
Frontiers in Neurology 01 frontiersin.org

A systematic review of steroid use 
in peripheral nerve pathologies 
and treatment
Brandon Couch 1, Dan Hayward 1, Gracie Baum 2, 
Naveen Arunachalam Sakthiyendran 2, Justin Harder 2, 
Evan J. Hernandez 2 and Brendan MacKay 2*
1 Texas Tech University Health Sciences Center, Lubbock, TX, United States, 2 Department of 
Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States

Background: The use of corticosteroids has become a part of the standard of 
care in various pathologies but their use in peripheral nerve injury treatment is 
limited. Given corticosteroids’ anti-inflammatory properties and their regulatory 
role in neuronal protein production and myelination, corticosteroids could 
serve as an adjunct therapy for peripheral nerve injuries. This review aims 
to systematically investigate the current use of corticosteroid treatment in 
peripheral nerve pathologies.

Methods: The systematic search was performed on PubMed, MEDLINE, 
EMBASE, Scopus, Cochrane, and Web of Science using keywords such as 
“corticosteroid treatment,” “peripheral nerve damage,” “peripheral neuropathy,” 
and “complications.” The PRISMA guidelines were used to conduct the 
systematic review and all articles were reviewed by the corresponding author. 
After the initial search, individual study titles and abstracts were further screened 
and categorized using an inclusion and exclusion criteria followed by a final full-
text review.

Results: Out of the total 27,922 identified records, 203 studies were included 
based on the selection criteria. These studies focused on the use and efficacy 
of steroids across a spectrum of compression and non-compression peripheral 
neuropathies such as cubital tunnel syndrome and chronic inflammatory 
demyelinating polyradiculoneuropathy. Various studies noted the promising role 
of steroids in offering pain relief, nerve block, and nerve regeneration effects. 
Additionally, safety considerations and potential complications regarding steroid 
use in peripheral nerve injuries were analyzed.

Conclusion: While there is currently limited clinical utilization of corticosteroids 
in peripheral nerve pathologies, the anti-inflammatory and regenerative effects 
that steroids provide may be a beneficial tool in managing various peripheral 
neuropathies and their associated pain. Additional clinical trials and investigation 
into the mechanism of action could improve the reputation of steroid use as 
peripheral nerve injury treatment.
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1 Introduction

Corticosteroids, such as hydrocortisone, dexamethasone and 
prednisone, are among the most widely prescribed drug classes 
worldwide (1). They are used for numerous conditions including 
inflammatory disorders, allergic and autoimmune reactions, 
neurological disorders, prevention of graft rejection, and shock. 
Steroids are also considered the non-operative standard of care for 
carpal tunnel syndrome (CTS) (2–5), but there is a lack of agreement 
regarding the use of steroids in other peripheral nerve disorders.

Under normal physiological conditions, production of proteins 
within the neuron is partially regulated by corticosteroids. Within the 
cell body, steroid receptors are activated, dimerized, and eventually 
influence gene expression leading to protein production modulation. 
One such receptor is present within Schwann cells, and the binding of 
glucocorticoid steroids activates myelin associated protein synthesis, 
specifically glycoprotein Po and peripheral myelin protein 22 (6–12). 
Synthesis of these myelin proteins has also shown to have regenerative 
effects on damaged peripheral nerves. Therefore, steroids could be a 
beneficial means of tissue regeneration by enhanced Schwann cell 
myelin sheath protein synthesis (13, 14).

Following nerve injury, the primary barriers for axonal nerve 
regeneration are excessive inflammation and a lack of remyelination 
by Schwann cells (15, 16). Glucocorticoid steroid treatment can 
potentially address both aforementioned barriers. Nerve damage from 
either trauma, surgery, or neuropathies can result in neuropathic pain, 
which has been linked to pro-inflammatory states, mediated by 
bradykinin, interleukins 1,6, and 8, along with tumor necrosis factor 
(TNF) and C-reactive protein (17). Corticosteroids are effective at this 
level of pain attenuation due to their anti-inflammatory properties 
(18, 19). The mechanism of attenuation involves peripheral inhibition 
of phospholipase, which has a down-stream effect of reduced 
cyclooxygenase and lipoxygenase pain-aggravating products (20).

Despite evidence that steroids increase myelination and attenuate 
inflammation in damaged nerves, there is not a widely accepted 
treatment algorithm for use of steroids in various peripheral nerve 
conditions. This review illustrates a lack of cohesive literature 
examining the use of these therapeutic strategies in peripheral nerve 
pathologies and highlights that, in certain cases, steroids can serve as 
a valuable adjunct in multi-modal pain treatment.

