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Background: Ischemic stroke (IS) is a global health issue linked to lipid metabolism 
and immune cell responses. This study uses Mendelian randomization (MR) to 
identify genetic risk factors for IS subtypes using comprehensive genetic data 
from lipidomic and immune cell profiles.

Methods: We assessed genetic susceptibility to IS across 179 lipids and 731 
immune cell phenotypes using instrumental variables (IVs) from recent genome-
wide association studies. A two-sample MR approach evaluated correlations, and 
a two-step MR mediation analysis explored the role of immune cell phenotypes 
in the lipid-IS pathway. Sensitivity analyses, including MR-Egger and Cochran Q 
tests, ensured robust results.

Results: Genetic IVs for 162 lipids and 614 immune cell phenotypes were 
identified. Significant genetic causality was found between 35 lipids and large 
artery stroke (LAS), with 12 as risk factors (sterol esters, phosphatidylcholines, 
phosphatidylethanolamines) and 23 as protective factors (phosphatidylcholines, 
phosphatidylethanolamines, phosphatidylinositols). For small vessel stroke 
(SVS), 8 as risk factors (sterol esters, phosphatidylcholines), and 2 as protective 
factors (phosphatidylinositol, sphingomyelin). For cardioembolic stroke (CS), 
2 as risk factors, and 4 as protective factors. Mediation analysis revealed that 
CCR2 on granulocytes, CD11c on CD62L+ myeloid dendritic cells, and FSC-A 
on granulocytes mediated the lipid-immune cell-LAS pathway, while CD4 
on activated CD4 regulatory T cells and CD4 on activated & secreting CD4 
regulatory T cells mediated the lipid-immune cell-SVS pathway.

Conclusion: This study identifies genetic links between specific lipids and IS 
subtypes, highlights immune cells’ role in IS risk and mediation, suggests new 
therapeutic targets, and uncovers IS genetic drivers.
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1 Introduction

Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide, presenting 
a significant public health challenge. The pathogenesis of IS is complex and multifactorial, 
involving genetic, environmental, and metabolic factors (1–3). Among these, lipid metabolism 
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and immune cell responses are crucial contributors to the onset and 
progression of IS (4–6).

Dyslipidemia, characterized by abnormal lipid levels in the blood, 
is a well-recognized modifiable risk factor for IS. Traditional lipid 
markers such as total cholesterol, triglycerides, low-density lipoprotein 
cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) 
are commonly used to assess stroke risk (7, 8). However, advances in 
mass spectrometry have facilitated the development of lipidomics, 
allowing for the simultaneous detection of multiple lipids. This 
technological progress has significantly enhanced our understanding 
of the role of lipid metabolism in disease processes, including IS (9–11).

Additionally, immune cells are important for the inflammatory 
response associated with IS. Immune cell phenotypes, including 
granulocytes, dendritic, and T cells, participate in the inflammatory 
cascade that exacerbates brain damage following ischemic events (4, 12, 
13). The interplay between lipid metabolism and immune cell function 
is a burgeoning area of research with important implications for 
identifying novel therapeutic targets and improving stroke prognosis.

We utilized Mendelian randomization (MR) techniques to 
investigate the genetic basis of lipid metabolism and immune cell 
responses in the context of IS. By using genetic variants as instrumental 
variables (IVs), MR provides a robust method to infer causality and 
mitigate confounding inherent in observational studies (14, 15). 
We performed a two-sample MR analysis of 179 lipidomic traits and 
three IS subtypes—large artery stroke (LAS), small vessel stroke (SVS), 
and cardioembolic stroke (CS)—using genetic data from genome-
wide association studies (GWAS) (16, 17). Additionally, we conducted 
a two-step MR (TSMR) mediation analysis to examine whether 
immune cell phenotypes mediate the causal relationship between lipid 
profiles and IS risk (18, 19).

This study aims to identify specific lipid species and immune cell 
phenotypes that contribute to IS risk, elucidate potential causal 
pathways, and highlight novel therapeutic targets for the prevention 
and management of IS. By integrating comprehensive genetic data 
with advanced MR methodologies, we  seek to deepen our 
understanding of the complex interactions between lipid metabolism, 
immune responses and IS.

