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Objective: Telomerase reverse transcriptase (TERT) promoter mutation status 
in gliomas is a key determinant of treatment strategy and prognosis. This study 
aimed to analyze the radiogenomic features and construct radiogenomic 
models utilizing medical imaging techniques to predict the TERT promoter 
mutation status in gliomas.

Methods: This was a retrospective study of 304 patients with gliomas. T1-
weighted contrast-enhanced, apparent diffusion coefficient, and diffusion-
weighted imaging MRI sequences were used for radiomic feature extraction. A 
total of 3,948 features were extracted from MRI images using the FAE software. 
These included 14 shape features, 18 histogram features, 24 gray level run length 
matrix, 14 gray level dependence matrix, 16 gray level run length matrix, 16 gray 
level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix, and 
744 wavelet transforms. The dataset was randomly divided into training and 
testing sets in a ratio of 7:3. Three feature selection methods and six classification 
algorithms were used to model the selected features. Predictive performance 
was evaluated using receiver operating characteristic curve analysis.

Results: Among the evaluated classification algorithms, the combination 
model of recursive feature elimination (RFE) with linear regression (LR) using six 
features showed the best diagnostic performance (area under the curve: 0.733, 
0.562, and 0.633 in the training, validation, and testing sets, respectively). The 
next best-performing models were naive Bayes, linear discriminant analysis, 
autoencoder, and support vector machine. Regarding the three feature selection 
algorithms, RFE showed the most consistent performance, followed by relief 
and ANOVA. T1-enhanced entropy and GLSZM derived from T1-enhanced 
images were identified as the most critical radiomics features for distinguishing 
TERT promoter mutation status.

Conclusion: The LR and LRLasso models, mainly based on T1-enhanced entropy 
and GLSZM, showed good predictive ability for TERT promoter mutations in 
gliomas using radiomics models.
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1 Introduction

Gliomas are the most common and aggressive brain tumors 
originating from the glial cells. Owing to their rapid growth and 
invasive growth characteristics, gliomas are one of the most 
challenging types of brain cancer (1). The advances in molecular 
biology have enabled an in-depth understanding of the pathogenetic 
mechanisms of glioblastoma, including mutations in the telomerase 
reverse transcriptase (TERT) promoter. The replication of 
chromosomes during cell division entails the consumption of 
telomeric regions in each DNA replication cycle, eventually leading to 
cell division arrest (2–4). For unlimited proliferation of cancer cells, 
they must express telomerase reverse transcriptase (TERT) to maintain 
telomere length, preventing DNA shortening during replication, and 
achieving immortality (5). Several studies have reported an association 
between telomerase activation or increased TERT gene expression and 
the survival outcomes of gliomas. In IDH1 wild-type glioblastomas 
with MGMT promoter methylation, individuals with conditions 
conducive to TERT promoter mutations exhibit better survival 
following standard radiotherapy and chemotherapy. Thus, the 
prognosis of MGMT promoter methylation depends on the TERT 
promoter mutation status (6).

Among patients with lower-grade gliomas (LGGs), those 
harboring TERT mutations have been found to exhibit a more 
favorable prognosis than those with wild-type TERT (7, 8). However, 
a considerable proportion of the LGG population shares similar 
genetic mutation features and survival characteristics with 
glioblastoma patients, and they may potentially progress to a more 
malignant state (9). A study by Killela et  al. showed that TERT 
promoter mutations are very common in glioblastoma (GBM) and are 
associated with tumor subtypes with lower self-renewal ability of 
tumor cells. In addition, they also found that patients with primary 
GBM without TERT mutation survive longer than other patients with 
primary GBM (10). It is worth noting that mutations in the TERT 
promoter are linked to the prognosis and treatment resistance in 
patients with gliomas, indicating their significant impact on disease 
outcomes and therapeutic response (11, 12). Early studies have shown 
that cells lacking expression of human telomerase reverse transcriptase 
exhibit significantly reduced telomerase activity, i.e., attenuated 
tumorigenicity. Based on this, a novel telomerase inhibitor can be used 
in the treatment of glioma by combining its anti-tumor effect with 
radiotherapy and chemotherapy (13). Additionally, researchers have 
developed a new class of potent telomerase inhibitors that may 
enhance the sensitivity of conventional cytotoxic cancer therapies by 
targeting TERT (14). Due to the highly complex biological behavior 
and highly malignant nature of brain gliomas, the prognosis of these 
patients remains unsatisfactory even after comprehensive treatment 
(15). Therefore, identification of biomarkers that enable preoperative 
prognostic assessment is imperative to help guide postoperative 
treatment plans. This can help improve the therapeutic effectiveness 
and enhance survival outcomes. Currently, the primary method for 
detecting TERT promoter mutations in gliomas involves obtaining 
tumor tissue through biopsy or surgical resection. While this 
pathological examination method is accurate, it often entails lengthy 
surgeries. Additionally, detecting TERT promoter status can 
be challenging if the surgical scope is not precise or extensive enough. 
Furthermore, false-positive or false-negative test results are a concern. 
In contrast, preoperative MRI examinations allow for the acquisition 

