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Objective: Multiple Sclerosis (MS) is an autoimmune disorder characterized by 
demyelination occurring within the white matter of the central nervous system. 
While its pathogenesis is intricately linked with the body’s immune response, 
the precise underlying mechanisms remain elusive. This study aims to explore 
potential immune-related genes associated with MS and assess the causal 
relationship between these genes and the risk of developing MS.

Methods: We retrieved expression datasets of peripheral blood mononuclear 
cells from MS patients from the Gene Expression Omnibus (GEO) database. 
Immune-related differentially expressed genes (IM-DEGs) were identified using 
the ImmPort database. GO and KEGG analyses were subsequently performed 
to elucidate the functions and pathways associated with the IM-DEGs. To 
visualize protein–protein interactions (PPIs), we  used STRING, Cytoscape, 
and Cytohubba to construct networks of PPIs and hub genes. The diagnostic 
efficacy of hub genes was assessed using the nomogram model and ROC curve. 
The correlation of these hub genes was further validated in the mouse EAE 
model using quantitative PCR (qPCR). Finally, Mendelian randomization (MR) 
was performed to ascertain the causal impact of hub genes on MS.

Results: Twenty-eight IM-DEGs were selected from the intersection of DEGs 
and immune genes. These genes are involved mainly in antigen receptor-
mediated signaling pathways, B cell differentiation, B cell proliferation, and B cell 
receptor signaling pathways. Using Cytoscape software for analysis, the top 10 
genes with the highest scores were identified as PTPRC, CD19, CXCL8, CD79A, 
IL7, CR2, CD22, BLNK, LCN2, and LTF. Five hub genes (PTPRC, CD19, CXCL8, 
CD79A, and IL7) are considered to have strong diagnostic potential. In the 
qPCR validation, the relative expression of these five genes showed significant 
differences between the control and EAE groups, indicating that these genes 
may play a potential role in the pathogenesis of MS. The MR results indicate 
that elevated levels of CD79A (OR = 1.106, 95% CI 1.002–1.222, p = 0.046) are 
causally positively associated with the risk of developing MS.

Conclusion: This study integrated GEO data mining with MR to pinpoint pivotal 
immune genes linked to the onset of MS, thereby offering novel strategies for 
the treatment of MS.
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1 Introduction

Multiple Sclerosis (MS) is an immune-mediated inflammatory 
demyelinating disease of the central nervous system, characterized by 
lesions that exhibit both temporal and spatial dissemination features (1, 
2). This condition primarily affects young adults aged 20–40, with a 
higher prevalence among females. The incidence and prevalence of this 
condition are increasing in both developed and developing countries (3). 
The etiology of MS remains unclear, but it is widely believed to involve a 
combination of factors including viral infection, genetic susceptibility, 
environmental factors, lifestyle, and immune dysregulation. The core 
mechanism involves the loss of self-immune tolerance by T cells, which 
primarily target sites such as the optic nerve, spinal cord, brainstem, and 
periventricular white matter. This leads to demyelination and loss of 
oligodendrocytes in the brain and spinal cord, ultimately resulting in 
disease onset (4, 5). Currently, both domestic and international treatments 
for MS primarily involve the use of corticosteroids and 
immunomodulators. Although these interventions can effectively alleviate 
symptoms, they are associated with high costs, significant side effects, and 
limited efficacy, leaving patient prognosis still concerning (6). Therefore, 
it is essential to identify new critical targets and analyze the molecular 
mechanisms underlying the disease pathogenesis, in order to provide new 
avenues for the treatment of MS.

In recent years, there have been significant advances in molecular-
level research across various fields of disease, such as cancer, immune 
system disorders, and cardiovascular diseases. These advances have been 
made possible by the establishment of high-throughput sequencing 
platforms for gene chips. This technology has not only expanded our 
understanding of the underlying pathogenic mechanisms but has also 
become an important method and tool for screening important genetic 
materials during disease occurrence, identifying diseases, and predicting 
prognosis (7).

Mendelian randomization (MR) is a widely employed methodology 
that leverages Mendelian inheritance of genetic variations as instrumental 
variables for evaluating causal relationships between exposure factors and 
diseases. This approach is extensively utilized for probing the causal links 
between clinical factors and diseases (8, 9). Due to the random nature of 
genetic variations, MR analysis can provide reliable analytical results by 
reducing potential confounding factors and analyzing the correlation 
between exposure factors and outcome factors from a genetic 
perspective (10).

Several studies have employed MR in conjunction with genomic or 
proteomic techniques to identify multiple potential therapeutic targets 
(11–13). These findings underscore the effectiveness of gene chip 
technology, genome-wide association studies, and bioinformatics analysis 
methods as viable approaches for elucidating the pathogenesis of diseases 
such as MS.