2 Materials and methods

2.1 Study overview

We performed a two-sample MR analysis utilizing genetic 
variants derived from the latest available GWAS of 179 plasma 
lipidomic and three subtypes of IS: LAS, SVS, and CS. We  used 
inverse-variance weighted (IVW) and weighted median (WM) 
methods for the MR analyses, complemented by various sensitivity 
tests to ensure result robustness. Given the close relationship between 
immune cells and IS, we applied TSMR to determine if the identified 
effects were mediated through immune cell regulation. The first 
two-sample MR analysis examined 731 immune cell phenotypes as 
exposures and the three IS subtypes as outcomes. This was followed 
by a final two-sample MR analysis, where plasma lipids showing 
significant causality were used as exposures, and immune cell 
phenotypes with significant MR results in the GWAS were used as 
outcomes. The effectiveness of this MR approach depends on three 
key assumptions (1): genetic variants must strongly correlate with the 

exposure (2), variants influence the outcome only through the 
exposure, and (3) variants are free from confounding variables. The 
methodological workflow is depicted in Figure 1.

2.2 GWAS summary statistics

We accessed stroke-related data from the GIGASTROKE 
Consortium,1 which includes three IS subtypes: LAS with 9,219 
cases and 1,496,931 controls, SVS with 13,620 cases and 1,496,931 
controls, and CS with 12,828 cases and 1,496,931 controls (17). 
Additionally, we  utilized GWAS data for 731 immune cell 
phenotypes, cataloged from GCST90001391 to GCST90002121 
(18), and for 179 lipid traits, spanning from GCST90277238 to 
GCST90277416 (see text footnote 1) (16). Each dataset adheres to 
the ethical standards of the original studies, ensuring that no 
additional ethical approval was required for this secondary 
analysis. These datasets are detailed in Supplementary Table S1.

2.3 Selection of instrumental variables

To ascertain causal connections between lipidomic and immune cell 
profiles (exposure) and IS subtype outcomes, we  employed genetic 
proxies, specifically SNPs, associated with these phenotypes. We selected 
SNPs associated with lipidomic and immune cell phenotypes using 
thresholds (p < 5 × 10−8) and applied clumping criteria with an LD 
r2 > 0.001 within a 10,000-kilobase window, based on the 1,000 Genomes 
European panel. To assess instrument strength and avoid weak 
instrument bias, we calculated the F statistic for each SNP, ensuring it was 
above 10, following the method outlined by Pierce and Burgess (20). 
Only SNPs exclusively related to the lipidomic and immune cell traits 
were included, ensuring no overlap with genes influencing ischemic 
stroke risk to adhere to the exclusion restriction criterion.

2.4 Statistical analysis

We initiated our investigation by conducting a two-sample MR 
analysis to investigate the causal relationship between lipidomic 
phenotypes and IS. The IVW and WM methods were employed for 
primary effect estimation. Analyses were conducted using a p-value 
threshold <0.05 to ascertain statistical significance, avoiding 
Bonferroni adjustments to preserve exploratory study objectives.

We utilized summary statistics of immune cell phenotypes, 
covering 731 immune cell levels in the blood, to explore potential 
immune cell levels as mediators between lipidomic profiles and 
ischemic stroke. We employed TSMR approach to delineate effects 
of lipidomic phenotypes and immune cell levels on IS subtypes. 
In addition to the estimation of the potential impact of lipidomic 
phenotypes on ischemic stroke derived from MR analyses (β0), 
two additional estimates were calculated (1): the causal effect of 
731 immune cell levels on ischemic stroke (β1), and (2) the causal 
effect of exposure (lipid species significantly associated with IS 

1 https://www.ebi.ac.uk/gwas/
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subtypes) on the mediator (immune cell level species significantly 
associated with IS subtypes) (β2). Indirect effect, representing the 
causal effect of lipidomic profiles on IS subtypes via mediators, 
was estimated using the coefficient product method (β1 × β2). 
Mediation ratio was calculated as the “indirect effect/total effect” 
([β1 × β2]/β0) (19).

2.5 Sensitivity analyses

For sensitivity analyses, we employed three MR methods: IVW, 
WM, and MR-Egger, each based on different assumptions about 
pleiotropy to generate effect estimates. Evidence of horizontal 
pleiotropy was suggested if the MR-Egger intercept significantly 
differed from zero (p-value <0.05). Heterogeneity was evaluated using 
the Cochran Q test, where a p-value greater than 0.05 indicated an 
absence of heterogeneity (21, 22). To corroborate the conclusions on 
causality, we ensured that: (a) the MR-Egger intercept did not show 
significant directional pleiotropy, and (b) Cochran’s Q test indicated 
no significant heterogeneity.

MR analyses were conducted in R (version 4.3.3; R Foundation for 
Statistical Computing, Vienna, Austria) with the “TwoSampleMR” 
packages.