of multi-dimensional, multi-parameter images of tumor tissue, 
enabling the formulation of treatment plans for patients with 
maximum accuracy. Therefore, radiomics, a field that extracts 
quantitative features from medical images, has emerged as a promising 
approach for non-invasive biomarker detection. By analyzing MRI 
images, radiomics can identify patterns and features that are associated 
with TERT promoter mutation status, enabling accurate prediction 
and improving patient outcomes. Since its formal proposal by Lambin 
et al. (16), radiomics has been widely applied in oncology research to 
aid diagnosis, prognostic prediction, and treatment decision-making 
in cancer patients (17, 18). It has been shown to be useful in the 
clinical management of patients with neurogliomas. Currently, most 
traditional radiomics approaches depend on individual sequences or 
algorithms to construct predictive models. To the best of our 
knowledge, in a study of Navodini et al. on data engineering-based 
glioma survival analysis, this study mainly focuses on using deep 
learning methods to extract features from MRI images to predict IDH 
mutation status (19), but it still has its limitations. The study did not 
use different feature selection and algorithms for model combination 
and comparison of their performance. Gabriele et  al. conducted 
in-depth research on deep learning automatic tissue segmentation in 
patients with congenital or acquired brain anatomical malformations, 
realized automated brain tissue image segmentation, and reduced the 
workload of manual annotation. This undoubtedly demonstrates the 
great potential of deep learning in medical image analysis. But may 
have overlooked the potential value of biomarker data. Sasmitha et al. 
constructed a new framework in a study on the segmentation and 
classification of brain tumor MRI images using machine learning, 3D 
U-Net for segmentation and DenseNet-BC for classification, enabling 
a more comprehensive analysis of tumor features. Despite this, the 
intrinsic complexity of neural networks has the potential to pose 
challenges to the interpretability of decision-making processes. Based 
on the above discussion and findings, our study not only predicts 
TERT promoter mutations, but also uses a broader combination of 
machine learning algorithms. In addition, our method focuses more 
on the interpretability of the model, and in order to provide additional 
value to the clinic, we pay special attention to the influence of age as 
an important factor on the prediction of TERT mutations, which was 
not explored in detail in Navodini et al. Therefore, the aim of this 
study was to predict TERT promoter mutations in neurogliomas by 
using a combination of multiple MRI parameters. Further, we aimed 
to compare the performance of this approach with certain single-
sequence predictive models. Toward this end, we  integrated and 
analyzed MRI image features from T1-weighted contrast-enhanced 
(T1CE), diffusion-weighted imaging (DWI), and apparent diffusion 
coefficient (ADC) sequences. Three feature selection methods and six 
classification algorithms were employed to investigate whether 
preoperative multi-parameter MRI can differentiate TERT promoter 
mutation status in gliomas.

2 Methods

2.1 Technical contribution

Methodologically, we integrated the features of T1CE, DWI, and 
ADC sequences. This multi-parametric approach provides a 
comprehensive view of the tumor, utilizing different imaging 
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modalities to capture a wide range of tumor features. 3,948 
radiological features were subsequently extracted from the MRI 
images using FeAture Explorer Pro (FAE, V 0.5.7) software. These 
features include shape, histogram, gray run length matrix, gray 
dependency matrix, gray size region matrix (GLSZM), and wavelet 
transform. Using such a diverse set of features allows the model to 
capture complex patterns and changes in tumor images. Three 
feature selection methods, recursive feature elimination (RFE), 
Relief and analysis of variance (ANOVA), were then used to identify 
the most relevant features for model construction. This step is 
crucial for reducing the dimensionality of the feature space and 
focusing on the most informative features, thereby improving the 
performance and interpretability of the model. On this basis, we use 
6 classification algorithms to model the selected features, including 
linear regression (LR), logistic regression via the least absolute 
shrinkage and selection operator (LR-Lasso), support vector 
machine (SVM), autoencoder (AE), linear discriminant analysis 
(LDA), and naive Bayes (NB). By comparing and combining 
different algorithms, the advantages of each algorithm are utilized 
to achieve the best prediction performance. This study places great 
emphasis on the interpretability of the model and ensures that the 
relationship between the selected features and the outcome (TERT 
promoter mutation status) can be easily understood and interpreted. 
This is critical for clinical acceptance and application. Different 
from previous studies, this method specifically takes age as an 
important factor in predicting TERT mutations. The analysis 
highlights the effect of age on mutation status, which adds an 
important dimension to the predictive model and enhances its 
clinical relevance. Besides, this retrospective study was approved by 
the Institutional Review Board. Review of patient images does not 
require patient approval or informed consent. However, informed 
consent was obtained for TERT promoter gene assessment 
during surgery.

2.2 Patients

We retrospectively searched our neuro-oncology database for 
patients with glioma between January 2019 and November 2023. The 
inclusion criteria were as follows: (1) patients diagnosed with grade 
1–4 gliomas according to the 2021 WHO classification of central 
nervous system tumors; (2) availability of preoperative MRI images 
including T1CE, DWI, and ADC sequences with complete sequences 
and clear images; (3) complete molecular information of TERT 
obtained through the second-generation sequencing, including both 
C228T and C250T sites, along with clinical information; and (4) 
patients who had not received any treatment prior to their first 
baseline/diagnostic MRI that was used for radiomics analysis. A 
schematic illustration of the study design and patient-selection criteria 
is presented in Figure 1.