This study conducted bioinformatic analysis of gene expression 
microarray data obtained from public databases to construct gene 
networks and identify potential key molecular targets related to 
immunity. Additionally, qPCR validation confirmed the relevance of 
these genes in the pathogenesis of MS. Finally, through MR analysis, 
the causal relationship between these hub genes and MS was inferred, 

which may provide new insights into the pathogenesis and clinical 
treatment of MS.

2 Materials and methods

2.1 Data collection

Using the search terms “Multiple Sclerosis” and “Homo sapiens,” 
we accessed the Gene Expression Omnibus (GEO) database1 to obtain 
the publicly available gene expression profile GSE21942 (14). The 
dataset includes gene expression array data of peripheral blood 
mononuclear cells from 14 MS patients and 15 healthy individuals. 
The mean age of the patients was 54.2 years, while the control group 
had a mean age of 71.6 years.

2.2 Identification of differentially expressed 
genes

We preprocessed the selected dataset using R software (version 4.3.2), 
including batch correction and normalization. Subsequently, we employed 
the “limma” package (15) to screen for DEGs in the GSE21942 dataset, 
setting p < 0.05 and a |log2-fold change (FC)| ≥ 1 as the identification 
thresholds. After analyzing the significantly differentially expressed genes, 
we employed the “pheatmap” and “ggplot2” R packages to create volcano 
plots and heatmaps illustrating the DEGs. Afterward, we downloaded an 
immune gene list from the ImmPort database2 and intersected it with the 
set of DEGs to obtain IM-DEGs for further analysis.

2.3 Functional enrichment and pathway 
analysis of candidate hub genes

We performed annotation and visualization analysis of the 
IM-DEGs using the enrichGO and enrichKEGG functions from the 
“ClusterProfiler” R package. GO is utilized to classify the functions of 
gene products, including biological processes (BP), molecular 
functions (MF), and cellular components (CC) (16). KEGG (17) was 
used to explore relevant pathways and advanced biological functions. 
We  selected the most significantly enriched functions among the 
IM-DEGs for sorting and analysis.

2.4 Identification of hub genes

We utilized the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database3 to construct a protein–protein 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.immport.org

3 http://string-db.org
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interaction (PPI) network of the IM-DEGs, with a confidence score 
threshold set at >0.4, and hidden genes that were not connected. 
Subsequently, we  visualized the network using Cytoscape 3.10.1 
software. Then, employing the CytoHubba plugin within Cytoscape, 
we identified the top 10 hub genes using the MCC algorithm (18).

2.5 Nomogram model and ROC curve

Next, we constructed a nomogram model and ROC curves to 
evaluate the diagnostic efficacy of the top five genes (PTPRC, CD19, 
CXCL8, CD79A, and IL7). The nomogram is based on multivariable 
regression analysis and is primarily used to integrate multiple 
predictive factors onto a single plane, visually expressing the 
relationships among the variables in the predictive model. The 
nomogram model plays a significant role in supporting clinical 
decision-making, such as aiding in the early identification of high-risk 
patients and developing personalized treatment plans. The ROC curve 
serves as a binary classification model, where the output of diagnostic 
tests is categorized into a clearly defined binary outcome (e.g., 
presence or absence of disease), making it widely applicable for 
assessing the performance of different classification methods. In this 
study, we extracted the expression matrix and grouping information 
(disease status: 1 for patients and 0 for healthy controls) for these five 
hub genes from the GSE21294 dataset, and conducted data analysis 
and visualization using the “rms” and “ROC” software packages (19). 
The nomogram calculates a total score based on the upregulation or 
downregulation of these five genes in the samples, thereby assessing 
the risk of MS. The ROC curve evaluates the classification and 
diagnostic performance of these hub genes for distinguishing between 
patients and healthy individuals by calculating the area under the 
curve (AUC); an AUC value closer to 1 reflects higher accuracy of the 
predictive model.

2.6 Establishment of the EAE mouse model

Twelve 8-week-old female C57BL/6 mice, weighing 18–20 g and 
maintained under SPF conditions, were acclimatized to the barrier 
environment for 2  weeks prior to the experiment. On the day of 
induction, the mice were anesthetized with 1% sodium pentobarbital 
(30 mg/kg) and randomly assigned to either the control group or the 
EAE group, with an equal number of mice in each group. A total of 
4 mg of myelin oligodendrocyte glycoprotein 35–55 (MOG35-55, Pufei 
Biotechnology) was dissolved in PBS, and 10 mg of H37Ra (BD) was 
dissolved in incomplete Freund’s adjuvant (IFA, Sigma). The two 

solutions were emulsified into a white, opaque suspension. The 
emulsified mixture was subcutaneously injected at two sites on the 
dorsal side of each mouse at a volume of 10 mL/kg. Additionally, on 
the day of induction and the following day, each mouse was 
intraperitoneally injected with pertussis toxin (PTX, Difco) at a 
volume of 10 mL/kg.