2 Methods

2.1 Search terms and strategy

A PRISMA review of the following databases was conducted: 
PubMed, MEDLINE, EMBASE, Scopus, Cochrane, and Web of 
Science, using keywords: ((((((((((((((((((“peripheral nerve” or 
“peripheral neuropathy”) AND (“injury” or “regeneration” or 
“myelination”)) OR (steroids peripheral myelin protein)) OR (steroid 
nerve block)) OR ((“neuropathic pain” or “peripheral neuropathy” or 
“nerve pain” or “peripheral nervous system” or “peripheral nerve 
damage”) AND (“corticosteroid” or “steroid”))) OR ((“corticosteroid 
treatment” or “steroid treatment” or “dexamethasone” or 
“methylprednisolone” or “prednisolone”) AND (“peripheral nerve”) 
AND (“safety” or “adverse effects” or “side effects” or “complications”))) 
OR ((“corticosteroid treatment” or “steroid treatment” or 

“dexamethasone” or “methylprednisolone” or “prednisolone”) AND 
“peripheral nerve”)) OR ((“median nerve entrapment” or “carpal 
tunnel syndrome” or “pronator syndrome”) AND (“treatment” or 
“steroid injections” or “oral steroid” or “dexamethasone” or 
“methylprednisolone” or “prednisolone”))) OR ((“ulnar neuropathy” 
or “ulnar neuritis” or “ulnar nerve entrapment” or “cubital tunnel”) 
AND (“treatment” or “steroid”))) OR ((“brachial neuritis” or 
“parsonage-turner syndrome”) AND (“treatment” or “steroid”))) OR 
((“ulnar neuropathy” or “ulnar neuritis” or “ulnar nerve entrapment” 
or “cubital tunnel”) AND (“treatment” or “steroid”))) OR ((“nerve 
compression syndrome” or “nerve entrapment”) AND (“treatment” or 
“steroid”))) OR ((“radial neuropathy” or “radial nerve entrapment” or 
“radial tunnel”) AND (“treatment” or “steroid”))) OR ((“meralgia 
paresthetica” or “femoral neuropathy”) AND (“treatment” or 
“steroid”))) OR (“peripheral diabetic neuropathy” AND (“treatment” 
or “steroid”))) OR (“chemotherapy-induced peripheral neuropathy” 
AND (“treatment” or “steroid”))) OR (“alcoholic peripheral 
neuropathy” AND (“treatment” or “steroid”))) OR (“chronic 
inflammatory demyelinating polyradiculoneuropathy” AND 
(“treatment” or “steroid”))) OR (“leprous neuropathy” AND 
(“treatment” or “steroid”)).

Two reviewers (B.C., D.H.) reviewed the studies independently 
and any inconsistencies between reviewers were resolved by the 
corresponding author (B.M.). The articles were screened for inclusion 
by title and abstract, then by full text to assess for eligibility. Our 
search was limited to English language articles (or those with available 
English translations) published from January 1975 through June of 
2022. The literature search focused particularly on evidence-based 
data regarding the mechanism of action of corticosteroids on healthy 
and pathologic nerves, and the clinical utility of steroids for treatment 
of various peripheral nerve conditions.

2.2 Eligibility criteria

The inclusion criteria for articles screened for eligibility were: (1) 
all studies involved corticosteroid use as a treatment modality; (2) 
included patients that were treated for peripheral nerve pathologies; 
and (3) English language articles only. Studies were excluded if they 
met the following criteria: (1) no clinical or translational component; 
and (2) were not available for full-text viewing.

2.3 Data extraction and main outcomes

Following screening and selection of articles, the data was 
extracted using a standardized format (Microsoft Office Excel 2024). 
After all articles were selected, it was collectively decided by the 
authors to collate the data into different subsections including: oral 
steroids as pain relief, nerve block, and nerve regeneration, and 
corticosteroid use in various compression and non-compression 
neuropathies and associated side effects.

3 Results

Figure 1 exhibits the PRISMA flow diagram representing article 
retrieval and screening. There were 27,922 records identified, of which 
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23,734 records underwent further screening. A total of 6,473 records 
were identified after excluding duplicate articles and these records 
underwent full-text review. After screening, 203 articles met inclusion 
criteria for our synthesis of the literature in this systematic review 
(Figure 1). Included papers were then divided into different categories 
of steroid use and peripheral neuropathies and the content of these 
manuscript texts were analyzed.

4 Discussion

4.1 Oral steroids as pain relief adjuvant

Tissue injury triggers the release of proinflammatory cytokines 
and prostaglandins (20). Cytokines and prostaglandins elicit a pain 
response through inflammatory and neuropathic mechanisms. 
Topical TNF-alpha application can induce spontaneous depolarization 
of nociceptive neurons, and prostaglandins are linked to enhanced 
pain response after neuronal production (21).

The ubiquitous expression of steroid hormone receptors in the 
PNS suggest their role is pivotal in pain perception via neuronal 
maturation, differentiation, and plasticity (22). Accordingly, 
glucocorticoids inhibit phospholipase-A2 metabolism of membrane 
phospholipids to arachidonic acid therefore decreasing production of 
inflammatory cytokines (23). From this primary mechanism of action, 

a reduction of circulating TNF-alpha and prostaglandins may 
correspondingly diminish spontaneous discharge from damaged 
nerves therefore blunting the nociception pathway. This effect has also 
been demonstrated in pre-clinical models. Hargreaves et al. found that 
dexamethasone administration (125 mg dosage preoperatively) in rats 
decreased tissue levels of bradykinin, a proinflammatory peptide (24). 
Takeda et al. reduced mechanical allodynia and thermal hyperalgesia 
in mice through methylprednisolone administration (dosage at 4 mg/
(kg*day) infusion systemically, or 80 micrograms/(kg*day) 
intrathecally) following spinal nerve ligation (25). The reduction in 
cytokine-induced nerve firing could therefore be responsible for the 
reduction in pain.