2.3 Assessment of the TERT promoter 
mutation status

All glioma specimens obtained through surgical resection or 
biopsy use the second-generation sequencing method for the 
identification of TERT promoter mutation status (20).

2.4 MRI protocol

All glioma patients underwent routine MRI examinations within 
1 week before surgery. Four MR scanners (3.0T Canon; 1.5T Philips; 
1.5T Siemens; 1.5T GE Premier) were used in this study population. 
The imaging sequences include axial T1C, DWI, and ADC; 
intravenous injection of gadolinium butanol (0.1 mmol/kg) was used 
for T1WI contrast-enhanced imaging. The other details of the MR 
scanning protocol are provided in Table 1.

2.5 Image preprocessing and tumor 
segmentation

Preoperative MRI images of all patients, including T1CE, DWI, 
and ADC images, were resampled. This process was supervised by 
a neuroradiologist with 10 years of experience, who was blinded to 
the final diagnosis and molecular biomarker status. On the T1C 
images, the regions of interest (ROI) in the tumor were semi-
automatically delineated and segmented layer by layer by the 
radiologist. Areas with hemorrhage, necrosis, and cystic changes 
were avoided during this procedure. After the completion of ROI 
segmentation, they were registered to the ADC and DWI images. 
An interclass correlation coefficient between 0.75 and 1.0 was 
deemed indicative of good consistency. All segmentation and 
registration tasks were performed using the 3D Slicer software 
(version 5.4.0).1 The steps of radiomics processing are illustrated in 
Figure 2.

2.6 Radiomics feature extraction

For each patient, a total of 3,948 radiomic features were 
extracted, comprising 1,316 features from each MRI sequence. 
These radiomics features were categorized into four major types: 14 
shape features, 18 first-order metrics (such as the energy, entropy, 
mean, and kurtosis), and 75 textural features including 24 gray-level 
co-occurrence matrix, 14 gray-level dependence matrix, 16 gray-
level run length matrix, 16 gray-level size zone matrix (GLSZM), 
and 5 neighborhood gray-tone difference matrix. Furthermore, the 
PyRadiomics database employs wavelet transformation to 
decompose the texture features extracted from segmented images 
into different scales and orientations. This approach generates 
various combinations of wavelet transformation series, including 
HHH, HHL, HLL, HLH, LLL, LLH, LHL, and LHH, to 
comprehensively capture the multi-scale and multi-directional 
characteristics of the images. From each decomposition, three types 
of texture features were extracted and 8 decompositions were 
obtained at each wavelet filtering stage. Finally, wavelet 
transformation results were obtained for 744 features. The specific 
feature attributes are shown in Table 2.

1 https://www.slicer.org/
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2.7 Models establishment and statistical 
analysis

The datasets were randomly split into two groups: a training set 
and a test set, with a ratio of 7:3. Two hundred and thirteen cases were 
selected as the training dataset (85 TERT mutant and 128 TERT wild-
type), and an additional 91 cases were selected as the independent test 
dataset (36 TERT mutant and 55 TERT wild-type). For each patient, 
3,948 features were extracted. To address the imbalance in the training 

dataset, samples were augmented by random repetition to achieve a 
balanced distribution of positive and negative samples. The feature 
matrix was normalized, with each feature vector subtracted by its 
mean and divided by its standard deviation, resulting in a normalized 
vector with zero mean and unit standard deviation. Given the high 
dimensionality of the feature space, the Pearson correlation coefficient 
(PCC) was calculated between pairs of features. If the PCC value 
exceeded 0.990, one of the features was eliminated from the pair, 
reducing the feature space dimensionality to maintain feature 
independence. Before building the model, ANOVA was performed to 
select features and evaluate the significance of the relationship 
between features and labels by computing the F-value. Subsequently, 
a multilayer perceptron (MLP), also referred to as autoencoder (AE), 
was used as the classifier. The MLP is a neural network based on 
multiple hidden layers that learn the mapping from input features to 
labels. We employed one hidden layer with 100 hidden units, a linear 
unit activation function, Adam optimizer with a learning rate of 0.001. 
A 10-fold cross-validation was conducted on the training dataset to 
determine the maximum number of features required in the model. 
This was done to assess the performance of the model constructed on 
the validation set. The predictive capability of the model was assessed 
using receiver operating characteristic (ROC) curve analysis. The 
optimal Youden index threshold was used to calculate the accuracy, 
sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) of the model. Bootstrap estimation with 1,000 
iterations was used to compute 95% confidence intervals for all 
metrics. All of these procedures were carried out using the FeAture 
Explorer Pro (FAE, V 0.5.7) Python package (version 3.7.6).

Subsequently, we  employed combinations of any two feature 
selection methods among ANOVA, Relief, and RFE for feature 
screening and optimization. The F-value was calculated to assess the 
association between radiomics features and the label (TERT mutation 
status) in preparation for the subsequent model construction. A 

FIGURE 1

The patient selection flow chart.

TABLE 1 Magnetic resonance imaging acquisition details.

