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Mixed martial arts athletes 
demonstrate different brain vital 
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We investigated objective brain vital signs derived from event-related potentials 
(ERPs) for mixed martial arts (MMA) athletes and matched controls (N  =  24). 
Brain vital sign scans were acquired from 9 MMA athletes and 15 age-and 
sex-matched controls. Our analysis specifically compared differences in brain 
vital signs between MMA athletes and controls at baseline. We predicted that 
MMA athletes would show significant differences relative to controls due to 
their ongoing exposure to repetitive head impacts. Participants were scanned 
to extract three well-established ERPs: N100 for auditory sensation; P300 for 
basic attention; and N400 for cognitive processing. Scans were verified using 
automated reports, with N100, P300, and N400 amplitudes and latencies 
manually identified by a blinded reviewer. Brain vital signs were compared 
across groups with a Kruskal-Wallis H-test for independent samples, with 
FDR correction for multiple comparisons. We identified significant differences 
between MMA athletes and controls. Specifically, there were significant N400 
amplitude reductions, indicating that exposure to repetitive head impacts in 
MMA may be associated with changes in brain function.
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1 Introduction

Mixed martial arts (MMA) is a combat sport that continues to gain worldwide popularity. 
In competition, MMA athletes attempt to knock out, submit or out-point their opponent 
through a variety of striking, grappling and submission techniques. Through regular training 
and competition over many years, MMA athletes are routinely exposed to an undetermined 
amount of brain trauma, increasing their risk for concussion and other types of brain 
injury (1).

Recent evidence has demonstrated that contact-sport athletes are not only threatened by 
concussions, but also subconcussive brain trauma associated with the frequency of repetitive head 
impacts (2, 3). While subconcussion is often imperceptible, as it does not have any recognizable 
clinical signs or symptoms, neurological and/or neuromuscular function may be impaired, which 
may limit performance and leave the athlete more susceptible to subsequent injury (4). In the 
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long term, exposure to repetitive, subconcussive head impacts has been 
linked to the onset of neurodegenerative disorders such as chronic 
traumatic encephalopathy (CTE) (5, 6). Electroencephalography (EEG)-
derived event-related potentials (ERPs) (7), which represent brain 
responses to specific stimulus events, have increasingly been applied as 
objective, physiological measurements of cognitive function (8). To 
translate this capability to the point-of-care, we developed and validated 
the brain vital signs framework (9). The brain vital signs approach 
extracts three well-established target ERP responses: the N100 as a 
measure of auditory sensation (10); the P300 as a measure of basic 
attention (10); and the N400 as a measure of cognitive processing (11). 
All three responses are elicited from a rapid auditory stimulation 
sequence comprised of randomly distributed auditory tones and spoken 
word pairs (9). Each response is evaluated in terms of latency 
(milliseconds) and amplitude (microvolts) relative to standardized 
normative data and mapped as six metrics on a radar plot, where a 
symmetric hexagon shape represents a cognitive profile within the range 
of healthy norms. Together, the N100, P300 and N400 measurements of 
brain function provide enhanced sensitivity through objective 
neurophysiological measures to track cognitive changes in the brain.

Brain vital sign monitoring has recently been utilized as a sensitive 
measure for subconcussive impacts in contact sports. In an initial 
study by Fickling et al. of acute concussion in Junior A ice hockey 
players, an exploratory examination detected significant pre-versus 
post-season delay in N400 latency that was suggestive of delayed 
cognitive processing speed due to exposure to contact over the course 
of the season (12). These findings were subsequently replicated in two 
groups of ice hockey players (Junior A and Bantam) as well as in youth 
tackle football players (12–14). These follow up studies demonstrated 
a significant linear relationship between brain vital signs changes and 
measures of head impact exposure. It was further shown that the 
changes in brain vital signs were significantly predictive of the total 
number of impacts that a player received, as measured by head-
mounted accelerometers. In addition, brain vital signs changes were 
also significantly related to the total number of contact sport sessions 
(including games and practices) in which players participated. 
Collectively, these results, along with the emerging literature, indicate 
that exposure to repetitive subconcussive head impacts in a variety of 
contact sports is associated with measurable changes in brain function. 
However, it is unknown if similar subconcussive changes are 
concomitant with MMA participation.