2.7 Real-time quantitative polymerase 
chain reaction

Four weeks post-induction, mice were euthanized, and their brain 
tissues were harvested. Total RNA was extracted from tissue 
homogenates following the manufacturer’s protocol (EZBioscience). 
The RNA concentration was measured, and cDNA was synthesized 
using the Color Reverse Transcription Kit with gDNA Remover 
(EZBioscience). Quantitative PCR (qPCR) was performed using the 
2× Color SYBR Green qPCR Master Mix (ROX2) (EZBioscience) on 
a 7,500 Real-Time PCR System (Applied Biosystems). Relative gene 
expression levels were calculated using the 2−ΔΔCt method. Primers 
were synthesized by Sangon Biotech, and their sequences are provided 
in Supplementary Table S1.

2.8 Mendelian randomization

To explore the causal relationship between the selected hub genes 
and MS, we used the “TwoSample” software package to conduct a 
two-sample MR analysis. The MR analysis utilizes genetic variations 
as instrumental variables (IVs) to explore the causal relationship 
between exposure and outcome, which can reduce the interference of 
confounding factors. There are three assumptions for the screening of 
IVs: first, the IV has a strong correlation with the exposure; second, 
the IV can only affect the outcome through the exposure; third, the IV 
is independent of confounding factors. In this study, the data used for 
MR analysis were obtained from the publicly available Genome-Wide 
Association Study (GWAS) database (https://gwas.mrcieu.ac.uk/). The 
selected single nucleotide polymorphisms (SNPs) were defined as 
instrumental variables (IVs), with the specific dataset detailed in 
Table 1. After obtaining the available IVs according to the screening 
conditions, the inverse variance weighted (IVW), MR-Egger, weighted 
median, simple mode, and weighted mode methods were used to 
evaluate the causal association between the hub genes and MS. The 
results of IVW will be regarded as the main conclusion because this 
method is the most effective MR analysis method. A sensitivity 
analysis was also conducted, whereby the removal of any single SNP 

TABLE 1 The GWAS data information for the exposure factors and outcome variables.

Dataset Category Number of SNPs Sample size

ieu-b-18 (outcome) MS 6,304,359 115,803

ebi-a-GCST90002041 (exposure) PTPRC 14,155,839 1,635

prot-a-1543 (exposure) IL7 10,534,735 3,301

prot-a-461 (exposure) CD79A 10,534,735 3,301

ebi-a-GCST90002028 (exposure) CD19 14,903,706 3,112

ebi-a-GCST90011994 (exposure) CXCL8 12,717,989 21,758
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resulted in consistent positive or negative outcomes, indicating that 
the results were not influenced by any particular outlier.

2.9 Statistical methods

Data analysis and graphical representation were performed using 
GraphPad Prism 9.4.1 software. A p-value of less than 0.05 was 
considered statistically significant.

3 Results

3.1 Identification of differentially expressed 
genes

After obtaining the MS dataset (GSE21942), we standardized the 
data and found good uniformity, indicating comparability between the 
two groups (Figure  1A). The results of the principal component 
analysis revealed considerable differences between the centers of the 
MS group and the control group, indicating gene expression 
differences between the two groups (Figure 1B). Using |logFC| ≥ 1 
and p < 0.05 as the thresholds, a total of 193 DEGs were selected (110 
upregulated and 76 downregulated) (Supplementary Table S2). The 
volcano plot and heatmap displayed the top  10 significantly 
differentially expressed upregulated and downregulated genes 
(Figures 1C, D). The top 10 upregulated genes with the smallest p 
values in the MS group and the control group were CPA3, LTF, GOS2, 
MALAT1, SEPT7, TCN1, RAPGEF6, FAM126B, HBM, and CLC. The 
top 10 downregulated genes with the highest frequency were STT3A, 
STAT2, RPN1, SERPINB9, COPG1, PKN2, ADAM9, DNAJC14, 
ALYREF, and SNRNP40. Simultaneously, 1,793 immune-related genes 
were retrieved from the ImmPort database. By intersecting the 193 
DEGs with the 1,793 immune-related genes (Supplementary Table S3), 
we ultimately obtained 28 IM-DEGs (Figure 1E).

3.2 GO and KEGG analyses

The GO enrichment analysis of IM-DEGs was primarily 
conducted using the clusterProfiler package in R, providing 
standardized descriptions of the differential genes, including their 
involvement in biological pathways, functions, and cellular 
localization. Figure  2A displays the top  8 results of the GO 
enrichment analysis for the 28 DEGs. The study revealed that these 
targets are primarily involved in biological processes such as the 
humoral immune response, immune response-activating cell surface 
receptor signaling pathway, and immune response-regulating cell 
surface receptor signaling pathway. The genes were mainly localized 
in the specific granule lumen and on the external side of the plasma 
membrane, while their molecular functions included 
immunoglobulin receptor binding, glycosaminoglycan binding, and 
immune receptor activity. Additionally, KEGG enrichment analysis 
indicated that these genes mainly influence biological pathways such 
as the B cell receptor signaling pathway, hematopoietic cell lineage, 
primary immunodeficiency, and Epstein–Barr virus infection 
(Figure  2B). In summary, the functions of IM-DEGs are closely 
associated with immunity.