3.0T 
Cannon

1.5T 
Philips

1.5T 
Siemens

1.5T GE

T1-CE

TR/TE(ms) 447.4/5.5 2000/20 467/2.48 370/4.76

FOV 230 × 230 210 × 210 240 × 81.3 230 × 84.4

FA(°) 90 90 90 90

Matrix 224 × 224 212 × 150 256 × 256 256 × 153.6

Slice 

thickness/

gap(mm)

5.5/1 6.0/1 5.0/1 5.0/1

DWI

TR/TE(ms) 3362 × 90 2400/77 7500/94 400/73

FOV 240 × 240 230 × 230 230 × 100 230 × 100

FA(°) 90 90 90 90

Matrix 160 × 160 144 × 122 192 × 192 150 × 150

Slice 

thickness/

gap(mm)

6.0/1 6.0/1 5.0/1 5.0/1
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specific number of features were ranked based on their respective 
F-values. The features were selected based on the previously set 
F-values. Then, the selected features were modeled using LR, 
LR-Lasso, SVM, AE, LDA, and NB. Finally, we  determined the 
hyperparameters used to build the model and chose 10-fold cross-
validation. Based on the validation dataset in the constructed model, 
the hyperparameters according to the cross-validation results were 
used to optimize the model and assess its performance (Table 3).

In addition, the overall predictive performance of the model in the 
training, validation, and test sets was assessed using ROC curve 
analysis. Additionally, bootstrap estimation with 1,000 reiterations 
was employed to estimate the 95% confidence interval. Clinical 
features of the patients were analyzed using the Mann–Whitney U test 
for continuous variables and the chi-square test for categorical 
variables. All aforementioned descriptive statistical operations were 
conducted using SPSS 27.0 software. p-values <0.05 were considered 
indicative of statistical significance.

3 Results

3.1 Patient characteristics

Sixteen cases were excluded from the analysis, including 6 cases 
with a history of surgery, radiotherapy, or steroid therapy, and 10 cases 
due to poor MRI image quality. Finally, 304 glioma patients (143 
males and 70 females) were included in this study. The average age of 
the patients was 40.94 ± 17.08 years. There were 121 cases (39.80%) 
with TERT promoter mutations and 183 cases (60.20%) without TERT 

promoter mutations. In the training dataset, there was a significant 
difference in age between the TERT subgroups (p < 0.001). A similar 
trend was observed in the validation dataset (p = 0.002). These findings 
indicated significant age differences among the TERT subgroups 
across different datasets and analytical settings. Furthermore, 
we divided the cases in the training and test sets into two groups: 
younger patients (age < 60 years) and older patients (age ≥ 60 years). 
Older patients were significantly more likely to have TERT promoter 
mutations in both sets (p = 0.028 and p = 0.039, respectively). 
Moreover, the p-value between the two sets was <0.001, indicating a 
significant difference in age distribution between these two sets. 
However, in both the training and test datasets, in the TERT 
subgroups, the difference in sex distribution was not statistically 
significant (p > 0.05 for all). This indicated a relatively balanced sex 
distribution across the different TERT subgroups in these two datasets.

3.2 Model validation and model 
comparison

We established and compared all radiomics models using FAE 
software, evaluated multiple selection thresholds to determine the 
optimal configuration for all radiomics features, and provided a 
detailed description of the ROC curve analysis results in both the 
training and test sets (Table 4).

Furthermore, a comprehensive strategy was employed for 
feature selection. Specifically, we  systematically paired the RFE, 
ANOVA, and Relief feature selectors randomly and thoroughly. 
These pairings were combined with six different classification 

FIGURE 2

Procedure for image processing, extraction of radiomic features, and machine learning.
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algorithms, including LR, LRLasso, NB, LDA, AE, and SVM, to 
construct multiple composite models. Based on determining the 
maximum number of features, the range of feature selection was 
further refined using the “one standard error” criterion to obtain the 
optimal feature combinations. This integrated approach was 
employed to fully leverage the strengths of each feature selector and 
classification algorithm, thereby enhancing the performance and 
generalizability of the model. The following results were obtained 
after integrating features, building models, and conducting 
meticulous selection.

Firstly, we chose a combination of RFE and ANOVA as the feature 
selection method. After screening and analysis, we identified a feature 
set containing 6 key features in LR. This feature combination showed 
a good performance in the cross-validation set, training set, and test 
set (AUC: 0.562, 0.733, and 0.633, respectively). Upon further ranking 
these features, the exponential first-order variance of T1C emerged as 
the most crucial and influential feature in this model (Figure 3).

Next, a combination of Relief and RFE was selected for feature 
selection. After careful screening and analysis, we identified a feature 
set comprising 12 key features in LRLasso. This feature combination 
showed a good performance in the cross-validation set, training set, 
and test set (AUC: 0.559, 0.734, and 0.633, respectively). On further 
ranking these features, the size zone non-uniformity of 
log-sigma-1 mm-3D glszm of T1C emerged as the most crucial and 
influential feature in this model (Figure 4).

Finally, a combination of ANOVA and Relief was employed as the 
third feature selection method. Through screening and analysis, 
we  identified a feature set containing 10 key features in AE. This 
feature combination achieved AUC values of 0.543, 0.653, and 0.619 in 
the cross-validation set, training set, and test set, respectively. Upon 

ranking, the wavelet-LHL glszm size zone non-uniformity of DWI 
was identified as the most influential feature (Figure  5). It is 
noteworthy that on setting the maximum feature count to 12, the 
naive Bayes model also achieved near-optimal AUC values (0.500, 
0.621, and 0.617 in the cross-validation set, training set, and test set, 
respectively). The most contributing feature in this pipeline was again 
identified as the wavelet-LHL glszm size zone non-uniformity of DWI 
(Figure 6).