The effect of perioperative glucocorticoid administration for 
postoperative pain scores has been well studied with consistent results. 
Preoperative methylprednisolone decreased postoperative 
inflammatory cytokines, IL-6, TNF-alpha, and E selectin, levels after 
cardiopulmonary bypass surgery (26). A systematic review of 
perioperative dexamethasone administration lowered pain scores 
recorded 2 hours after surgery with minimal adverse side effects (27). 
This decrease in perceived postoperative pain is further illuminated 
by the quantity of pain medications required to achieve acceptable 
postoperative pain levels. Traditionally, postoperative pain is 
controlled with opioids; however, opioids have well known addictive 
and harmful properties. Patients receiving glucocorticoid treatment 
require fewer oral opiates following surgery (20, 27, 28). A 2012 

FIGURE 1

PRISMA flowchart.
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systematic review and meta-analysis reported that patient treated with 
dexamethasone used less opioids at 2 h and 24 h after surgery. The nine 
studies (978 patients) recording opioid use 2 h post-operatively 
demonstrated a 13.0% decrease in pooled opioid consumption 
compared with control, and the 14 studies (2,157 patients) recording 
use at 24 h demonstrated a 10.3% reduction (27).

4.2 Nerve block

Steroid use is also efficacious for palliation of post-operative pain 
when combined with an analgesic block for suppression of nociceptive 
pathways. Multiple systematic reviews examining randomized 
controlled trials have concluded that duration of analgesia in 
peripheral nerve blocks can be significantly increased by the addition 
of perineural dexamethasone compared to standard treatment (29, 30) 
with some meta-analyses reporting an additional 5 h or more of 
analgesia time (31, 32). It is additionally possible that the steroid dose 
could influence analgesia length. In one study, ultrasound-guided 
perineural dexamethasone injection of 1, 2, 3, and 4 mg’s alongside 
ropivacaine for brachial plexus nerve block extended analgesia time 
by 835, 904, 965, and 1,023 min, respectively (33). However, 
dexamethasone may have a ceiling dose for prolonged pain control. 
Two systematic reviews concluded that there was no evidence to 
support dose quantities above 4 mg of dexamethasone, specifically 
finding 4 mg to be just as effective as 8 mg doses (34, 35).

Additionally, dexamethasone has been shown to increase duration 
of analgesia compared to dexmedetomidine, an alpha-2 adrenergic 
receptor agonist (36, 37). Although these reviews have exclusively 
examined dexamethasone, methylprednisolone has also shown 
promising results as a nerve block adjuvant. Eker et al. treated patients 
with postinjury neuropathic pain symptoms by injecting 0.5% 
lidocaine solutions with 80 mg depo-methylprednisolone via 
peripheral nerve blocks at the proximal site of the injury, resulting in 
improved pain score outcomes at 3 months compared to injecting 0.55 
lidocaine alone. These results were attributed to the reduction of 
proinflammatory cytokines and prevention of spontaneous 
nociceptive neuronal firing (38).

These studies suggest that corticosteroids have analgesic effects 
and can be effective therapy for neuropathic pain due to nerve injury 
by decreasing the production of local inflammatory mediators and 
ectopic neuronal discharge at the nerve injury site. Thus, patients who 
develop uncomfortable dysesthesia post-operatively may be  good 
candidates for steroid treatment, as the benefits of dysesthesia 
reduction often outweigh the risks associated with corticosteroid use.

4.3 Nerve regeneration

The use of local steroid injection for peripheral nerve regeneration 
therapy in humans is limited to small distances, and molecular nerve 
regeneration therapy is still primitive. Specifically, human axonal 
regeneration occurs at a rate of about 1–2 mm per day, and the 
majority of steroid nerve regeneration research exists in animal studies 
(39). Current literature shows no established adjuvants that accelerate 
peripheral nerve regeneration (40).

Decreased muscle innervation from peripheral nerve injuries may 
result in atrophy and loss of function. This element of peripheral nerve 

injury pathophysiology could potentially be  addressed by steroid 
treatment. Two rat-model studies recorded hypertrophy of previously 
atrophied muscle from sciatic nerve injury after treatment with 
steroids (dosed at 1–2 mg/Kg for 1–28 days postoperatively) (41, 42). 
These effects were attributed to nerve regeneration with resulting 
increased innervation.

Similar studies found that following crush injury of the sciatic 
nerve, function in the rats’ hindlimbs were improved after treatment 
dexamethasone, methylprednisolone, or betamethasone. The 
functional improvement was associated with more pronounced 
remyelination, decreased inflammatory cell infiltrate in surrounding 
tissues (43–46), and Schwann cell proliferation (47–49). The health of 
the myelin sheath corresponded with the strength of the muscle 
innervation which directly resulted in increased functionality and size 
of the previously damaged myotomes. Additionally, facial and median 
nerve function studies found significantly improved myelin sheath 
thickening and functional recovery after glucocorticoid treatment (at 
a 5 mg/mL dosage) compared to controls (50, 51). While most studies 
utilized local steroid injection, topical dexamethasone (dosage of 
0.1 mg/kg) has also shown nerve health promotion in rat models after 
crush injuries (52–54).