3 Results

3.1 Causal associations between lipidomic 
profiles and IS subtypes

Our investigation probed the causal relationships between 
lipidomic profiles and IS subtypes, specifically focusing on three 
subtypes: LAS, SVS, and CS. We commenced by identifying IVs for 179 

lipid species, ensuring each met the criteria for strong correlation and 
independence. IVs were successfully established for 162 lipid species, 
with F-statistic values ranging from 29.79 to 1946.15, effectively 
negating concerns of weak instrumental bias (Supplementary Table S2).

If the number of SNPs is greater than or equal to 3, we evaluated the 
data using both the IVW and WM methods; otherwise, only IVW was 
used. Our findings indicated that 35 lipid species are genetically causally 
associated with LAS; of these, 12 were identified as risk factors including 
5 sterol esters, 6 phosphatidylcholines, and 1 phosphatidylethanolamine, 
and 23 as protective factors, comprising 16 phosphatidylcholines, 2 
phosphatidylethanolamines, and 5 phosphatidylinositols (Figure 2A 
and Supplementary Table S3). Furthermore, 10 lipid species were 
associated with SVS, with 8 identified as risk factors (2 sterol esters and 
6 phosphatidylcholines) and 2 as protective (1 phosphatidylinositol and 
1 sphingomyelin) (Figure  2B and Supplementary Table S13). 
Additionally, 6 lipids demonstrated a causal association with CS, among 
which 2 sphingomyelins were risk factors, and 4 were protective 
including 1 sterol ester, 1 phosphatidylcholine, and 2 
phosphatidylinositols (Figure 2C and Supplementary Table S22).

To assess and mitigate potential biases from directional horizontal 
pleiotropy in the MR results, Egger’s intercept test was conducted for 
phenotypes supported by more than three IVs. The p-values of the 
MR-Egger intercept estimates consistently exceeded 0.05, indicating no 
significant pleiotropy bias. Moreover, the Cochran Q test, indicating a 
p-value greater than 0.05 across all analyses, affirmed the absence of 
heterogeneity, thus substantiating the robustness of our causal 
inferences (Table 1; Supplementary Tables S4, S5, S14, S15, S23, S24).

3.2 Causal associations between immune 
cell phenotypes and IS subtypes

Recognizing the significant involvement of immune cells in the 
pathogenesis of IS subtypes, our study sought to investigate the 

FIGURE 1

Assumptions and design of a two-step Mendelian randomization (TSMR) analyses. Firstly, a two-sample MR was performed to investigate the causal 
relationships between 179 lipid phenotypes and three distinct ischemic stroke subtypes. Secondly, 731 immune cell phenotypes were selected for 
subsequent mediation analyses. Finally, TSMR analysis was conducted to detect potential mediating immune cell phenotypes. TSMR, two-step 
Mendelian randomization; SNPs, single-nucleotide polymorphisms; LAS, large artery stroke; SVS, small vessel stroke; SC, cardioembolic stroke.
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causal association between 731 immune cell phenotypes and IS 
subtypes. Employing criteria akin to those used for lipid species, 
we meticulously identified instrumental variables for these immune 
cell phenotypes. Out of 731 phenotypes, we successfully identified 
614 species with eligible IVs, each characterized by F-statistic  
values surpassing 10, ranging from 29.85 to 5062.70 
(Supplementary Table S6).

MR results unveiled genetic causal associations between 12 immune 
cell phenotypes and LAS, with 8 showing positive correlations and 4 
showing negative correlations (Figure 3A and Supplementary Table S7). 
Similarly, 21 immune cell phenotypes were linked to SVS, with 4 
exhibiting positive correlations and 17 displaying negative correlations 
(Figure 3B and Supplementary Table S16). Furthermore, 16 immune 
cell phenotypes demonstrated genetic causal associations with CS, with 
4 manifesting positive correlations and 12 exhibiting negative 
correlations (Figure 3C and Supplementary Table S25).

Consistently, the p-values of MR-Egger intercept estimates 
exceeded 0.05, indicating the absence of significant pleiotropy bias. 

Additionally, the Cochran Q test yielded p-values greater than 0.05 
across all analyses, reinforcing the lack of heterogeneity and thereby 
affirming the robustness of our causal inferences (see Table  1; 
Supplementary Tables S8, S9, S17, S18, S26, S27).

3.3 Immune cell-mediated pathways 
linking lipidomic profiles to IS subtypes

To explore the potential role of immune cell phenotypes as 
mediators in the causal pathway between lipidomic profiles and 
ischemic stroke subtypes, we employed TSMR approach. Specifically, 
we focused on lipids associated with LAS, SVS, and CS, and assessed 
their MR-estimated effects against immune cell phenotypes robustly 
associated with each subtype.