Based on the aforementioned experimental results, 
we comprehensively evaluated the omics models constructed using 
three feature selection methods and six classification algorithms. 
DeLong nonparametric test was used for model comparison. Among 
the three feature selection methods, the omics model trained with 
RFE as a feature selector has significant consistency and stability. 
Specifically, the AUC values of the model on the validation set, the 
training set, and the test set were 0.56, 0.73, and 0.63. In contrast, the 
highest AUC values of ANOVA on the validation, training, and test 
sets were 0.59, 0.79, and 0.59. The highest AUC values of relief on the 
validation, training, and test sets were 0.54, 0.65, and 0.619. In the 
comparison of these three, we can clearly see that RFE has superior 
performance as a feature selector (Figure 7). In addition, the models 
constructed by RFE in conjunction with the above six classification 
algorithms did not show significant differences in predicting TERT 
mutation status in glioma patients. There was also no significant 
difference in the ability of RFE to differentiate TERT subtypes in 
glioma patients compared to ANOVA and Relief. Among the six 
classification algorithms, LR has the highest classification 
performance, followed by LRLasso (both AUC > 0.630). Furthermore, 
LR and LRLasso did not differ significantly in their ability to identify 
TERT subtypes in glioma patients; The highest AUC value of LDA can 

TABLE 2 Composition and details of radiomic feature attributes.

Feature classifier Feature parameters (n  =  1,316)

Shape feature (n = 14) Elongation, flatness, least axis length, major axis length, maximum 2D diameter column, maximum 2D diameter row, maximum 2D 

diameter slice, maximum 3D diameter, mesh volume, minor axis length, sphericity, surface area, surface volume ratio, voxel volume

Histogram feature (n = 18) P10, P90, interquartile range, energy, entropy, skewness, kurtosis, maximum, minimum, mean, mean absolute, deviation, median, 

total energy, uniformity, variance, range, robust mean absolute deviation, root mean squared

Texture feature (n = 75) Gray-level co-occurrence matrix, GLCM (n = 24); gray-level dependence matrix, GLDM (n = 14); gray-level run length matrix, 

GLRLM (n = 16); gray-level size zone matrix, GLSZM (n = 16); neighborhood gray-tone difference matrix, NGTDM (n = 5)

Wavelet transform (n = 744) Wavelet filtering produces eight decompositions per stage. In the three dimensions, all feasible combinations of high-pass or low-

pass filters (HHH, HHL, HLL, HLH, LLL, LLH, LHL, and LHH)

TABLE 3 Characteristics of patients in the training set and test set.

Characteristics Training set (n  =  213) Test set (n  =  91)

TERT-mt TERT-wt TERT-mt TERT-wt p p

Age (mean ± SD) 48.56 ± 14.22 34.78 ± 18.07 <0.001 48.75 ± 13.11 36.98 ± 19.44 0.002 0.548

<60 69 117
0.028

36 79
0.039 <0.001

≥60 16 11 10 6

Sex 0.083 0.953 0.707

Male 59 84 26 30

Female 26 44 10 25

TERT 85 128 <0.001 36 55 <0.001 <0.955

TERT-mt telomerase reverse transcriptase mutant-type, TERT-wt telomerase reverse transcriptase wild-type.
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reach 0.62, which also shows good classification performance. The 
classification performance of AE is second to that of LDA, and the 
best AUC value of AE is 0.619; The AUC value of NB was almost the 
same, 0.617. As for SVM, its performance is less satisfactory, only 0.59 
(Figure  8). A DeLong non-parametric test was used for model 
comparison. Among the six classification algorithms, LR 
demonstrated the highest performance, closely followed by LRLasso 
(AUC >0.630 for both). Moreover, there was no significant difference 
between the ability of LR and LRLasso to identify TERT subtypes in 
glioma patients. Among the three feature selection methods, the 
omics model trained using RFE as the feature selector exhibited 
notable consistency and stability. Specifically, this model achieved 
AUC values exceeding 0.6 on the validation set, training set, and test 
set, further demonstrating its superior performance. Additionally, the 
model constructed by combining RFE with the aforementioned six 
classification algorithms showed no significant difference in 
predicting TERT mutation status in glioma patients. When compared 
with ANOVA and Relief, RFE also did not exhibit significant 
differences in its ability to differentiate TERT subtypes in 
glioma patients.

4 Discussion

In this study, we investigated the potential of radiomics models, 
combined with routine MRI sequences (T1C, DWI, and ADC), in 
predicting the TERT mutation status of glioma patients. In this study, 
TERT promoter mutations were identified in 121 out of 304 glioma 
patients, accounting for 39.80% of cases. There was a significant 
difference in age distribution across TERT subgroups, but no 
significant difference in sex distribution. For predicting the TERT 

promoter mutation status in glioma patients, we utilized a combination 
of feature selection methods, including ANOVA, Relief, and RFE, 
along with classification algorithms such as LR, LRLasso, SVM, AE, 
LDA, and NB. Among these methods, RFE was the most effective 
feature selector for predicting TERT promoter mutations. LR and 
LRLasso were identified as the top-performing classifiers when 
assessed individually with these feature selectors, both achieving AUC 
values above 0.600.