3.3 Establishment of the PPI network and 
identification of hub genes

We utilized the STRING online tool to construct a PPI network 
consisting of 28 genes. After unconnected nodes were hidden, the 
resulting network comprised 22 nodes and 64 edges. Subsequently, 
visualization was performed using Cytoscape software (Figure 3A). Next, 
we employed the MCC algorithm to select the top 10 ranked genes, 
namely, PTPRC, CD19, CXCL8, CD79A, IL7, CR2, CD22, BLNK, LCN2, 
and LTF (Figure 3B), where darker colors indicate higher node scores.

3.4 Risk prediction model and experimental 
validation

We established a nomogram model comprising five central genes 
(PTPRC, CD19, CXCL8, CD79A and IL7) to predict the risk of MS 
(Figure 4A). The results demonstrate that these genes perform well in 
predicting MS risk. Subsequently, we calculated the ROC curves for 
these genes to evaluate their diagnostic performance. The results 
indicate that the AUC values of PTPRC, CD19, CXCL8, CD79A, and 
IL7 effectively distinguish MS patients from the control group 
(Figure  4B), with values of 0.819, 0.862, 0.919, 0.848, and 0.910, 
respectively. Then, we verified the expression levels of these five hub 
genes in the control group and the EAE group through qPCR 
experiments. The results indicated that there were significant 
differences in these genes between the two groups (Figure 4C).

3.5 CD79A was causally associated with the 
risk of MS

We used the IVW method to evaluate the causal relationship 
between 5 hub genes and MS. The research results showed that only 
CD79A (a total of 11 IVs that met the MR assumptions were screened) 
had a causal relationship with MS (OR = 1.106, 95% CI 1.002–1.222, 
p = 0.046). The MR-Egger test showed that there was no horizontal 
pleiotropy in the analysis data of CD79A and MS (p > 0.05), as shown 
in Supplementary Tables S4, S5 and Figures 5A,B. The funnel plot 
showed that all the included SNPs were basically symmetrical 
(Figure  5C). The sensitivity analysis results indicated that after 
removing each SNP, the overall error bars did not change significantly, 
that is, all the error bars were on the right side of 0, indicating that the 
results were reliable (Figure 5D). After IVW analysis of the IVs that 
met the MR assumptions screened for the remaining 4 hub genes, the 
results were not significant, as shown in Supplementary Table S6.

4 Discussion

The MS is an autoimmune disease with a highly complex 
pathogenesis. To date, the major identified risk alleles, as well as the 
majority of risk alleles, are associated with immune responses (20–22). 
The rapid advancement of bioinformatics has provided new insights 
into the study of various clinical diseases. In this study, we employed 
bioinformatics approaches to identify hub immune-related genes in 
MS, aiming to further explore the pathogenesis of the disease and to 
provide new directions for the early diagnosis and treatment of MS.
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In this study, we analyzed gene expression data from MS gene chips 
in conjunction with immune-related genes, identifying 28 IM-DEGs with 
strong associations. Enrichment analysis revealed that these genes 

primarily cluster in pathways related to antigen receptor-mediated 
signaling, B cell differentiation, B cell proliferation, and B cell receptor 
signaling. While MS is traditionally regarded as T cell-dominated, an 

FIGURE 1

Expression microarray dataset of MS patients. (A) Boxplot of the expression microarray dataset of MS patients. (B) Principal component analysis of the 
expression microarray dataset of MS patients. (C) Volcano plot of differentially expressed genes. (D) Heatmap of the top 10 upregulated and 
downregulated genes with the smallest p-values. (E) Venn diagram of DEGs and immune gene sets.
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FIGURE 2

Results of the biological processes and signaling pathway analysis of IM-DEGs. (A) GO enrichment analysis of IM-DEGs. (B) KEGG enrichment analysis 
of IM-DEGs.
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increasing body of research has shown that B cells also play a significant 
role in MS (23–25). B cells can internalize and process natural antigens, 
subsequently presenting degraded peptide fragments in association with 
major histocompatibility complex (MHC) class II molecules to antigen-
specific CD4+ T cells, thereby functioning as antigen-presenting cells and 
promoting the pathogenesis of MS. Additionally, B cells can secrete 
autoantibodies that assist other antigen-presenting cells in presenting 
antigens related to the central nervous system (26–28). Furthermore, an 
expanding number of studies have demonstrated that B cell depletion 
therapy can effectively treat MS and other autoimmune diseases (29). This 
underscores the importance of these biological functions and signaling 
pathways in the context of MS.

