issue (1). In recent years, the 
prevalence of CS has been on the rise, becoming a leading cause of non-traumatic spinal cord 
dysfunction (2). Timely diagnosis and surgical intervention are crucial for alleviating 
neurological symptoms in CS patients (3). Research shows that chronic pain can lead to the 
progressive accumulation of brain damage, which may manifest as psychological disorders 
including depression, anxiety, and sleep disturbances that impact emotional processing. 
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Patients with chronic musculoskeletal pain often experience 
heightened anxiety, depression, fatigue, and insomnia, which 
intensify with the severity and multiplicity of pain sites (4). 
Furthermore, the co-occurrence of anxiety and depression in these 
patients is linked to significant psychological impairments and 
reduced quality of life, emphasizing the need to focus on 
psychological aspects in the management and treatment of chronic 
pain (5).

Resting state functional magnetic resonance imaging (rs-fMRI) 
is a commonly used technique to study functional changes in the 
brains of patients. Analytical methods such as Amplitude of low 
frequency fluctuation (ALFF) and regional homogeneity (ReHo) 
are frequently employed. ALFF measures the amplitude of 
low-frequency fluctuations (0.01–0.08 Hz) in the blood oxygen 
level dependent (BOLD) signal, providing reliable insights into 
cortical activity (6). Besides, ReHo assesses the similarity of BOLD 
signal patterns between a given voxel and its 26 neighboring voxels, 
offering a different perspective on neural activity (7). ALFF, ReHo, 
and related algorithms like fractional ALFF (fALFF) play a crucial 
role in studies with high reliability and specificity on cortical 
activity, significantly contributing to our understanding of brain 
function through rs-fMRI technology. Previous studies have 
indicated functional activity changes in the brains of CS patients 
in regions such as the superior frontal gyrus, middle frontal gyrus, 
postcentral gyrus, superior temporal gyrus, insula, sensorimotor 
area, supplementary motor area, cingulate gyrus, occipital lobe, 
and precuneus (8–23). However, some studies have reported 
variability in the functional changes of cortical regions in CS 
patients, with increased (9, 13), decreased (11, 20), or unchanged 
activation observed in areas like the precuneus and middle 
cingulate cortex.

Variability in functional representation across studies may be due 
to differences in sample sizes, neural activity levels, and imaging 
parameters. This study uses the Anisotropy Effect Size Signed 
Differential Mapping (AES-SDM) technique to identify consistent 
brain function changes and employs a meta-analysis to compare brain 
region activity between CS patients and healthy controls (HCs), 
enhancing our understanding of CS’s neurological impact.

2 Materials and methods

2.1 Literature search

This review was registered with PROSPERO (ID: 
CRD42024496263). A systematic search for relevant studies was 
conducted in the PubMed, Web of Knowledge, Embase, Google, and 
CNKI databases up to January 28, 2024. Keywords included (“cervical 
spondylopathy” OR “cervical spondylosis” OR “spondylosis” OR 
“cervical spondylotic”) AND (“regional homogeneity” OR “ReHo” OR 
“amplitude of low-frequency fluctuation” OR “ALFF” OR “fALFF”) 
AND (“magnetic resonance” OR “MRI” OR “functional MRI” OR 
“fMRI”). Manual screening of all potentially related results was 
also conducted.

Studies were considered eligible based on the following criteria: 
(1) Clear diagnosis of CS via MRI; (2) absence of pain in other body 
parts; and (3) reporting of whole-brain results in stereotactic space 
(MNI or Talairach coordinates) for ALFF, fALFF, dALFF, PerAF, 

ReHo. Exclusion criteria included: (1) Abstracts, case reports, 
systematic reviews, meta-analyses; (2) Intervention studies; (3) Studies 
using only region of interest (ROI) or seed voxel-based analyses; (4) 
Studies not adhering to CS diagnostic criteria or presenting significant 
data heterogeneity; (5) Studies without reported coordinates. Two 
physicians with at least attending doctor qualifications independently 
conducted the literature search and reached consensus on the results. 
Study selection was conducted in accordance with the PRISMA 
guidelines (24) (Table 1).

2.2 AES-SDM analysis

The anisotropy effect size signed differential mapping (AES-SDM) 
software was used to analyze ReHo/zReHo & ALFF/dALFF/zALFF 
differences between CS patients and HCs (25). Peak coordinates in 
Talairach space were converted to MNI space.1 If results were presented 
as z-values, they were converted to t-values for use in the analysis.2 
AES-SDM reconstructed effect size and statistical parameter maps of 
increased and decreased brain region activation from individual 
studies. The Monte Carlo random effects model used in AES-SDM 
integrated these statistical maps with a significance threshold set at: 
FWHM = 20 mm, uncorrected voxel p < 0.005, and cluster extent ≥10 
voxels (26). Cluster coordinate reconstruction involved converting 
peak t-values to Hedges’ g, followed by application of a Gaussian 
kernel for nonuniform smoothing of adjacent peak coordinate voxels. 
Volume rendering of cortical clusters with significant differences was 
performed in MNI standard space using Mango software.