The rat model’s greatest limitation is the short length of the sciatic 
nerve, making large-gap regeneration difficult to assess. Nevertheless, 
these studies still provide a foundation for additional research. The 
first case report for successful post-traumatic use of corticosteroids in 
humans was published in 2020, in which three local peri-neural 
injections of 40 mg methylprednisolone returned the patient to a 
normal ulnar nerve function (55). Following 8 years of complete 
sensory and motor loss of the right ulnar nerve, this patient regained 
function in both categories following local injection (55). This case 
report demonstrates promising recovery of nerve function following 
non-surgical, local steroid injection-based treatment. Additionally, a 
retrospective study investigating the use of “pulsed” intravenous 
methylprednisolone treatment (at a dose of 1 g/day) on neuritis 
indicated that this form of non-oral steroid treatment was also an 
effective modality in preserving nerve function (56).

4.4 Compression neuropathies

Neuritis of the upper extremity commonly manifests as CTS along 
the median nerve, and cubital tunnel syndrome (CuTS) along the 
ulnar nerve. Although CTS and CuTS are the most prevalent 
compression neuropathies, any nerve may be compressed at any point 
along its course. Other common entrapments include the ulnar nerve 
in Guyon canal syndrome, pronator teres can entrapment of the 
median nerve or anterior interosseous nerve by the pronator teres 
muscle in the proximal forearm (57–59), posterior interosseous nerve 
compression by the supinator muscle, and the superficial radial nerve 
compression in Wartenberg’s syndrome (59, 60).

Compression syndromes are often the result of external 
mechanical pressure (e.g., medical equipment), anatomical factors 
(e.g., cysts), or local inflammatory processes (e.g., arthritis) (61). 
Upper extremity entrapment neuropathies have traditionally been 
treated by surgical means; however, nonsurgical treatment modalities 
including ultrasound guided steroid injection have revealed a possible 
alternative for standard of care (60, 62, 63). While there have been 
prospective trials revealing propitious results for conservative steroid 

https://doi.org/10.3389/fneur.2024.1434429
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Couch et al. 10.3389/fneur.2024.1434429

Frontiers in Neurology 05 frontiersin.org

treatment (6 mg/mL of celestone) for nerve entrapment, there are still 
a lack of prospective randomized controlled studies to evaluate these 
claims (64–66).

4.4.1 Carpal tunnel syndrome
The use of injectable and oral steroids for treatment of carpal 

tunnel syndrome (CTS) has been extensively researched with 
primarily favorable results. The articles included in this review 
observed the effects of treatment in a total of 3,641 patients. Pain 
mitigation effects of local glucocorticoid steroid injections (average 
dose of ~40 mg) for treatment of CTS are most notable in the short-
term (67–69). Marshall et al. found improved clinical symptoms of 
CTS following steroid injection at 1 month follow-up visits; this effect 
lacked statistical significance beyond 1 month (70). Other studies 
found similar results in short-term intervals but could not differentiate 
from the control within a year of the injection (71, 72). Despite the 
limited, short-term alleviatory effects of steroid injections for CTS, 
Atroshi et  al. noted that methylprednisolone injections (dosed at 
80 mg or 40 mg), reduced the rate of surgery 1 year following treatment 
(73). However, surgery becomes necessary in long-term management 
of most patients (74).

The effectiveness of steroid injections for treatment of CTS has 
been quantitatively illustrated by sensory and motor nerve conduction 
studies (NCS). Local steroid injections improved motor and sensory 
NCS values in over 60% of CTS cases examined (75, 76). The positive 
NCS effects are present in both the short-term and long-term, over 
6 months (77, 78). This favorable conduction effect was expounded by 
Cartwright et al. using ultrasound to reveal increased cross-sectional 
area and vascularity of the median nerve after local steroid injection 
which directly correlated with CTS symptom scores. In addition, 
Stepic et al. found that intraoperative local steroid injection improved 
NCS values as compared to surgical release alone (79). However, 
Mottaghi et al. found no significant difference between intraoperative 
steroid injection and carpal tunnel release alone (80).

Oral steroids have also been utilized for alleviation of CTS 
symptoms. Most studies have found similar results using oral steroids 
as they have found with local steroids: improved symptoms in the 
short-term, but significant differences wane over time (81–84). At 
two-week follow-up visits, both oral and local steroids provided 
similar relief; however, by one-month, only local steroid injections 
exhibited a positive significant difference in alleviation of CTS 
symptoms (70, 85, 86).