Previous studies have found a positive correlation between TERT 
promoter mutation status and age at glioma diagnosis. The frequency 
of TERT promoter mutations increases with age (21). Similarly, Kim 
et al. identified older age as a risk factor for TERT promoter mutations 
in diffuse gliomas (22). Therefore, our results may enhance our 
understanding of glioma pathogenesis.

With the rapid advances in artificial intelligence technology, 
radiomics has shown potential as a bridge linking radiological images 
with tumors. It can convert images into high-dimensional data, 
thereby providing support for clinical treatment decisions (23). 
Previous studies have mainly focused on the use of single radiomics 
models. Tian et al. used an SVM model to classify low-grade gliomas 
from high-grade gliomas, achieving an AUC value of 0.987 (18). 
Fukuma et al. constructed a linear SVM model based on convolutional 
neural networks using MRI images of 164 patients with grade II/III 
gliomas to predict TERT promoter mutations (AUC: 0.82) (24). 
Although the aforementioned studies have yielded satisfactory results, 
they only analyzed the diagnostic performance of individual radiomics 
models without comparing them with other radiomics models. This 
is a major limitation in furthering the understanding and application 
of radiomics models.

Another study conducted radiomic feature analysis using T1CE 
and T2-weighted images of 83 patients with low-grade gliomas. They 

TABLE 4 Performance analysis of each model in predicting TERT mutation status.

Feature set AUC 95%CI ACC YI Sen Spe PPV NPV

Zscore_PCC_RFE_6_LR 0.633 [0.510–0.757] 0.692 0.337 0.556 0.782 0.625 0.729

Zscore_PCC_RFE_6_LRLasso 0.633 [0.508–0.757] 0.692 0.337 0.556 0.782 0.625 0.729

Zscore_PCC_RFE_5_LR 0.628 [0.509–0.748] 0.681 0.223 0.278 0.946 0.769 0.667

Zscore_PCC_RFE_7_NB 0.638 [0.506–0.760] 0.659 0.273 0.528 0.746 0.576 0.707

Zscore_PCC_RFE_4_LR 0.622 [0.503–0.741] 0.626 0.257 0.639 0.618 0.523 0.723

Zscore_PCC_RFE_6_LDA 0.620 [0.493–0.747] 0.659 0.312 0.639 0.673 0.561 0.740

Zscore_PCC_Relief_10_AE 0.619 [0.501–0.737] 0.560 0.225 0.861 0.364 0.470 0.800

Zscore_PCC_Relief_12_NB 0.617 [0.500–0.735] 0.571 0.224 0.806 0.418 0.475 0.767

Zscore_PCC_Relief_11_AE 0.6144 [0.492–0.735] 0.670 0.234 0.361 0.873 0.650 0.676

Zscore_PCC_Relief_2_AE 0.603 [0.484–0.721] 0.571 0.233 0.833 0.400 0.476 0.786

Zscore_PCC_Relief_11_SVM 0.590 [0.470–0.710] 0.528 0.170 0.861 0.309 0.449 0.773

Zscore_PCC_Relief_11_LR 0.59 [0.463–0.715] 0.6813 0.3 0.5 0.8 0.621 0.710

Zscore_PCC_ANOVA_3_NB 0.588 [0.462–0.714] 0.659 0.312 0.639 0.673 0.561 0.740

Zscore_PCC_ANOVA_11_AE 0.587 [0.461–0.713] 0.659 0.244 0.444 0.800 0.593 0.688

Zscore_PCC_ANOVA_4_NB 0.584 [0.458–0.710] 0.648 0.274 0.583 0.691 0.553 0.717

Zscore_PCC_ANOVA_11_NB 0.572 [0.445–0.698] 0.648 0.236 0.472 0.764 0.567 0.689

Zscore_PCC_ANOVA_12_NB 0.571 [0.445–0.698] 0.648 0.255 0.528 0.727 0.559 0.702

Zscore_PCC_ANOVA_10_NB 0.569 [0.442–0.696] 0.637 0.237 0.528 0.709 0.543 0.696

AUC, area under the curve; YI, Youden index; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.
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employed Lasso feature selection and built models including SVM, RF, 
and Adaboost. All three models demonstrated good predictive 
performance for the TERT promoter mutation status in low-grade 
gliomas, with RF showing the best performance (AUC: 0.827) (25). 
Yamashita et al. used MRI images of 112 patients to predict the TERT 
promoter mutation status. The SVM model demonstrated good 
predictive performance (AUC: 0.776). The reported sensitivity, 
specificity, and accuracy were 0.85, 0.548, and 0.741, respectively (26). 
Furthermore, Joshi et  al. employed a multi-classifier approach 
(including bagging, extra trees, random forest, gradient boosting, 
extra gradient boosting, and Adaboost) to stratify 135 patients with 
gliomas. Among all classifiers, the extra trees classifier achieved the 
highest average accuracy of 0.933. Additionally, within the ensemble-
based classifiers, the bagging classifier, extra trees classifier, and 
random forest classifier also demonstrated favorable results (27). 
These studies suggest that selecting appropriate algorithms and 
combining multiple algorithmic models can help improve the 
diagnostic potential of different radiomics models, while also allowing 
for an intuitive comparison of their diagnostic performance. It is 
worth noting that the aforementioned studies focused solely on the 
analysis of low-grade gliomas or glioblastomas. Despite the inclusion 
of more feature selection and classification algorithms, there is a 
paucity of clinical research on the TERT promoter subtypes of grade 
1–4 gliomas.