For LAS, our analysis revealed inverse genetic correlations 
between three lipid phenotypes (sterol ester (27:1/22:6) levels, 
phosphatidylcholine (O-16:0_20:4) levels, and phosphatidylcholine 
(18:2_0:0) levels) and CD11c on CD62L+ myeloid dendritic cells, as 

FIGURE 2

Significant MR estimates for specific lipids and IS subtypes (LAS, SVS, and CS) were assessed by IVW and WM. (A) The significant causal effect of lipids 
on LAS. (B) The significant causal effect of lipids on SVS. (C) The significant causal effect of lipids on CS. The dots colored in red and green indicate IVW 
and WM respectively. IS, ischemic stroke, IVW, inverse variance-weighted; MW, weighted median; MR, Mendelian randomization; OR, odds ratio; 95% 
CI, 95% confidence interval.
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TABLE 1 Pleiotropy and heterogeneity assessment for significant results (p  <  0.05).

Trait.exposure Trait.outcome Directional pleiotropy Cochran’s Q test

Egger_intercept p-value Q p-value

Sterol ester (27:1/16:0) levels

LAS

−0.016 0.892 3.578 0.167

Sterol ester (27:1/18:0) levels 0.007 0.889 14.309 0.056

Sterol ester (27:1/20:4) levels −0.039 0.118 6.105 0.191

Phosphatidylcholine (15:0_18:2) levels 0.014 0.634 9.290 0.098

Phosphatidylcholine (16:0_18:2) levels 0.026 0.253 8.276 0.219

Phosphatidylcholine (16:0_18:3) levels −0.165 0.870 4.396 0.111

Phosphatidylcholine (16:0_20:2) levels 0.025 0.341 2.585 0.630

Phosphatidylcholine (16:1_18:2) levels 0.016 0.362 2.662 0.850

Phosphatidylcholine (17:0_18:2) levels 0.035 0.566 0.719 0.698

Phosphatidylcholine (18:0_18:2) levels 0.013 0.830 7.725 0.102

Phosphatidylcholine (18:0_20:4) levels −0.009 0.703 2.936 0.402

Phosphatidylcholine (18:1_18:1) levels 0.031 0.571 4.183 0.242

Phosphatidylcholine (18:1_18:2) levels −0.007 0.717 3.478 0.481

Phosphatidylcholine (18:1_20:2) levels 0.009 0.834 1.592 0.451

Phosphatidylcholine (18:2_18:2) levels 0.035 0.466 2.353 0.308

Phosphatidylethanolamine (16:0_18:2) levels 0.020 0.599 5.468 0.361

Phosphatidylinositol (18:0_18:1) levels −0.103 0.317 5.696 0.223

Phosphatidylinositol (18:0_18:2) levels 0.028 0.555 2.435 0.487

Phosphatidylinositol (18:0_20:3) levels −0.013 0.635 1.363 0.714

Sterol ester (27:1/18:3) levels

SVS

0.016 0.669 0.552 0.759

Sterol ester (27:1/20:3) levels 0.011 0.812 0.341 0.843

Phosphatidylcholine (18:0_20:3) levels −0.014 0.770 0.235 0.889

Phosphatidylcholine (O-16:1_20:3) levels 0.004 0.945 0.099 0.952

Sphingomyelin (d32:1) levels
CS

0.001 0.954 0.993 0.803

Sphingomyelin (d40:2) levels 0.005 0.843 0.167 0.920

Phosphatidylcholine (18:2_0:0) levels FSC-A on granulocyte −0.116 0.663 0.404 0.817