4.4.2 Cubital tunnel syndrome
CuTS is the second most common upper extremity neuropathy 

(87), and surgical treatment is currently the treatment of choice (88, 
89). Filippi et al. concluded that simple decompression of the ulnar 
nerve is successful treatment for CuTS as only three of forty surgically 
treated patients lacked improvement following the procedure (90). 
However, surgery always has associated risks and ulnar nerve 
transposition can decrease blood flow and possibly kink the nerve, 
requiring additional surgical correction (91). Due to this, nonsurgical 
methods for treatment of CuTS are being pursued. Common 
approaches include activity modification, splinting, steroid injection, 
and physical therapy (92–94). However, systematic reviews of 
conservative cubital tunnel management have shown limited 
evidence-based literature to guide conservative treatment with most 
studies lacking controls and long-term patient follow-ups (95, 96).

Some research has found potential improved clinical outcomes by 
conservative steroid treatment; however, these findings are not 
consistent. A study of 10 patients examined neuronal regeneration 
effects of ultrasound-guided triamcinolone injection (dosed at 40 mg) 
for CuTS and found significantly improved conduction velocity and 
cross-sectional area (97). These results are further supported by a case 
series of 63 patients which found ultrasound guided corticosteroid 
injections (methylprednisolone acetate dosed at 40 mg) to provide 
transient relief (98). Stutz et al. reported an improvement in disability, 
as indicated by decreased DASH scores in the nonsurgical treatment 
group; however, the improvement was less than that seen in the 
surgically treated group (99). Two small studies found that steroid 
injection for ulnar neuropathy resolved symptoms in 4 of 7 and 5 of 
8; however, they acknowledged the limitations of their studies’ small 
sample sizes and suggested the need for further examination (94, 100). 
In a systematic review, Kooner et al. found limited benefit of steroid 
injection for cubital tunnel syndrome compared to the other 
modalities (95). Specifically, one study of 55 patients found no 
difference in outcome between steroid treatment and placebo while 
another small case series with 10 patients, found no difference 
between steroid (1 mL of methylprednisolone acetate dosed at 40 mg) 
and splinting (101, 102). These results mirrored another study of 36 
patients where comparison of corticosteroid injection to dextrose 
injection yielded no significant difference (103). Specifically regarding 
Guyon canal compression, Earp et  al. concluded that nonsurgical 
treatment is successful in entrapment resulting from excessive, 
repetitive use (104). While multiple studies have reported improved 
outcome with steroid treatment in CuTS (94, 97–100), other studies 
have refuted these claims (95, 101, 102). Given the paucity and 
heterogeneity of published data, more robust future research should 
be conducted and may show different results.

4.4.3 Radial nerve compression syndromes
Similar to CuTS, there is a general lack of controlled studies 

comparing steroid use versus surgery for treatment of radial nerve 
compression syndromes. The radial nerve may become compressed 
between the brachioradialis and extensor carpi radialis longus 
proximal to the wrist, at the radial tunnel distal to the elbow, and after 
mid-humerus fractures (104). Surgical release of the supinator muscle 
for radial tunnel syndrome is commonly successful and indicated 
when conservative treatment fails (105). Despite the success of surgical 
decompression, conservative treatment should be attempted first due 
to risks accompanying surgery and loss of function due to muscle 
attachment release. Auspiciously, nonsurgical corticosteroid therapy 
has been successful in clinical studies for radial tunnel syndrome. A 
study of 40 patients reported a significant decrease in DASH scores of 
patients treated with a single betamethasone injection at the origin of 
the posterior interosseous nerve, while another study of 54 patients 
reported only 2% of patients retained pain after infiltration of a local 
anesthetic and betamethasone solution (dosed at 0.75 mL of 6 mg/mL 
Celestone) (64, 65). Additionally, symptom relief by corticosteroid 
injection is a determinant of the often-confounding clinical diagnosis 
of radial tunnel syndrome (106).

4.4.4 Pronator syndrome and anterior interosseus 
nerve syndrome

Median nerve compression, although most commonly 
occurring as CTS, can arise at the proximal forearm due to 
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pronator entrapment as pronator syndrome (PS) or anterior 
interosseous nerve syndrome (AIN). PS presents similarly to CTS 
and is marked by vague pain, paresthesia, and limited motor 
defects; contrariwise, AIN is exclusively a motor palsy (107–109). 
Both surgical and nonsurgical treatment options are used in these 
syndromes, but, unlike CuTS, surgical intervention is only 
indicated when nonsurgical treatment fails (108–110). This 
treatment algorithm is largely due to the success of noninvasive 
treatment. Conservative treatment includes rest, activity 
modification, splinting, physical therapy, and corticosteroid 
injections (110). Although a multi-model treatment regimen 
should be  utilized, corticosteroid therapy has been shown to 
be  beneficial on its own. Delzell et  al. treated 14 patients with 
ultrasound-guided perineural hydrodissection and corticosteroid 
injection (0.5 mL of dexamethosone sodium phosphate dosed at 
4 mg/mL) and found significant relief in 70% of those treated (111). 
Corticosteroid injection is a prominent component of treatment 
for the median nerve compression syndromes (CTS, PS, and AIN) 
and has an increasing presence in the alleviation of other upper 
extremity peripheral neuropathies.