2 Objectives

The study objectives were to investigate subconcussive changes in 
brain vital signs in MMA athletes compared to matched controls at 
baseline. Our hypothesis predicted that MMA athletes would show 
significant differences in brain vital signs relative to controls due to 
their greater exposure to repetitive head impacts.

3 Materials and methods

3.1 Participants

Overall, 34 participants were enrolled in the study, which was 
approved by Institutional review/ethics boards at Sanford Health and 

Advarra. There were 15 MMA athletes (N = 15, Age = 25.07 ± 2.41, 2 
female, 13 male) and 19 control participants (N = 19, Age = 26.21 ± 3.11, 
3 female, 16 male). Participants in the Control group were matched as 
closely as possible in relevant characteristics (e.g., age, sex, fitness level). 
Each participant provided written consent, according to the declaration 
of Helsinki. Inclusion criteria for participant recruitment was as follows: 
(1) MMA athletes: Adults (≥ 18 years of age) who were currently 
training (minimum of 3x/wk) in MMA and had been training for at least 
six months prior to study participation; (2) Control group: Age and sex 
matched adults (≥ 18 years of age) who were currently physically active 
(exercised for a minimum of 3x/wk. at a moderate to high intensity).

The experimental design was a longitudinal, repeated-measures 
cohort study. Where applicable, baseline assessments were done at least 
90 days from a previous fight (MMA group only) and 90 days (MMA) 
or 1 year (control) following medical clearance from a previously 
diagnosed concussion. Three MMA fighters reported a previously 
diagnosed concussion, with the most recent one occurring about 4.5 
years before baseline testing. Additionally, nearly half of the control 
participants reported a previous concussion, with the most recent one 
approximately 21 months before enrollment. No participant reported a 
concussion within 20 months of enrollment. Therefore, the acute effects 
of a recent concussion were not expected to influence the results of this 
study. While not the focus of the current analysis, the MMA group 
received up to three follow-up scans after a fight was completed.

Inconsistent fight schedules, participant compliance, and technical 
issues with data collection resulted in sample size attrition. Due to 
missing data and unequal samples, a within-subject, repeated-
measures analysis was not possible. Accordingly, the primary analysis 
focused on between-group comparisons of MMA athletes and 
controls at baseline. There were 24 participants who successfully 
completed a baseline scan: 9 MMA athletes (N = 9, Age = 25.67 ± 2.17, 
0 female, 9 males) and 15 controls (N = 15, Age = 26.07 ± 3.28, 3 female, 
12 male). Two MMA athletes and four controls completed two 
baseline scans for purposes distinct from the current investigation. In 
cases of multiple baselines, analyses were completed using only the 
first successful scan.

3.2 Brain vital signs data collection

Brain vital signs were extracted from ERPs using a g. Nautilus 
EEG cap (Gtec Medical Engineering, Austria) with three embedded 
electrodes (locations were Fz, Cz, and Pz). Midline electrodes were 
chosen based on the central distribution of all three responses, which 
can shift along the anterior/posterior and left/right axes, but is most 
reliably measured along the midline. It has been shown that Fz, Cz, 
and Pz can robustly measure all three ERP components (15), and can 
enable faster set-up times. After putting the cap on the participants 
head, g.GAMMAsys electrode gel was injected at each location for 
conductivity. A reference electrode was clipped to the right earlobe 
and disposable Ag/AgCl electrodes were used for ground (forehead), 
and electro-oculagram (EOG) recording from the supra-orbital ridge 
and outer canthus of the left eye. Skin-electrode impedances were 
maintained at <30k impedance at each site. A predefined ~6 min 
auditory stimulus sequence was used, in which acoustic stimuli 
(interwoven tones and word pairs) were delivered binaurally through 
earphones. This was a passive task and subjects were instructed to pay 
attention to the auditory stimuli while maintaining visual fixation on 
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a cross located 2.0m away in a closed, quiet room. The same facility 
was used for all scans.