Through the analysis of the PPI network, we identified several hub 
genes potentially involved in the pathogenesis of MS, including PTPRC, 
CD19, CXCL8, CD79A, IL7, CR2, CD22, BLNK, LCN2, and LTF. CD19, 
CD79A, and CD22 are commonly used pan-B cell markers, with CD19 
being the most representative. CD19 is a CD molecule expressed on B 
cells, and it forms a signaling complex with other B cell surface molecules, 
such as CR2, CD81, and CD225, to regulate B cell development, 
proliferation, and differentiation. CD19 is an important therapeutic target 
in the treatment of diseases such as B cell lymphoma and acute 
lymphoblastic leukemia (30–32). The ongoing development and 
refinement of CAR-T therapy have opened new avenues for targeted 
treatment of MS by specifically targeting CD19-expressing B cells. One 
study has demonstrated the therapeutic potential of CAR-T cell therapy 
in late-stage MS patients who are unresponsive to conventional antibody-
mediated B cell depletion. Targeting CD19 with CAR-T cells not only 
suppresses inflammatory relapses but also eliminates residual B cells in 
the CNS that may contribute to disease progression (33). In addition, 
during the pathological process of MS, various inflammatory mediators, 
such as cytokines and chemokines, are activated, which further promote 
inflammation and demyelination. IL-7, a cytokine belonging to the 
chemokine family, plays a crucial role in the differentiation, development, 
and maturation of T and B cells, and is essential for adaptive immunity 

and the maintenance of immune homeostasis. IL-7 is thought to support 
the aberrant immune activity associated with MS, although its specific 
mechanisms remain unclear (34). CXCL8, also known as interleukin-8, 
can chemotactically recruit and activate neutrophils, mediating the 
inflammatory response. In mouse models of MS, the expression level of 
CXCL8 is elevated, facilitating the migration of neutrophils into the CNS 
and contributing to the progression of the disease (35). Results from 
nomogram models and ROC curves indicate that PTPRC, CD19, CXCL8, 
CD79A, and IL-7 exhibit good diagnostic efficacy. The experimental 
autoimmune encephalomyelitis model is a classic animal model for 
multiple sclerosis. Therefore, we  conducted experiments to validate 
whether hub genes are differentially expressed between the control group 
and EAE mice model. Based on the qPCR results, we observed significant 
differences in the expression of these five hub genes between the control 
and EAE groups. In summary, the identification of these hub genes 
provides potential therapeutic targets for MS.

Genetic variations associated with hub genes in MR studies can 
serve as instrumental variables to infer causal relationships with 
diseases. Therefore, we conducted an in-depth exploration of the causal 
relationships between PTPRC, CD19, CXCL8, CD79A, and IL7 with 
MS through MR analysis. The results indicated that the expression level 
of CD79A was positively correlated with the incidence of MS. In 
contrast, the IVW results for the other four genes were not significant, 
suggesting that their causal relationships are unreliable. CD79A (also 
known as Igα) serves as a component of the preB cell receptor (preBCR) 
signaling, forming the BCR complex by non-covalently binding with 
membrane immunoglobulin (mIg), thereby mediating signal 
transduction and providing the initial signal required for B cell 
activation (36). Studies indicate an association between CD79A and 
central nervous system infiltration, as well as relapse in B cell precursor 
(BCP) acute lymphoblastic leukemia (ALL) patients (37). In addition, 
CD79A represents an effective inhibitor target for human B cell 
activation, rendering it a promising therapeutic option for autoimmune 
diseases such as systemic lupus erythematosus and collagen-induced 

FIGURE 3

Construction of the PPI network. (A) PPI network of IM-DEGs. (B) Core genes were obtained from the interaction network using the MCC algorithm.
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FIGURE 4

Risk assessment of MS. (A) Nomogram: scores are assigned based on the expression levels of individual genes, and the total score is obtained by 
summing the scores of each independent variable. The total score is then used to estimate the risk of developing MS. (B) ROC curve: to evaluate the 
ability of hub genes to distinguish between MS patients and healthy controls; an AUC value closer to 1 indicates higher diagnostic value. (C) Expression 
levels of the hub genes in normal mice and EAE models (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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arthritis (38, 39). Currently, B cell depletion therapies are a prominent 
research direction in the field of MS, including CAR-T cell therapy and 
monoclonal antibody treatments. Among these, B cell-related 
monoclonal antibodies, regarded as a relatively “mature” approach, have 
demonstrated favorable efficacy and safety in the treatment of MS. For 
instance, ocrelizumab, a monoclonal antibody targeting CD20, has been 
widely used in the treatment of MS and has shown good safety profiles 
(40, 41). CD79A is another commonly used B cell marker aside from 
CD20; however, there have been no reported studies on targeting 
CD79A for the treatment of MS. It is worth noting that in the PCR 
validation experiment, we  observed a significant upregulation of 
CD79A expression in the EAE group compared to the control group, 
and this expression trend is consistent with the findings from the MR 
study. Therefore, it may be  worthwhile to explore the potential of 

CD79A as a therapeutic target for MS, drawing inspiration from the 
concept of B cell depletion therapies.