4.4.5 Meralgia paresthetica
Meralgia paresthetica, a common lower extremity compression 

syndrome, is a mononeuropathy of the lateral femoral cutaneous 
nerve. Although this syndrome can be  caused by a multitude of 
factors, it has been linked to pregnancy especially when women 
maintain a prolonged lithotomy position (112). Like many other 
compression syndromes, meralgia paresthetica results in pain and 
paresthesia. Analysis of nonsurgical treatment using corticosteroids 
shows primarily positive results. Two studies examined the effects of 
corticosteroid perineural injection in 20 patient sample sizes each. 
One study that used 1 mL of methylprednisolone acetate (40 mg/mL) 
reported decreased symptoms in 80% of patients by the first week, and 
in 100% by 2 months following methylprednisolone injection. The 
second study found complete and partial resolution of symptoms in 
75% and the remaining 25% of patients, respectively, with 
triamcinolone injection (1 mL dosed at 10 mg/mL) (113, 114). 
Kloosterziel et al. treated 10 patients with 1 mL of methylprednisolone-
lidocaine solution injection and 10 with saline as a placebo and found 
a significant reduction in pain in the placebo group but not the treated 
group (115). These results were perplexing and likely attributed to the 
small sample size. A larger study of 54 patients compared ultrasound-
guided betamethasone injection to a TENS group and mock TENS 
control and observed a statistically significant decrease in pain in the 
corticosteroid treated group as compared to the others (116). Even 
though corticosteroid injections provide symptom improvement in a 
majority of patients, surgical decompression remains necessary as a 
final option when others fail. Surgical intervention appears highly 
successful with two studies reporting long-term relief of symptoms in 
100% of patients who corticosteroid treatment was unresponsive and 
surgical management was required (117, 118). Another report found 
improved symptoms in 93% of surgical cases and noted that obese 
patients were 6 times more likely to have persistent symptoms after 
surgery (119). The current data shows a compelling argument for 
ultrasound-guided perineural corticosteroid injection. Nonetheless, 
the lack of large sample size, prospective, controlled studies examining 
treatment options for meralgia paresthetica makes deciding upon a 
comprehensive regimen difficult.

4.5 Non-compression neuropathies

Neuropathy is possible without compression from an outside 
source. Non-compression neuropathies are often complex pathologies, 
rising from metabolic, immune-mediated, and idiopathic sources. 
Metabolic and immune-mediated neuropathy management involves 
treatment of the underlying pathology, as well as the nerve itself. 
Peripheral steroid injection data is scarce for these pathologies, 
creating opportunity for future investigation.

4.5.1 Metabolic neuropathies
Diabetic peripheral neuropathy is a common sequela of 

diabetes mellitus, occurring in 25% of diabetic patients (120). This 
condition is likely caused by microvasculitis and can present as 
burning pain, paresthesia, and weakness (121, 122). Although 
pregabalin and duloxetine are the only drugs approved by the US 
FDA, prior research has indicated that corticosteroid treatment 
may be effective for treatment of diabetic peripheral neuropathy 
(121, 122). Pulsed oral prednisolone and intravenous 
methylprednisolone treatment have resulted in improved symptoms 
when administered near the time of symptom onset (123, 124). In 
the retrospective study, nine patients with diabetic amyotrophy 
were treated with pulsed oral or intravenous methylprednisolone. 
It was found that treatment started within 2 months of symptom 
onset were associated with rapid improvement in pain, and 
treatment started within 4 weeks of symptom onset resulted in rapid 
improvement of both strength and pain. Blood glucose increased 
on treatment days but no patient necessitated lasting changes in 
diabetic treatment as the result of this therapy and no other serious 
adverse effects were seen (124). Rat-models have shown 
advantageous effects of steroids within the nerves of diabetic rats, 
but there have not been any randomized controlled studies 
examining these effects in diabetic humans (125, 126). Additional 
studies may identify generalizable treatment regimens of oral and 
intravenous steroids for diabetic neuropathy, as well as explore local 
injection as a route of administration.

Alcoholic neuropathy, the result of chronic excessive alcohol 
consumption, is another complicated neuropathy with many proposed 
etiologies and a nonexistent evidence-based therapy. This condition 
can be severe for patients with the primary symptom being pain (127). 
Alcohol consumption limitation and cessation are the mainstays of 
prophylaxis, and diet supplementation (primarily B vitamins) has 
been attempted with primarily futile results (128). Because there is no 
clear therapy of choice, presumed contributing factors have been 
investigated and may provide insight for future treatment. In rat 
models, chronic ethanol consumption decreases nociceptive 
thresholds corresponding with increased proliferation and activation 
of microglia (129). Additionally, they have high levels of protein 
kinase C (PKC) in dorsal root ganglia, and PKC inhibitors lesson 
hyperalgesia in these models (130). Therefore, PKC inhibitors and 
treatment aimed at reducing microglia activity could prove useful in 
pain attenuation. In humans, excessive alcohol consumption potently 
activates the hypothalamic–pituitary–adrenal (HPA) axis leading to a 
sustained sympathetic response which is associated with neuropathic 
states (131). Prolonged prednisolone administration is known to cause 
HPA axis suppression (132). Because of this characteristic of alcoholic 
neuropathy, it is possible that steroid treatment could provide 
therapeutic effects.
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4.5.2 Immune-mediated neuropathies
Inflammatory demyelinating neuropathies, including chronic 