Sphingomyelin (d40:2) levels CD8 on CD39+ CD8+ T cell 0.064 0.215 7.588 0.180

CD14-CD16-absolute count

LAS

−0.094 0.449 1.675 0.433

CD3 on naive CD8+ T cell −0.006 0.816 0.273 0.965

CD3 on CD45RA+ CD4+ T cell −0.005 0.855 0.414 0.937

CD40 on CD14+ CD16-monocyte −0.007 0.872 1.215 0.545

CD39 on granulocyte −0.014 0.948 1.912 0.384

SSC-A on granulocyte −0.018 0.659 2.121 0.548

CD62L-monocyte %monocyte

SVS

−0.036 0.837 2.192 0.334

BAFF-R on IgD+ CD38-naive B cell 0.008 0.696 0.456 0.928

BAFF-R on IgD+ CD38-unswitched memory B cell −0.010 0.813 1.424 0.491

BAFF-R on IgD+ CD38+ B cell 0.001 0.927 0.574 0.966

BAFF-R on IgD+ CD38dim B cell 0.008 0.675 0.405 0.939

BAFF-R on IgD-CD24-B cell −0.011 0.530 2.315 0.510

BAFF-R on IgD-CD27-B cell −0.011 0.533 2.258 0.521

BAFF-R on transitional B cell 0.009 0.674 0.417 0.937

BAFF-R on B cell 0.007 0.666 0.404 0.982

CD33 on granulocytic myeloid-derived suppressor 

cells
0.005 0.831 0.684 0.710

HLA DR on B cell 0.010 0.724 0.494 0.781

(Continued)
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well as FSC-A on granulocytes (βIVW: −0.406 to −0.121). 
Additionally, phosphatidylcholine (O-18:2_20:4) levels were 
positively correlated with CCR2 on granulocytes (βIVW: 0.300) 
(Figure  4 and Supplementary Table S10). Regarding SVS, 
phosphatidylinositol (18:1_18:2) levels exhibited positive 
correlations with CD4 on activated CD4 regulatory T cells and CD4 
on activated & secreting CD4 regulatory T cells, with βIVW values of 
0.408 and 0.383, respectively (Figure 5 and Supplementary Table S19). 
In the case of CS, sphingomyelin (d40:2) levels were inversely 
correlated with CD8 on CD39+ CD8+ T cells (βIVW: −0.209). 
Furthermore, phosphatidylcholine (O-16:1_20:4) levels, 
phosphatidylinositol (16:0_18:2) levels, and phosphatidylinositol 
(18:1_18:2) levels showed positive correlations with CD45RA+ 
CD28-CD8+ T cell absolute count and CD28 on CD39+ activated 
CD4 regulatory T cells (βIVW: 0.343 to 37.991) (Figure  6 and 

Supplementary Table S28). No pleiotropy bias and heterogeneity 
were found by MR-Egger intercept estimates and Cochran Q test 
(Table 1; Supplementary Tables S11, S12, S20, S21, S29, S30).

A summary of STMR estimates revealed six robust causal pathways 
linking lipid levels, immune cell phenotypes, and IS subtypes. These 
pathways exhibited consistent directions of total, direct, and indirect 
effects. Three pathways involving phosphatidylcholine (O-18:2_20:4), 
phosphatidylcholine (O-16:0_20:4), and sterol ester (27:1/22:6) levels 
were positively associated with LAS, mediated by CCR2 on 
granulocytes and CD11c on CD62L+ myeloid dendritic cells. 
Specifically, higher levels of phosphatidylcholine (O-18:2_20:4) and 
CCR2 on granulocytes correlated with increased LAS risk. Similarly, 
elevated levels of phosphatidylcholine (O-16:0_20:4) and sterol ester 
(27:1/22:6), along with lower levels of CD11c on CD62L+ myeloid 
dendritic cells, were associated with increased LAS risk.

TABLE 1 (Continued)

Trait.exposure Trait.outcome Directional pleiotropy Cochran’s Q test

Egger_intercept p-value Q p-value

CD28+ CD45RA+ CD8+ T cell absolute count

CS

−0.086 0.416 1.954 0.376

CD45RA+ CD28-CD8+ T cell absolute count 0.005 0.636 39.417 0.541

BAFF-R on IgD+ CD24-B cell −0.002 0.903 1.976 0.853

BAFF-R on IgD+ CD38-B cell −0.010 0.624 1.834 0.766

BAFF-R on IgD+ CD38-naive B cell −0.004 0.851 1.968 0.742

BAFF-R on IgD+ CD38+ B cell 0.012 0.422 4.228 0.517

BAFF-R on IgD+ CD38dim B cell −0.002 0.911 2.064 0.840

BAFF-R on naive-mature B cell −0.003 0.856 2.062 0.840

BAFF-R on transitional B cell −0.007 0.741 1.727 0.786

CD25 on naive-mature B cell −0.001 0.974 0.043 0.998

FIGURE 3

MR estimates for immune cell phenotypes and IS subtypes (LAS, SVS, and CS) were assessed by IVW. (A) The significant causal effect of immune cell 
phenotypes on LAS. (B) The significant causal effect of immune cell phenotypes on SVS. (C) The significant causal effect of immune cell phenotypes 
on CS. The dots colored in red indicate significant estimates by IVW (p  <  0.05).
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Conversely, other pathways involving phosphatidylcholine (18:2_0:0) 
and phosphatidylinositol (18:1_18:2) levels were inversely related to LAS 
and SVS, mediated by FSC-A on granulocytes, CD4 on activated CD4 

regulatory T cells and CD4 on activated & secreting CD4 regulatory T 
cells. Higher levels of phosphatidylcholine (18:2_0:0) and lower levels of 
FSC-A on granulocytes correlated with a decreased risk of LAS. Similarly, 

FIGURE 4

IVW results from MR analyses of lipids significantly causally associated with LAS, and immune cell phenotypes significantly causally associated with LAS. 
p-values for both IVW and WM analyses <0.05, marked as *.
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higher levels of phosphatidylinositol (18:1_18:2) with lower levels of CD4 
on activated CD4 regulatory T cells and CD4 on activated & secreting 
CD4 regulatory T cells were associated with a decreased risk of 
SVS. Detailed β values of the MR estimates are provided in Table 2.