This study has certain limitations. First, due to the limited 
availability of peripheral blood mononuclear cell gene expression data 
for MS in publicly available datasets, we utilized only one dataset for 
analysis, which may have led to suboptimal results. Second, the 
databases used for screening immune gene sets may not 
be comprehensive, potentially resulting in the omission of some genes. 
Lastly, this study only performed a preliminary validation of hub gene 
mRNA levels using qPCR, and further in vivo and in vitro experiments 
are needed to confirm their roles and potential mechanisms in MS. In 
future studies, we  will consider verifying the clinical potential of 
CD79A as a biomarker and a therapeutic target through relevant 
experiments. For example, cell line experiments on B cells can 

FIGURE 5

Mendelian randomization study results. (A) Scatter plot of MR results for CD79A and MS: A slope > 0 indicates that an increase in CD79A expression is 
an unfavorable factor for the onset of MS. (B) Forest plot illustrating the causal relationship of each SNP with the risk of MS: The bottom red line is on 
the right side of 0, indicating a positive correlation between CD79A expression and the onset of MS. (C) Funnel plot of MR results for CD79A and MS. 
(D) Sensitivity analysis results: The bottom red line is on the right side of 0, indicating that the result is robust.
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be conducted to study the role of CD79A in activation, proliferation, 
and differentiation, as well as to detect the binding affinity of potential 
drugs. In in vivo experiments, the EAE model can be used to evaluate 
the effect of modulating CD79A through genetic manipulation and 
pharmacokinetic/pharmacodynamic studies. Additionally, CD79A in 
peripheral blood mononuclear cells from patients and control groups, 
as well as tissue samples from affected brain regions, can be analyzed 
to understand its association with the disease.

Conclusion

We explored hub immune genes associated with MS using 
bioinformatics approaches and MR studies. This may provide new 
insights for the diagnosis and treatment of MS.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The animal studies were approved by Medical Ethics Committee, 
Laboratory Animal Center, Shanghai University of Traditional 
Chinese Medicine. The studies were conducted in accordance with the 
local legislation and institutional requirements. Written informed 
consent was obtained from the owners for the participation of their 
animals in this study.

Author contributions

SD: Conceptualization, Formal analysis, Methodology, 
Visualization, Writing – original draft. YuZ: Writing – review & 
editing, Supervision. YT: Validation, Writing – original draft. YiZ: 

Methodology, Writing – review & editing. ML: Supervision, Writing 
– review & editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

The referenced studies or consortiums are gratefully acknowledged 
by the authors for contributing open-access datasets for the analysis.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2024.1437778/
full#supplementary-material

References
 1. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. 

Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 
(2018) 17:162–73. doi: 10.1016/S1474-4422(17)30470-2

 2. Mcginley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of 
multiple sclerosis: a review. JAMA. (2021) 325:765–79. doi: 10.1001/jama.2020.26858

 3. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas 
of multiple sclerosis 2013: a growing global problem with widespread inequity. 
Neurology. (2014) 83:1022–4. doi: 10.1212/WNL.0000000000000768

 4. Marcus R. What is multiple sclerosis? JAMA. (2022) 328:2078. doi: 10.1001/
jama.2022.14236

 5. Olek MJ. Multiple Sclerosis. Ann Intern Med. (2021) 174:ITC81-ITC96. doi: 
10.7326/AITC202106150

 6. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. (2018) 
378:169–80. doi: 10.1056/NEJMra1401483

 7. Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers 
through utilization of emerging technologies. Nat Clin Pract Oncol. (2008) 5:588–99. 
doi: 10.1038/ncponc1187

 8. Yarmolinsky J, Wade KH, Richmond RC, Langdon RJ, Bull CJ, Tilling KM, et al. 
Causal inference in Cancer epidemiology: what is the role of Mendelian randomization? 

Cancer Epidemiol Biomarkers Prev. (2018) 27:995–1010. doi: 10.1158/1055-9965.
EPI-17-1177

 9. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. (2017) 
318:1925–6. doi: 10.1001/jama.2017.17219

 10. Richmond RC, Davey SG. Mendelian randomization: concepts and scope. Cold 
Spring Harb Perspect Med. (2022) 12:501. doi: 10.1101/cshperspect.a040501

 11. Lin J, Zhou J, Xu Y. Potential drug targets for multiple sclerosis identified 
through Mendelian randomization analysisJ. Brain. (2023) 146:3364–72. doi: 
10.1093/brain/awad070

 12. Hong X, Wang X, Rang X, Yin X, Zhang X, Wang R, et al. The shared mechanism 
and candidate drugs of multiple sclerosis and Sjogren's syndrome analyzed by 
bioinformatics based on GWAS and transcriptome data. Front Immunol. (2022) 
13:857014. doi: 10.3389/fimmu.2022.857014

 13. Zeng R, Jiang R, Huang W, Wang J, Zhang L, Ma Y, et al. Dissecting shared genetic 
architecture between obesity and multiple sclerosis. EBioMedicine. (2023) 93:104647. 
doi: 10.1016/j.ebiom.2023.104647