Egger’s regression test, integrated within the AES-SDM software, 
was employed to evaluate the effect sizes of peak voxels within 
significant clusters. Heterogeneity among studies was calculated to 
assess brain regions contributing to heterogeneity. Jackknife sensitivity 
analysis was performed to evaluate the robustness of the results by 
repeating the meta-analysis 16 times, excluding one of the 16 studies 
in each iteration (27). Funnel plots and meta-regression analyses were 
created using the peak coordinates of significant cortical activation 
clusters to assess potential publication bias and the impact of study-
level covariates on the observed effects.

3 Results

3.1 Literature search

A total of 165 articles were retrieved through the search, among 
which 16 met the inclusion criteria for the meta-analysis (Figure 1). No 
additional relevant studies were identified from the references of the 
selected articles. Various resting-state analysis methods were used 
across the studies, such as ReHo/zReHo and ALFF/fALFF/dALFF/
zALFF. Two papers, Chen (12) and Kuang (16), utilized ReHo and 
ALFF, zReHo and zALFF methods, respectively, and were considered 
as separate studies due to the different analytical approaches. 
Consequently, 16 articles comprising 18 studies were included in the 

1 http://www.brainmap.org/icbm-2tal/

2 www.sdmproject.com/utilities/?show=Statistics
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meta-analysis (8–23), involving a total of 554 CS patients and 488 HCs. 
No statistically significant differences were observed in age and gender 
between CS patients and HCs (p > 0.05; Table 1).

3.2 Meta-analysis results

The results of the AES-SDM analysis are summarized in Table 2. 
The meta-analysis comparing CS patients with HCs revealed 
decreased brain function in CS patients in the right superior temporal 
gyrus and left postcentral gyrus, and increased function in the left 
superior frontal gyrus (Figure 2). Egger’s test results for the right 
superior temporal gyrus (Bias 1.19, Z 1.00, P 0.318), left postcentral 
gyrus (Bias-0.02, Z-0.02, P 0.988), and left superior frontal gyrus 
(Bias 0.77, Z 0.73, P 0.467) confirmed no significant heterogeneity 

among the studies (Table 2). Jackknife sensitivity analysis showed 
consistent results, with the findings for the right superior temporal 
gyrus replicated in 13 of 16 iterations; for the left postcentral gyrus in 
14 of 16; and for the left superior frontal gyrus in 14 of 16 iterations 
(Table 3). Meta-regression analysis indicated no significant impact 
from differences in age and gender between groups.

4 Discussion

This study employs AES-SDM analysis to integrate brain functional 
activation maps, confirming notable changes in brain function in CS 
patients compared to HCs. Specifically, we  observed decreased 
activation in the right superior temporal gyrus and the left postcentral 
gyrus, and increased activation in the left superior frontal gyrus.

TABLE 1 Characteristics.

Author, 
year

Sample size Age (X  ±  S) Man/Female Field 
strength

Method Differential 
brain 

region

Corrective 
methods

Patient HCs Patient HCs Patient HCs

Zhou, F. 

2014 (8)
19 19 49.63 ± 7.36 49.46 ± 7.21 11/8 10/9 3.0 T ALFF 3 Alphasim

Tan, Y.M. 

2015 (9)
21 21 47.95 ± 7.00 47.95 ± 7.00 13/8 13/8 3.0 T ReHo 10 Alphasim

Tan, Y. 2015 

(10)
21 21 47.95 ± 7.00 47.95 ± 7.00 12/9 12/9 3.0 T ReHo 2 GRF

Yu, C.X. 

2017 (11)
25 20 47.68 ± 10.99 42.50 ± 11.94 13/12 10/10 3.0 T ReHo 8 Alphasim

Chen, Z. 

2018 (12)
27 11 57.90 ± 9.10 54.80 ± 8.40 15/12 6/5 3.0 T

ReHo&

ALFF
2 & 2 FWE

Chen, J. 

2018 (13)
104 96 N/A N/A N/A N/A 3.0 T ReHo 2 FWE

Xu, Y.K. 

2018 (14)
25 20 N/A N/A N/A N/A 3.0 T ReHo 5 Alphasim

Zhang, CL. 

2019 (15)
43 41 49.07 ± 6.73 49.07 ± 6.73 27/16 21/15 3.0 T ALFF 6 GRF

Kuang, C. 

2019 (16)
31 31 54.78 ± 8.41 53.52 ± 8.13 16/17 15/18 3.0 T

zReHo 

&zALFF
1 & 1 FDR

Yue, X. 