In summary, CCR2 on granulocytes, CD11c on CD62L+ myeloid 
dendritic cells, and FSC-A on granulocytes are identified as potential 
mediators in the lipid-LAS causal pathways. Levels of CD4 on 
activated CD4 regulatory T cells and CD4 on activated & secreting 
CD4 regulatory T cells are identified as potential mediators in the 
lipid-SVS causal pathways (Figure 7).

4 Discussion

We conducted STMR analysis to explore the causal relationship 
between lipidomic profiles, immune cell phenotypes, and the risk of 
three distinct types of IS. Our investigation revealed that 
phosphatidylcholine (O-18:2_20:4), phosphatidylcholine (O-16:0_20:4), 
and sterol ester (27:1/22:6) levels are associated with an increased risk 
of LAS. These associations are mediated through the CCR2 on 
granulocytes and CD11c on CD62L+ myeloid dendritic cells. Moreover, 
we  identified phosphatidylcholine (18:2_0:0) levels as a protective 

FIGURE 5

IVW results from MR analyses of lipids significantly causally associated with SVS, and immune cell phenotypes significantly causally associated with SVS. 
p-values for both IVW and WM analyses <0.05, marked as *.
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factor against LAS, mediated by FSC-A on granulocytes. Additionally, 
phosphatidylinositol (18:1_18:2) levels emerged as a protective factor 
against SVS, mediated by CD4 on activated CD4 regulatory T cells and 
CD4 on activated & secreting CD4 regulatory T cells. Importantly, our 
analyses revealed no significant heterogeneity or evidence of horizontal 
pleiotropy in the data.

First, our findings establish a robust causal relationship between 
specific lipid species and LAS, SVS, and cardioembolic stroke (CS), 
with 35 out of 179 lipid species being genetically associated with 
LAS. Phosphatidylcholines and sterol esters were significant 
contributors to LAS risk. Similarly, 10 out of 179 lipid species were 
genetically associated with SVS, primarily phosphatidylinositol 

FIGURE 6

IVW results from MR analyses of lipids significantly causally associated with CS, and immune cell phenotypes significantly causally associated with CS. 
p-values for both IVW and WM analyses <0.05, marked as *.
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(18:1_18:2). This observation expands our understanding of lipid 
metabolism’s role in IS beyond traditional markers like total 
cholesterol, LDL-C, and HDL-C, highlighting specific lipid molecules’ 
crucial roles in IS development.

Phosphatidylcholines, phosphatidylinositol, and sterol esters 
containing different fatty acids have been less emphasized in IS risk 
assessment models. However, their significant association with LAS, 
SVS, and CS in our study points towards their potential role in IS 
pathophysiology. These lipids are critical components of cell 
membranes and lipoproteins, and alterations in their composition 
have been linked to changes in lipoprotein functionality and signaling 
(23–25). Phosphatidylcholine, phosphatidylinositol, and sterol esters 
are crucial components of membrane lipids, with many essential 
cellular processes depending heavily on their interactions. The 
membrane hypothesis suggests that dysfunction in membrane lipids 
may contribute to the development of diseases such as schizophrenia, 
Alzheimer’s disease, autoimmune disorders, chronic fatigue syndrome, 
and cancer. The concept that cell membranes contain transient 
microdomains with distinct lipid compositions has led to the 
development of selective lipid-targeted therapies, known as membrane 
lipid therapy (26, 27). Lipid analogs such as perifosine, plasmalogens, 
and edelfosine have been developed for the treatment of solid tumors, 
hematological malignancies, and neurodegenerative diseases (28). 
Recent evidence suggests that unconventional lipids, including 
phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, 
phosphatidylserine, and sphingomyelin, are crucial in IS development 
(29–32). Our genetic informatics-driven identification of specific lipid 

profiles associated with IS risk may provide more accurate predictions 
due to their effects on inflammation, endothelial function, and 
plaque stability.