 14. Kemppinen AK, Kaprio J, Palotie A, Saarela J. Systematic review of genome-wide 
expression studies in multiple sclerosis. BMJ Open. (2011) 1:e000053. doi: 10.1136/
bmjopen-2011-000053

https://doi.org/10.3389/fneur.2024.1437778
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fneur.2024.1437778/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2024.1437778/full#supplementary-material
https://doi.org/10.1016/S1474-4422(17)30470-2
https://doi.org/10.1001/jama.2020.26858
https://doi.org/10.1212/WNL.0000000000000768
https://doi.org/10.1001/jama.2022.14236
https://doi.org/10.1001/jama.2022.14236
https://doi.org/10.7326/AITC202106150
https://doi.org/10.1056/NEJMra1401483
https://doi.org/10.1038/ncponc1187
https://doi.org/10.1158/1055-9965.EPI-17-1177
https://doi.org/10.1158/1055-9965.EPI-17-1177
https://doi.org/10.1001/jama.2017.17219
https://doi.org/10.1101/cshperspect.a040501
https://doi.org/10.1093/brain/awad070
https://doi.org/10.3389/fimmu.2022.857014
https://doi.org/10.1016/j.ebiom.2023.104647
https://doi.org/10.1136/bmjopen-2011-000053
https://doi.org/10.1136/bmjopen-2011-000053


Ding et al. 10.3389/fneur.2024.1437778

Frontiers in Neurology 11 frontiersin.org

 15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

 16. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with 
confidence assessments and item tracking. Bioinformatics. (2010) 26:1572–3. doi: 
10.1093/bioinformatics/btq170

 17. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

 18. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub 
objects and sub-networks from complex interactome. BMC Syst Biol. (2014) 8 Suppl 
4:S11. doi: 10.1186/1752-0509-8-S4-S11

 19. Park SY. Nomogram: An analogue tool to deliver digital knowledge. J Thorac 
Cardiovasc Surg. (2018) 155:1793. doi: 10.1016/j.jtcvs.2017.12.107

 20. Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune 
responses in the course of multiple sclerosis. Lancet Neurol. (2015) 14:406–19. doi: 
10.1016/s1474-4422(14)70305-9

 21. Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 
years. Trends Genet. (2017) 33:960–70. doi: 10.1016/j.tig.2017.09.004

 22. Rodríguez Murúa S, Farez MF, Quintana FJ. The immune response in multiple 
sclerosis. Annu Rev Pathol. (2022) 17:121–39. doi: 10.1146/annurev-pathol-052920-040318

 23. Chastain EM, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting 
cells in multiple sclerosis. Biochim Biophys Acta. (2011) 1812:265–74. doi: 10.1016/j.
bbadis.2010.07.008

 24. Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines 
affect the injured and healthy brain? Nat Rev Neurosci. (2017) 18:375–84. doi: 10.1038/
nrn.2017.39

 25. Riedhammer C, Weissert R. Antigen presentation, autoantigens, and immune 
regulation in multiple sclerosis and other autoimmune diseases. Front Immunol. (2015) 
6:322. doi: 10.3389/fimmu.2015.00322

 26. Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple 
sclerosis. Nat Immunol. (2018) 19:696–707. doi: 10.1038/s41590-018-0135-x

 27. Pierson ER, Stromnes IM, Goverman JM. B cells promote induction of 
experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the 
central nervous system. J Immunol. (2014) 192:929–39. doi: 10.4049/jimmunol.1302171

 28. Flach AC, Litke T, Strauss J, Haberl M, Gómez CC, Reindl M, et al. 
Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation 
of autoimmune CNS disease. Proc Natl Acad Sci USA. (2016) 113:3323–8. doi: 
10.1073/pnas.1519608113

 29. Mancinelli CR, Rossi N, Capra R. Ocrelizumab for the treatment of multiple 
sclerosis: safety, efficacy, and pharmacology. Ther Clin Risk Manag. (2021) 17:765–76. 
doi: 10.2147/TCRM.S282390

 30. Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, et al. Bispecific CAR-T cells targeting 
both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute 
lymphoblastic leukemia. J Hematol Oncol. (2020) 13:30. doi: 10.1186/
s13045-020-00856-8

 31. Liu S, Deng B, Yin Z, Lin Y, An L, Liu D, et al. Combination of CD19 and CD22 
CAR-T cell therapy in relapsed B-cell acute lymphoblastic leukemia after allogeneic 
transplantation. Am J Hematol. (2021) 96:671–9. doi: 10.1002/ajh.26160

 32. Boardman AP, Salles G. CAR T-cell therapy in large B cell lymphoma. Hematol 
Oncol. (2023) 41 Suppl 1:112–8. doi: 10.1002/hon.3153

 33. Fischbach F, Richter J, Pfeffer LK, Fehse B, Berger SC, Reinhardt S, et al. CD19-
targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. 
Med. (2024) 5:550–558.e2. doi: 10.1016/j.medj.2024.03.002