3.3 Brain vital sign data processing

Raw EEG data were processed at the individual level using standard 
analysis methods. Data from three electrodes (Fz, Cz, & Pz) were 
sampled at 500Hz and bandpass filtered (0.1-20Hz). Ocular correction 
was applied using an adaptive filter (16) with the EOG recordings as a 
reference. Denoised, filtered data were then segmented into epochs 
around common stimulus types (Epoch length: -100ms pre-stimulus to 
+900ms post stimulus). Epochs were grand averaged across all 
electrodes to generate a single composite evoked potential waveform 
for each stimulus type (standard tone, deviant tone, congruent word, 
incongruent word). To identify each brain vital sign (peak amplitude 
and latency), we  concentrated on the 50-150ms, 250-350ms, and 
350-450ms windows to select the N100, P300, and N400, respectively. 
We also examined responses just outside these windows. Response size 
(peak amplitude in microvolts) and timing (peak latency in 
milliseconds) were manually verified and recorded by an experienced 
blinded reviewer (17). N100 and P300 were labelled on the deviant tone 
response, and the N400 was labelled only on the incongruent word 
response. Overall, we collected 264 standard and 24 deviant tone trials, 
36 congruent and 36 incongruent word pair trials. Epochs that still 
contained noise after bandpass filtering and ocular correction were 
rejected. If less than 66% of the standard and deviant tone responses 
remained after rejection, we did not use that dataset in our analysis. The 
congruent and incongruent epochs were similarly thresholded at 75%.

3.4 Statistical comparisons

Statistical analyses consisted of a time-series analysis of the 
amplitudes and latencies for the N100, P300, and N400. Group 
comparisons used a Kruskal-Wallis H-test for independent samples, 
with Benjamini-Hochberg Method of False Discovery Rate correction 
for multiple comparisons. We  compared MMA athletes versus 
controls at baseline (Table 1).

3.5 Radar plot comparison

Standardized radar plots were generated to visualize 
multivariate changes in brain vital signs (N100, P300, and N400 
responses) For any given response, larger amplitudes and faster (i.e., 
smaller) latencies are plotted on the peripheral of the figure. 
Normative (i.e., group median) results converge on a symmetric 
hexagonal profile. The reference range (ref range) represents the 
5th-95th percentile ranges for the Control group’s ERPs. This 
method allows for all six metrics to be plotted radially on the same 
scale, and to visualize multivariate change either within or 
between groups.

4 Results

Figure 1A depicts waveform results from the MMA athlete and 
Control groups. The first row, titled Fighters vs Control – Baseline, 
contrasts the average group responses to the Deviant tones and the 
Incongruent word pairs, respectively. The shaded regions represent the 
5th – 95th % confidence intervals for each waveform. The second row, 
titled Representative Individual Waveforms, contrasts the response of 
a single participant (one Control vs. one MMA athlete) to the Deviant 
tones and Incongruent word pairs.

Figure 1B depicts two radar plots comparing peak amplitudes and 
latencies at the group level (left), and at the individual level (right). 
The same two participants’ data were used for the representative 
individual scan in Figures 1A,B.

A Supplementary Figure S1 is attached displaying the group-level 
average waveforms for each stimulus. While not significant, group 
differences were also detectable in the congruent condition, with a 
pronounced lack of separation in the MMA group relative to the 
Control group.

5 Discussion

The study investigated subconcussive changes in brain vital signs 
in MMA athletes compared to matched controls at baseline. The 
findings supported the hypothesis that MMA athletes would show 
significant brain vital sign differences relative to controls, presumably 
due to routine exposure to repetitive head impacts while participating 
in their sport. While the brain vital sign task is passive and did not 
require a response, the N100 is generally sensitive to discriminating 
louder deviant tones, the P300 is generally sensitive to attending to the 
unexpected occurrence of the louder deviant tones, and the N400 is 
generally sensitive to semantically discriminating a mismatching word 
pair (9).