inflammatory demyelinating polyradiculoneuropathy (CIDP), 
Guillain-Barré syndrome (GBS), and multifocal motor neuropathy 
(MMN), are a rare but severe set of nerve disorders. Common 
symptoms include weakness, sensory loss, inability to walk, and 
difficulty with activities of daily living (133, 134). Specifically, CIDP is 
a progressive, relapsing disease characterized by symmetrical 
weakness progressing over at least 2 months (133, 135). The etiology 
varies slightly between the disorders but retains a common theme of 
autoantibodies towards the nodes of Ranvier or elements of myelin 
within peripheral nerves (136). CIDP is the most common of the 
immune neuropathies and involves a difficult diagnosis based on 
clinical characteristics and electrophysiological evidence of 
demyelination (137). Based on the autoimmune nature of these 
illnesses, immunosuppression is the general method of treatment. 
CIDP has been successfully treated with corticosteroids, intravenous 
Immunoglobin (IVIg), and plasmapheresis (133, 135, 136, 138–141). 
Although steroids are effective in treatment of CIDP, they have not 
shown benefit for GBS or MMN, and IVIg is therefore indicated (142–
144). In spite of IVIg’s perceived versatility in the treatment of 
inflammatory demyelinating neuropathies, they are significantly more 
expensive than alternative treatments and a reason for exploration of 
corticosteroid utility as treatment (139).

The effect of steroid treatment for CIDP has been examined by 
non-controlled studies with favorable results. Two trials, one of ten 
patients and the other of 125 patients, treated patients with pulsed 
corticosteroids (dosed at 500 mg once a week and adjusted every 
3 months) found most patients responded well, with roughly 60% of 
patients achieving long-term remission (145, 146). These results were 
similar to two other studies which concluded that long-term remission 
of CIDP could be achieved by pulsed dexamethasone or prednisolone 
therapy (dosed at 60 mg/day for 5 weeks and then tapering to zero) 
(147), and that pulsed-oral corticosteroid therapy is safe and effective 
for long-term treatment of CIDP in children (148).

Two randomized, controlled trials, one of 40 and the other of 35 
patients, reported significant improvement in the corticosteroid-
treated group (1 mg/kg) over the control group (149, 150). Yet, steroids 
appear to be highly effective in some patients while ineffective in 
others. Determining which patient characteristics are most likely to 
respond to corticosteroids could increase success rates in the chosen 
cohorts. Two studies notably observed a significant association 
between a favorable response to corticosteroid treatment (0.5–
0.75 mg/kg/day of prednisone) with shorter disease duration prior to 
treatment onset, lesser axonal damage or impaired nerve conduction 
velocity, being female, and being of a younger age (140, 151). These 
disease-related characteristics should be considered when choosing a 
therapy regimen.

Although steroids have documented efficacy in treatment of 
CIDP, it is important to consider if it is truly the best treatment. Many 
studies have attempted to clarify a treatment of choice for CIDP by 
comparing the outcomes of patients treated with IVIg and 
corticosteroids. However, results have done little to differentiate 
between the two and often complicate the decision. One study 
reported favorably for steroids stating that steroid response rate was 
significantly higher than IVIg in patients with normal or moderately 
enlarged cross sectional area of the nerve; nevertheless, this difference 
was not found in patients with enlarged cross-sectional area (152). Of 

note, multiple studies have found no significant difference in patient 
outcomes or short-term efficacy between the two therapies (133, 153–
155), yet other studies have suggested that IVIg is more effective in the 
short-term while corticosteroids are more effective in the long-term 
for remission (138, 139). Further confounding the decision, a study of 
45 patients found that more patients had to stop intravenous 
methylprednisolone than IVIg due to adverse effects while more 
patients on IVIg experienced worsening symptoms after therapy 
discontinuation than those treated with methylprednisolone (which 
was dosed at 0.5 g in 250 mL sodium chloride solution for 4 
consecutive days) (156). A combination therapy of IVIg and 
corticosteroids may possibly deliver the preferable results of each: 
short-term efficacy from IVIg and long-term remission from 
corticosteroids. Adrichem et al. explored this hypothesis by treating 
20 CIDP patients with IVIg and intravenous methylprednisolone 
(with a cumulative dose of 7 mg) and found the treatment to be well 
tolerated yielding remission in nearly 60% of patients (157). The 
results of this study are suggestive of a potential treatment of choice 
for CIDP, but more extensive investigation is needed.

Ultimately, the choice of treatment should be made with careful 
analysis of risk to benefit. The complexity and progressive nature of 
CIDP combined with sustained immunosuppressive therapeutics 
makes prognosis difficult, and the detrimental effects of each therapy 
cumulate to increase long-term morbidity (158). Additionally, 
multiple studies have reported issues with long-term steroid use in 
CIDP leading to discontinuation of the therapy, notably steroid-
induced osteoporosis in the elderly population (145, 146, 156, 159).