2020 (17)
28 25 47.04 ± 8.74 43.56 ± 11.96 17/11 13/12 3.0 T ALFF 11 Alphasim

Ge, Z.C. 

2021 (18)
12 18 55.42 ± 10.58 50.05 ± 11.52 5/7 6/8 3.0 T ALFF 4 Alphasim

Wu, K.F. 

2021 (19)
40 25 49.68 ± 7.13 49.68 ± 7.13 21/19 21/19 3.0 T ALFF 5 GRF

Fan, N.J. 

2022 (20)
44 38 51.3 ± 2.80 51.7 ± 3.60 22/22 20/18 3.0 T dALFF 3 FWE

Bai, L. 2022 

(21)
31 31 51.79 ± 10.21 51.52 ± 9.84 15/16 15/16 3.0 T ALFF 3 FWE

Zhao, R. 

2022 (22)
21 11 53.3 ± 9.13 54.80 ± 8.40 10/11 5/6 3.0 T zALFF 4 FWE

Su, Q. 2023 

(23)
62 60 53.3 ± 7.38 53.4 ± 7.47 31/31 30/30 3.0 T ALFF 4 FWE

No statistically significant differences were observed in age and gender between CS patients and HCs (p > 0.05), as presented in Table 1 of included studies. HCs, healthy controls; ReHo, 
regional honogeneity; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; MNI, montreal neurological institute.
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FIGURE 1

Flow chart of the study selection strategy.

TABLE 2 Applying SDM method to study the changes in brain function activity cervical spondylosis.

Anatomical 
label 
Brodmann area 
(BA)

Peak MNI coordinate SDM-Z p value Voxels Jacknife Egger

X Y Z Sensitivity 
analysis

Bias test

ReHo/zReHo & ALFF/ /dALFF/zALFF Decrease

Right superior 

temporal gyrus BA 22
62 -38 8 −2.558 0.005259216 303 13/16

Bias: 1.19

Z: 1.00

P: 0.318

Left postcentral gyrus 

BA4
−38 −26 54 −2.181 0.014583647 127 14/16

Bias: −0.02

Z: −0.02

P: 0.988

ReHo/zReHo & ALFF/ /dALFF/zALFF Increase

Left superior frontal 

gyrus BA 10
−6 66 0 2.447 0.007206142 1,451 14/16

Bias: 0.77

Z: 0.73

P: 0.467

ReHo, regional honogeneity; ALFF, amplitude of low-frequency fluctuation; fALFF, fractional amplitude of low-frequency fluctuation; MNI, montreal neurological institute.
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4.1 Decreased brain function regions in CS 
patients

The right superior temporal gyrus, part of the Wernicke’s area 
involved in auditory and language processing and a key structure in 
social cognitive functions, showed decreased brain activity in this 
study. This region also acts as a cortical center for vestibular 
functions (28). Yu et  al. (11) reported that the cognitive levels 
maintained in CS patients might be  a result of compensatory 
mechanisms, which, upon failure, could lead to significant 
cognitive decline.

Furthermore, Song et al. (29) suggested that changes in gray matter 
volume in regions such as the left precentral gyrus, medial prefrontal 
cortex, supplementary motor area, superior temporal gyrus, parietal 
lobe, occipital lobe, and postcentral gyrus may indicate Wallerian 
degeneration, which occurs distal to damage in the corticospinal tract. 
Adaptive changes in sensory and motor functions have been confirmed 
in animal models with hemisected spinal cords (30). Wrigley et al. (31) 
also found significant reductions in gray matter volume in the left 
precentral gyrus, bilateral superior temporal gyri, insula, hypothalamus, 
medial prefrontal cortex, and anterior cingulate cortex in patients with 
spinal cord injury compared to healthy individuals. CS damages 
afferent or efferent fibers, such as those in the corticospinal tract, 
disrupting intact motor-related neural reflex-feedback control systems. 
Brain regions involved in motor activity, including the premotor and 
supplementary motor areas, play crucial roles in the preparation and 
execution of movement (32). Therefore, this study posits that the 
decreased brain function activity in the superior temporal gyrus in CS 
patients affects the intention, purpose, and rough planning of the 
motor area during movement execution, which may explain the fine 
motor abnormalities seen in CS patients.