Examination of the waveform differences between MMA athletes 
and controls showed a common reduction in N400 response 
amplitudes. The current findings contribute to the growing body of 
literature that supports the link between repetitive head impacts and 
subconcussive impairment. Given our recent ice hockey study (18), 
which demonstrated no detectable subconcussive impairments with 
specific daily dietary supplementation, future work should investigate 
potentially effective and accessible intervention options. Furthermore, 
frequency domain and resting state analyses were not conducted. 
However, future studies should explore possible EEG frequency and 
resting state effects.

TABLE 1 Brain vital sign measures for MMA athletes and controls across 
comparisons.

h p 
(uncorrected)

p (FDR 
corrected)

Baseline 

comparison

N100 

amplitude

1.4325 0.2314 0.3470

N100 

latency

1.5172 0.2180 0.3470

P300 

amplitude

2.1342 0.1440 0.3470

P300 

latency

0.1507 0.6978 0.6978

N400 

amplitude

7.0440 0.0080 0.0477*

N400 

latency

0.9680 0.3252 0.3902

Bold values indicate significance (*p < 0.05).
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The current study represents another replication in support of the 
relationship between head impact exposure and brain vital signs (12–
14, 18). Specifically, subconcussive changes in the cognitive N400 
response have repeatedly been observed across all studies to-date. The 
replications have been across different contact sports (i.e., ice hockey, 
football, and mixed martial arts) as well as different age ranges (i.e., 
approximately ages 12–30 years old) in male athletes. It is important 
to note that changes to the N400 (and often N100) are likely not the 
only changes, but rather the most common and consistent ones. Also, 

that the particular N400 changes have varied in terms of latency 
delays, amplitude reductions, or both across the noted studies. The 
two factors are interdependent and interactive, with relative peak 
timing delays and response reductions representing a relative 
impairment in cognitive processing, specifically semantic processing 
(19–21). While there are a number of different incongruent and/or 
congruent waveform changes that are associated with impaired 
semantic processing, and that the reduction in the incongruent N400 
amplitudes represented a common possible changes frequently 

FIGURE 1

(A) Waveforms and (B) Radar plot comparison between MMA athletes and controls at baseline. * p  <  0.05 (corrected). The shaded regions in 
(A) represent the 5th – 95th % confidence intervals for each waveform. The ref. range in (B) represents the 5th – 95th percentile ranges for the control 
groups ERPs.
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measured directly in the brain vital sign framework. On-going studies 
have further confirmed the N400 effects compared to non-contact 
control comparisons, across different sports, and between females and 
males (22).

6 Limitations

Our available subject pool of MMA athletes was limited, leading 
to a relatively low sample size. Moreover, we had to exclude some 
acquired EEG scans due to data quality, precluding us from conducting 
a planned longitudinal analysis. While subjects in the control group 
were not participating in contact sports during the study, other 
lifetime exposures were not accounted for that may have impacted our 
findings. Furthermore, we  cannot differentiate if the measured 
baseline differences reflect an association with MMA participation in 
general, or the acute effects of recent MMA activity. Future studies 
with larger sample sizes will make it possible to evaluate specific 
factors related to MMA participation, such as fight history, outcomes 
and training methods that may have influenced our results. Moreover, 
future studies would benefit from incorporating fight performance 
metrics or using impact sensors to derive specific head impact 
measures of exposure. Likewise, a more robust longitudinal design 
would allow for direct assessment of brain vital sign changes over time 
in relation to MMA exposure measures.

7 Conclusion

MMA athletes demonstrate significant brain vital sign differences 
in baseline scans compared to controls. Specifically, significant brain 
vital sign differences were detected as reduced amplitudes for the 
N400, with additional reductions observed in the N100 and P300. The 
findings indicate that exposure to repetitive head impacts in MMA 
may be associated with subconcussive changes in brain function.
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