 34. Leilei Z, Kewen Z, Biao H, Fang H, Yigang W. The role of chemokine IL-7 in tumor 
and its potential antitumor immunity. J Interf Cytokine Res. (2022) 42:243–50. doi: 
10.1089/jir.2021.0236

 35. Grist JJ, Marro BS, Skinner DD, Syage AR, Worne C, Doty DJ, et al. Induced CNS 
expression of CXCL1 augments neurologic disease in a murine model of multiple 
sclerosis via enhanced neutrophil recruitment. Eur J Immunol. (2018) 48:1199–210. doi: 
10.1002/eji.201747442

 36. Musette P, Bouaziz JD. B cell modulation strategies in autoimmune diseases: new 
concepts. Front Immunol. (2018) 9:622. doi: 10.3389/fimmu.2018.00622

 37. Lenk L, Carlet M, Vogiatzi F, Spory L, Winterberg D, Cousins A, et al. CD79a 
promotes CNS-infiltration and leukemia engraftment in pediatric B-cell precursor 
acute lymphoblastic leukemia. Commun Biol. (2021) 4:73. doi: 10.1038/
s42003-020-01591-z

 38. Bhatta P, Whale KD, Sawtell AK, Thompson CL, Rapecki SE, Cook DA, et al. 
Bispecific antibody target pair discovery by high-throughput phenotypic screening using 
in  vitro combinatorial fab libraries. MAbs. (2021) 13:1859049. doi: 
10.1080/19420862.2020.1859049

 39. Hardy IR, Anceriz N, Rousseau F, Seefeldt MB, Hatterer E, Irla M, et al. Anti-CD79 
antibody induces B cell anergy that protects against autoimmunity. J Immunol. (2014) 
192:1641–50. doi: 10.4049/jimmunol.1302672

 40. Samjoo IA, Klotz L, Giovannoni G, Drudge C, Haltner A, Worthington E, et al. 
Simulated treatment comparison of efficacy outcomes for ofatumumab in ASCLEPIOS 
I/II versus ocrelizumab in OPERA I/II for the treatment of patients with relapsing 
multiple sclerosis. Mult Scler Relat Disord. (2022) 66:104031. doi: 10.1016/j.
msard.2022.104031

 41. Kramer J, Linker R, Paling D, Czaplinski A, Hoffmann O, Yong VW, et al. 
Tolerability of subcutaneous ofatumumab with long-term exposure in relapsing multiple 
sclerosis. Mult Scler J Exp Transl Clin. (2023) 9:20552173231203816. doi: 
10.1177/20552173231203816

https://doi.org/10.3389/fneur.2024.1437778
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1016/j.jtcvs.2017.12.107
https://doi.org/10.1016/s1474-4422(14)70305-9
https://doi.org/10.1016/j.tig.2017.09.004
https://doi.org/10.1146/annurev-pathol-052920-040318
https://doi.org/10.1016/j.bbadis.2010.07.008
https://doi.org/10.1016/j.bbadis.2010.07.008
https://doi.org/10.1038/nrn.2017.39
https://doi.org/10.1038/nrn.2017.39
https://doi.org/10.3389/fimmu.2015.00322
https://doi.org/10.1038/s41590-018-0135-x
https://doi.org/10.4049/jimmunol.1302171
https://doi.org/10.1073/pnas.1519608113
https://doi.org/10.2147/TCRM.S282390
https://doi.org/10.1186/s13045-020-00856-8
https://doi.org/10.1186/s13045-020-00856-8
https://doi.org/10.1002/ajh.26160
https://doi.org/10.1002/hon.3153
https://doi.org/10.1016/j.medj.2024.03.002
https://doi.org/10.1089/jir.2021.0236
https://doi.org/10.1002/eji.201747442
https://doi.org/10.3389/fimmu.2018.00622
https://doi.org/10.1038/s42003-020-01591-z
https://doi.org/10.1038/s42003-020-01591-z
https://doi.org/10.1080/19420862.2020.1859049
https://doi.org/10.4049/jimmunol.1302672
https://doi.org/10.1016/j.msard.2022.104031
https://doi.org/10.1016/j.msard.2022.104031
https://doi.org/10.1177/20552173231203816

	Combining gene expression microarrays and Mendelian randomization: exploring key immune-related genes in multiple sclerosis
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Identification of differentially expressed genes
	2.3 Functional enrichment and pathway analysis of candidate hub genes
	2.4 Identification of hub genes
	2.5 Nomogram model and ROC curve
	2.6 Establishment of the EAE mouse model
	2.7 Real-time quantitative polymerase chain reaction
	2.8 Mendelian randomization
	2.9 Statistical methods

	3 Results
	3.1 Identification of differentially expressed genes
	3.2 GO and KEGG analyses
	3.3 Establishment of the PPI network and identification of hub genes
	3.4 Risk prediction model and experimental validation
	3.5 CD79A was causally associated with the risk of MS

	4 Discussion
	Conclusion

	References