For the first time, sterol ester and phosphatidylinositol levels were 
established as significant causal risk factors for LAS and SVS, 
respectively. The risk of LAS increased by approximately 37% for each 
unit change in sterol ester (27:1/22:6), while the risk of SVS decreased 
by approximately 15% for each unit change in phosphatidylinositol 
(18:1_18:2). These unbiased results strengthen the genetic evidence 
beyond observational studies, emphasizing the intricate role of lipids 
in cerebrovascular disease beyond traditional pathways. While 
elevated LDL-C and HDL-C levels are well-established risk factors 
for IS, our study suggests that sterol ester (27:1/22:6) and 
phosphatidylinositol (18:1_18:2)'s specific role in LAS and SVS 
pathogenesis may involve complex interactions with immune cell 
pathways. Subclinical inflammation contributes to endothelial 
dysfunction and the buildup of immune-active cells in the vessel 
walls. These immune cells and lipids are crucial in forming and 
growing atherosclerotic lesions, leading to IS (11, 33, 34).

Our investigation into immune cell phenotypes revealed that 
CCR2 on granulocytes, CD11c on CD62L+ myeloid dendritic cells, 
and FSC-A on granulocytes are genetically associated with 
LAS. Additionally, CD4 on activated CD4 regulatory T cells is 
genetically associated with SVS. Granulocytes, particularly 
neutrophils, are crucial in the pathophysiology of ischemic stroke, 
where they release neurotoxic agents such as reactive oxygen species 
(ROS) and matrix metalloproteinases (MMPs). These agents 

TABLE 2 Two-step Mendelian randomization analyses of the causal effects between lipidomic, immune cell phenotypes, and ischemic stroke of LAS, 
SVS, and CS.

Exposure Mediator Outcome Total effect 
(β0)

Direct effect 
(β0 − β1*β2)

Indirect 
effect (β1*β2)

Proportion 
mediated (%)

Phosphatidylcholine 

(18:2_0:0) levels
FSC-A on granulocyte LAS −0.381 −0.316 −0.065 17.05

Phosphatidylcholine (O-

18:2_20:4) levels
CCR2 on granulocyte LAS 0.265 0.193 0.072 27.06

Phosphatidylcholine (O-

16:0_20:4) levels

CD11c on CD62L+ myeloid 

Dendritic Cell
LAS 0.181 0.163 0.018 10.05

Sterol ester (27:1/22:6) 

levels

CD11c on CD62L+ myeloid 

Dendritic Cell
LAS 0.312 0.283 0.029 9.34

Phosphatidylinositol 

(18:1_18:2) levels

CD4 on activated CD4 regulatory 

T cell
SVS −0.156 −0.101 −0.055 35.05

Phosphatidylinositol 

(18:1_18:2) levels

CD4 on activated & secreting 

CD4 regulatory T cell
SVS −0.156 −0.101 −0.055 35.35

Phosphatidylcholine (O-

16:1_20:4) levels

CD45RA+ CD28-CD8+ T cell 

absolute count
CS −0.193 −0.195 0.002 NA

Phosphatidylinositol 

(16:0_18:2) levels

CD28 on CD39+ activated CD4 

regulatory T cell
CS −0.22 −0.255 0.035 NA

Phosphatidylinositol 

(18:1_18:2) levels

CD28 on CD39+ activated CD4 

regulatory T cell
CS −0.161 −0.201 0.040 NA

Sphingomyelin (d40:2) 

levels
CD8 on CD39+ CD8+ T cell CS 0.132 0.156 −0.024 NA

β, beta; β0 is the causal effect of exposure on the outcome; β1 is the causal effect of the mediator on the outcome; β2 is the causal effect of mediator on outcome; indirect effect (β1*β2) is the effect 
of exposure on outcome via corresponding mediator; proportion mediated is calculated as the “indirect effect/total effect”; LAS, large artery stroke; SVS, small vessel stroke; SC, cardioembolic 
stroke; NA, data not available.
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contribute to the disruption of the blood–brain barrier, thereby 
exacerbating tissue damage. Furthermore, neutrophils form 
neutrophil extracellular traps (NETs), which promote thrombosis 
and impede thrombolysis, complicating the ischemic injury (35). 
Dendritic cells are instrumental in antigen presentation within the 
ischemic brain. By presenting central nervous system (CNS) antigens 
to T cells, they amplify immune responses and drive inflammation. 
The interaction between dendritic cells and T cells, mediated by 
molecules such as MHC class II, is critical in the progression of post-
stroke inflammation (36). These findings enrich the current 
understanding of immune cells’ role in IS by identifying specific 
pathways that may contribute to IS pathogenesis.