In a study by He et al. (28) involving 81 glioma cases, various 
models were constructed by combining clinical features with multiple 
sequences, including DWI and ADC. In the TERT genotype, the 
multi-sequence model incorporating all radiological features was 
found to better predict TERT status preoperatively. Additionally, Wang 
et al. (29) conducted a multi-modal MRI radiological study combining 
T1C, FLAIR, and ADC images. The automatically trained diagnostic 
model based on these diverse features exhibited a good ability to 
predict TERT promoter mutation type in gliomas. This indicates that 
utilizing models constructed from T1C, DWI, and ADC sequences to 
predict the TERT mutation status in glioma patients is a 
promising approach.

In the present study, the model built on RFE stood out in terms of 
diagnostic performance compared to other combinations. This 
suggests that the RFE feature selection method performs well in 
identifying the most relevant features and constructing predictive 
models, providing a more reliable tool for predicting TERT mutations 
in glioma patients. Additionally, models based on the combination of 
LR and LRLasso also exhibit good diagnostic performance. We found 
that contrast-enhanced T1-weighted imaging (T1CE) was the most 
important parameter in predicting the model and among the radiomic 
features in this study, the entropy of T1CE contributed the most to 
distinguishing between TERT mutated and TERT wild-type gliomas. 
The presence of contrast enhancement on T1-weighted scans is often 

FIGURE 3

Performance of the model derived from recursive feature elimination (RFE) combined with Linear Regression (LR): (A) ROC curves for the validation set, 
training set, and test set; (B) Following the “one standard error” principle, the maximum number of features in the model was reduced to 6; (C) Ranking 
of omics feature contributions from the best model derived from the combination of RFE and LR.

FIGURE 4

Performance of the model derived from recursive feature elimination (RFE) combined with logistic regression via the least absolute shrinkage and 
selection operator (LRLasso): (A) ROC curves for the validation set, training set, and test set; (B) Following the “one standard error” principle, the 
maximum number of features in the model was reduced to 6; (C) Ranking of omics feature contributions from the best model derived from the 
combination of RFE and LRLasso.
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considered a sign of malignancy in tumors because it indicates the 
presence of blood vessels within the tumor and can also reflect the size 
and location of the tumor. This can help inform preoperative treatment 
strategy (30, 31). Furthermore, the entropy of T1CE was found to 
be  crucial for differentiating the TERT mutation status in glioma 
patients. As entropy can effectively capture the irregular distribution 
of grayscale levels and texture complexity in images, it helps in the 
extraction and quantification of the texture features of images, thereby 
enhancing the richness of image information (32, 33). Additionally, 
due to its favorable feature characteristics, frequency response, 
directional sensitivity, hierarchical structure, and dimensional 
properties that align with human vision, wavelet transformation has 
become an important tool for MRI image fusion and processing, with 
widespread applications (34). Unlike entropy, gray-level size zone 
matrix considers the connectivity between adjacent pixels and can 
calculate the number of connected regions of different gray levels and 
sizes. This allows for the description of intratumoral texture and 
structural features and the evaluation of tumor tissue heterogeneity 
(33). Therefore, entropy and gray-level size zone matrix are often used 
to evaluate tumor lesions. In other words, larger values of entropy and 
GLSZM indicate greater tumor heterogeneity, which may be attributed 
to increased complexity in the tumor microenvironment, including 
factors such as tumor vascular permeability and distribution of tumor 
cells (35). Therefore, entropy and GLSZM are useful markers and 
features for understanding tumor heterogeneity and complexity. 

Whether they can play a more profound role in the preoperative 
diagnosis and treatment of glioma patients remains to be discovered 
in larger research cohorts.

Our results show some interesting differences when compared to 
the existing literature. The 70% accuracy of the combined model 
we used (RFE + LRLasso) is 17.25% higher than the 52.75% accuracy 
of its SVC compared to the use of the conventional SVM model in the 
study of Navodini et al. (36). This result may provide richer feature 
information with our use of image data from multiple MRI sequences. 
In addition, we  use multi-model combination, which makes our 
model more interpretable. In exploring multimodal data fusion, 
we found that Sasmitha et al. developed a machine learning model for 
analyzing brain tumors that combined MRI and WSI (whole slide 
imaging) data in a study to improve diagnostic efficiency (37). 
However, it also has some limitations, such as not explicitly 
mentioning the sample size, which may affect the reliability and 
generalization ability of the results. And relying on high-quality MRI 
and WSI data, when the image quality is not good enough, it does not 
ensure that their machine learning models can still have good analysis 
and diagnosis efficiency. In contrast, although our study only uses 
MRI data, the robustness and interpretability of the model are 
improved while ensuring the performance by combining multiple 
sequences and multiple models.