The left postcentral gyrus, part of the primary sensory cortex, plays 
a crucial role in the pathological process of CS, integrating and executing 
various motor information and participating in the perception of touch, 
pressure, temperature, and pain (33–35). The observed decrease in brain 
function activity in the left postcentral gyrus suggests cortical 
reorganization in the cortical functional area (i.e., postcentral gyrus) 
following damage to the corticospinal tract nerve fibers, compensating 
for functional deficits in CS patients. Recent studies have also identified 
functional, structural, and metabolic changes in the postcentral gyrus 
of CS patients, considered manifestations of sensorimotor cortex 
plasticity, revealing dynamic adjustments by the brain in response to 
secondary damage during chronic spinal cord injury progression (36, 
37). Moreover, previous literature indicates the postcentral gyrus’s 
association with chronic pain (38, 39). The regulation of external stimuli 
or neurofeedback can directly impact chronic pain, highlighting the 
significance of the sensorimotor cortex in the pain process. Our findings 
of decreased brain function activity in the left postcentral gyrus suggest 
that CS-related chronic neck and shoulder pain affects the functional 
expression of the somatosensory cortex, leading to weakened sensory 
abilities and long-term behavioral impacts. Thus, it can be inferred that 
the decrease in brain function activity may signify the activation of brain 
functions in the postcentral gyrus, thereby influencing pain perception.

4.2 Increased brain function regions in CS 
patients

The prefrontal cortex, encompassing areas such as the medial 
superior frontal gyrus and the orbitofrontal cortex, is responsible for 
a wide array of advanced cognitive functions and emotional 
regulation. It plays a crucial role in modulating the brain’s perception 

FIGURE 2

Abnormal regions identified in an SDM-Meta analysis of neuroimaging studies in cervical spondylosis (CS). Regions showing increased activation in CS 
patients compared to healthy controls (HCs) are highlighted in red, while regions with decreased activation are highlighted in blue.
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of and response to internal and external environmental changes, 
executive functions, cognitive control, language processing, and the 
retrieval of episodic memory. Additionally, it coordinates with other 
brain regions to maintain the fundamental activities of the brain in a 
resting state (40–42). A study by Wang et al. (43) found that, compared 
to the control group, patients with mild, moderate, and severe CS 
showed lower ALFF values in the left medial superior frontal gyrus. 
This suggests that the reduction in ALFF in the left medial superior 
frontal gyrus might be an underlying neuroimaging phenotype of CS, 
underscoring the significant role of the medial prefrontal cortex in 
regulating the dynamic interaction of emotional and cognitive signals 
in the brain (44). This revelation provides insights into the 
neurobiological basis of CS and highlights the importance of 
understanding changes in brain activity associated with CS. However, 
the impact of emotional states on the pre-motor behavioral responses 
related to ALFF changes warrants further investigation beyond the 
scope of the current study.

Additionally, research by Koenigs M et al. indicates that activity 
in the medial superior frontal gyrus is associated with the experience 
of negative emotions, playing a foundational role in the processing of 
negative emotions (45). In adolescent females with severe depression 
who have attempted suicide, an increase in ALFF in the right superior 
frontal gyrus has been observed (46, 47). Furthermore, changes in 
ALFF in regions including the right superior frontal gyrus are 
induced following electroconvulsive therapy in adolescents with 
depression, suggesting the right superior frontal gyrus as a potential 
neurobiological marker for clinical treatment (48). Therefore, a 
deeper understanding of the function of the medial superior frontal 
gyrus is crucial for exploring the pathogenesis and treatment 
approaches for diseases like CS. Future research will further elucidate 

the role of the medial prefrontal cortex in emotional and cognitive 
domains, offering more effective strategies for the diagnosis and 
treatment of neurological diseases.

Overall, this study demonstrates an increase in brain function 
activity in the left superior frontal gyrus in CS patients, providing 
further evidence of compensatory mechanisms distal to spinal 
structural damage in CS patients. It is reasonable to believe that 
the increased functional activity in the left superior frontal gyrus 
may play a significant role in neural plasticity. This might also 
explain a mechanism in some CS patients who, despite having 
clear evidence of neck compression and significant degenerative 
demyelination, are able to function normally with minimal or 
mild neurological deficits.

4.3 Limitation

This meta-analysis has several limitations that warrant cautious 
interpretation of the results. First, the number of studies included in 
the meta-analysis is relatively small, which may affect the 
generalizability and robustness of the findings. Secondly, our reliance 
on peak coordinates from published data may not comprehensively 
represent the spatial extent of brain activity alterations, introducing 
potential selection bias. Variability in imaging protocols and analysis 
methods across studies might influence the results, despite rigorous 
inclusion criteria and statistical approaches. Finally, some of the 
included studies involved patients who had received pharmacological 
treatment prior to MRI scanning.

5 Conclusion

This study, utilizing SDM-Meta analysis, identified decreased 
brain function in the right superior temporal gyrus and left 
postcentral gyrus, and increased function in the left superior frontal 
gyrus in patients with CS. These findings contribute to our 
understanding of the changes in brain regions associated with CS as 
reported in previous literature and provide a basis for further 
investigation into the central mechanisms of CS. Future research is 
needed to determine how these localized changes in neural activity 
can be applied to the diagnosis of the disease, monitoring disease 
progression, and developing potential therapeutic interventions for 
patients with CS.
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