Phosphatidylcholine mitigates the adverse effects of immune 
cell-mediated neuroinflammation on neuronal differentiation and 
plasticity. By modulating the inflammatory response, 
phosphatidylcholine enhances neuronal survival and proper 
differentiation, positioning itself as a potential therapeutic agent in 
cases of neuronal dysfunction arising from lipid-immune 
interactions. Additionally, bioactive lipids such as 
lysophosphatidylcholine (LPC) play a pivotal role in mediating the 
interaction between immune cells and apoptotic cells during 
efferocytosis. LPC acts as a “Find-Me” signal, guiding phagocytes 
to the site of inflammation, thereby facilitating the efficient 
clearance of apoptotic cells, which is crucial for resolving 

inflammation and promoting tissue repair. These findings reinforce 
the critical relationship between lipids, immune cells, and ischemic 
stroke, highlighting the potential therapeutic implications of 
targeting lipid-immune interactions in stroke treatment (9, 37–39). 
Based on the results of this study, it can be  speculated that the 
prognosis of LAS may be improved by reducing the plasma levels 
of Phosphatidylcholine (O-18:2_20:4), Phosphatidylcholine 
(O-16:0_20:4), and Sterol ester (27:1/22:6). Conversely, increasing 
the levels of Phosphatidylcholine (18:2_0:0) may enhance the 
prognosis of LAS. Additionally, elevating the levels of 
Phosphatidylinositol (18:1_18:2) could potentially improve the 
prognosis of SVS. Additionally, the prognosis of ischemic stroke 
may be improved by modulating the activity of immune cells, such 
as granulocytes and myeloid dendritic cells.

The mediation analysis provided intriguing insights into how lipid 
levels could influence LAS and SVS risk through immune cell 
processes. We identified potential pathways whereby specific lipids 
might modulate LAS and SVS risk by altering immune cell counts, such 
as granulocytes, myeloid dendritic cells, and T cells. The absence of 
evidence for directional horizontal pleiotropy in our results supports 
the potential causal relationship between identified lipids and immune 
cell phenotypes with LAS and SVS. By using genetic instrumental 
variables (IVs) to infer causality, we  circumvent the limitations of 
observational studies that can be confounded by lifestyle factors and 

FIGURE 7

CCR2 on granulocytes, CD11c on CD62L+ myeloid dendritic cells, FSC-A on granulocytes, CD4 on activated CD4 regulatory T cells, and CD4 on 
activated & secreting CD4 regulatory T cells as immune cell mediators in the lipid-LAS/SVS causal pathways. The arrows represent the direction of 
lipids or immune cell levels and the risk effect of IS subtypes. For example, when phosphatidylcholine (O-18:2_20:4) and CCR2 on granulocyte levels 
are elevated, LAS risk is increased.
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reverse causation. This methodological strength enhances the reliability 
of our findings and provides a stronger basis for developing 
intervention strategies based on genetic susceptibilities (19, 40).

While our study marks a significant step forward, further research 
is needed to elucidate the biological mechanisms through which these 
identified lipids and immune cells influence LAS and SVS risk. 
Experimental studies in cellular and animal models could provide 
deeper insights into the pathophysiological processes involved. Our 
findings identified immune cell phenotypes that may mediate the 
relationship between lipid levels and ischemic stroke subtypes. 
However, the mediation analysis was constrained by the available data, 
limiting our ability to capture all potential mediators or interactions. 
Future research should aim to include a broader spectrum of immune 
cell phenotypes. Additionally, clinical trials designed to modulate these 
specific lipid and immune cell pathways could validate the therapeutic 
potential of our findings. Including populations from diverse ethnic 
backgrounds could enhance the generalizability of our findings and 
uncover population-specific genetic risk factors for IS.

In conclusion, our study reveals an intricate landscape of genetic 
factors influencing LAS and SVS risk, involving specific lipid species and 
immune cells. These findings not only advance our understanding of IS 
pathogenesis but also point toward novel therapeutic targets that could 
transform IS management. As we move towards a more personalized 
medicine approach, integrating genetic risk factors with clinical strategies 
will be crucial in combating the global burden of ischemic stroke.

5 Conclusion

This study identifies significant genetic associations between 
specific lipids—namely phosphatidylcholine, sterol ester, and 
phosphatidylinositol—and the risk of LAS and SVS. Additionally, 
we identified key immune cell phenotypes that contribute to LAS and 
SVS risk and act as mediators in the lipid-LAS/SVS causal pathway. 
These findings enhance our understanding of the genetic factors 
influencing LAS and SVS pathophysiology and suggest potential 
targets for therapeutic intervention. This work advances the current 
knowledge by providing new insights into the complex interactions 
between lipid metabolism, immune response, and ischemic stroke 
risk, highlighting novel avenues for treatment strategies.
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