Some limitations of our study should be acknowledged. Firstly, 
our MRI image data were sourced from four different MRI scanners, 

FIGURE 5

Performance of the model derived from relief combined with auto encoder (AE): (A) ROC curves for the validation set, training set, and test set; 
(B) Following the “one standard error” principle, the maximum number of features in the model was reduced to 12; (C) Ranking of omics feature 
contributions from the best model derived from the combination of relief and AE.

FIGURE 6

Performance of the model derived from relief combined with Naive Bayes (NB): (A) ROC curves for the validation set, training set, and test set; 
(B) Following the “one standard error” principle, the maximum number of features in the model was reduced to 12; (C) Ranking of omics feature 
contributions from the best model derived from the combination of relief and NB.
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FIGURE 7

The performance evaluation of models when 3 feature selection methods (including ANOVA, RFE and relief) were integrated with 6 algorithms. 
(A) ANOVA. (B) RFE. (C) Relief.

FIGURE 8

Comparison of performance when pairing LR, LRLasso, NB, AE, LDA, and SVM classification algorithms with three feature selection methods. (A) LR. 
(B) LRLasso. (C) NB. (D) AE. (E) LDA. (F) SVM.
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which may have introduced an element of bias. Secondly, the analysis 
did not differentiate between glioma grades, such as high-grade and 
low-grade gliomas. However, covering patients with grades 1–4 
gliomas is relatively more clinically relevant, as clinical settings may 
encounter patients with different grades of glioma. Additionally, some 
studies have utilized advanced imaging techniques, but due to their 
potentially higher cost and longer acquisition times compared to 
conventional imaging techniques, these imaging modalities may not 
be  routinely used in practice, limiting their feasibility. Our study 
utilized routinely used conventional MRI sequences. Further studies 
are required to assess the predictive ability of novel functional MRI 
sequences and quantitative sequences for predicting glioma TERT 
promoter mutation status. Furthermore, since our study was 
retrospective, molecular profiling results (e.g., IDH mutations and 
BRAF mutations) were not completely consistent with histological 
grades. Therefore, we  hope that in future research, radiomics 
technology will be applied to these molecular spectral analysis, so as 
to make the studied images more profound and meaningful.

5 Future directions and impact

Although this study has made remarkable progress in predicting 
the mutation status of TERT promoter in glioma, we think this is only 
the beginning. The application scope and influence of this method can 
be further expanded in the future. It is particularly noteworthy that 
our approach may play a greater role in dealing with tumors that are 
difficult to surgically remove. For example, diffuse midline gliomas 
(such as tumors located in the brainstem, thalamus, and spinal cord) 
often only have limited biopsy samples available, making 
comprehensive molecular testing difficult. In these cases, the ability to 
predict molecular features from MRI images will become particularly 
important, which may have a significant impact on treatment 
decisions. To achieve this goal, future research should focus on the 
following aspects: First, large-scale, multi-center validation studies are 
needed to ensure good applicability of our method in different 
populations and different types of brain tumors. Secondly, we should 
explore the combination of other imaging techniques (such as PET or 
advanced MRI sequences) or blood biomarkers to further improve the 
accuracy and reliability of prediction models. In addition, from the 
perspective of clinical application, our approach has the potential to 
promote the development of personalized treatment of brain tumors. 
Especially when routine molecular testing is not possible, this 
non-invasive predictive method may become a key tool in formulating 
treatment strategies. However, the incorporation of this predictive 
approach into clinical practice also requires ethical and regulatory 
challenges to be considered. Finally, we believe that future progress 
will require close cooperation between experts in the fields of 
radiology, neurosurgery, pathology, bioinformatics and artificial 
intelligence to promote the development and application of this 
technology, and ultimately improve the diagnosis and treatment effect 
of patients with brain tumors.

It is worth mentioning that we need to consider the application 
prospects of our model in future clinical settings. First, future work 
will focus on enhancing the accuracy and robustness of the 
proposed model. This can be achieved by integrating larger and 
more diverse datasets, which will help capture a wider range of 
tumor features and variants. In addition, integrating multi-omics 

data (such as genomics, transcriptomics, and proteomics) with 
radiogenomics signatures can provide a more comprehensive 
understanding of gliomas and their molecular subtypes. At the 
same time, an attempt should be made to develop advanced XAI 
technology to make the prediction of the model more transparent 
and easier for clinicians to understand. This includes generating 
visual explanations and providing insights into which features have 
the most impact on model decisions. User-friendly software is also 
available to provide clinicians with friendly conditions to easily 
enter patient data and build models. Finally, management should 
continually examine the application system of the model in clinical 
practice. It should also provide professional training and courses, 
create user manuals and guides, etc. While there are challenges in 
deploying AI-based models in clinical settings, the proposed model 
for predicting glioma TERT mutation status has great potential to 
enhance clinical decision-making. By addressing the outlined 
future work and deployment considerations, the model can 
be  effectively translated into a valuable tool to improve patient 
outcomes for glioma treatment.

6 Conclusion

Using a combination of different feature selectors and classification 
algorithms may help predict glioma TERT promoter mutation status. 
In this study, models constructed using the LR and LRLasso 
algorithms showed the best predictive performance. Among the many 
features in radiomics, T1-weighted enhancement entropy and GLSZM 
demonstrated significant potential for non-invasive prediction of 
preoperative TERT promoter mutation status in glioma patients. These 
specific radiomic features can help tailor targeted and personalized 
treatment strategies for these patients.
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