Leprous neuropathy, as a result of Mycobacterium leprae infection, 
is commonly treated with steroids. However, systematic reviews have 
questioned the efficacy of this treatment, finding inadequate evidence 
to advocate for steroid therapy (101, 160). Two placebo-controlled 
trials, one of 92 patients and the other of 75 patients, contrasted 
prednisolone (which was dosed at 40 mg/day, tapred by 5 mg every 
2 weeks for a total of 16 weeks) to placebo treatment and reported that 
there was no significant difference in sensory improvement between 
the two groups (161, 162). Despite the lack of favorable placebo-
controlled evidence, assessing outcomes of short-term and long-term 
steroid administration for leprous neuropathy has shown benefit for 
longer treatment. Sundar et al. found patients receiving short-term, 
12 weeks, steroids were more likely to require additional steroid 
treatment for alleviation of symptoms than the group receiving long-
term, 20 weeks, steroid treatment (163). This positive effect of 
prolonged treatment was demonstrated in a 2008 case report of a 
leprosy patient with complete and partial conduction loss of the ulnar 
and median nerve, respectively. Monthly dexamethasone injection for 
6 months resulted in significantly increased motor conduction velocity 
and sensory function of the ulnar and median nerves (164). The 
benefit to prolonged steroid use, however, does seem to have a limit. 
Wagenaar et al. found no difference in outcome between a 20-week 
course and 32-week course of prednisolone administration (dosed at 
either 45 or 60 mg/day based on the patient’s body weight) (165). 
Steroid use, although favorable for many neuropathies, shows limited 
evidence supporting its therapeutic effects for treatment of 
leprous neuropathy.

4.5.3 Cancer treatment related neuropathies
Chemotherapy-induced peripheral neuropathy (CIPN) and post-

radiation neuritis are common in cancer pain cases, accounting for 
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approximately one-third of cases (166). The pain mechanism in this 
setting is poorly understood and often complex, involving 
neuropathic, inflammatory, and possible ischemic components (167, 
168). Furthermore, CIPN may vary from patient to patient, tumor to 
tumor, and site to site (169). CIPN occurs in 30–40% of patients 
treated with neurotoxic chemotherapy agents, including Cisplatin, 
taxanes, and Bortezomib (170). CIPN may also increase long-term 
morbidity in cancer survivors (170, 171). Despite the prevalence of 
CIPN in cancer patients, there is no conclusive treatment plan for 
either prophylaxis or symptom management. Gabapentin, 
Lamotrigine, Amitriptyline and NSAIDs have proven ineffective 
leaving many patients with opioids as the only option for pain 
mitigation (172). At the time of this review, there is a paucity of peer-
reviewed literature examining the efficacy of local steroid treatment 
for CIPN. Modest success to reduce neuritis pain has been achieved 
using systemic lidocaine administration (pregabalin dosed at 450 mg/
day) following treatment for metastatic cancer of the ilium (173).

4.5.4 Idiopathic neuropathies
Brachial neuritis, also known as Parsonage-Turner syndrome, is a 

rare disease of idiopathic origin presenting as acute proximal upper 
extremity pain followed by weakness (174). Less commonly, there is a 
hereditary form, hereditary neuralgic amyotrophy, caused by an 
autosomal dominant mutation in the septin 9 gene of chromosome 17 
responsible for cytoskeleton formation (175). The ill-understood 
etiology of this disease is likely the cause of insufficient research 
examining treatment options. Nevertheless, corticosteroids have been 
indicated as a possible treatment modality. A review from 1960 to 
2009 identified no randomized controlled trials of treatment for 
brachial neuritis but did recommend early initiation oral prednisone 
therapy (within the first month after symptom presentation) to 
increase recovery speed (176). A subsequent study in 2016 
recommended a similar treatment of an immediate “short trial of 
high-dose oral corticosteroids” (prednisolone) in agonized patients as 
part of a multimodal recovery plan (177). A 2018 case study of a 
6-month-old child suffering from brachial neuritis following an upper 
respiratory tract infection reported a full recovery by 16 months after 
treatment with prednisolone and physical therapy (178). The studies 
above suggest that corticosteroid therapy may be effective for brachial 
neuritis when early treatment is provided. Although steroids have 
been used to treat brachial neuritis, there still lacks controlled studies 
to assess the efficacy of this therapy (176, 177).

4.6 Safety and adverse effects

The broad therapeutic spectrum of steroids makes them efficient 
treatment for acute and chronic inflammatory diseases (5). 
Unfortunately, this broad spectrum carries over into side effects of 
physiologic signaling disruption. It is notable, however, that locally 
injected steroids pose less risk of adverse effects than oral steroids 
(179), and the research cited below regards long-term use of high dose 
oral steroids.

In the perioperative setting, side effects include sodium and water 
retention, increased risk of peptic ulceration, hypokalemia, increased 
infection rates, and adrenal crisis (132, 180). The mechanisms involved 
in long-term side effects are poorly understood, but conditions include 
osteoporosis leading to fractures, wound repair inhibition, 

osteonecrosis, development of cushingoid features, hypothalamic–
pituitary–adrenal (HPA) axis suppression, hyperglycemia, 
dermatologic, ophthalmologic, and cardiovascular effects (1, 181–
184). Systematic reviews have concluded that these adverse effects are 
dose and duration dependent (1, 182). For example, one study of 1,066 
patients found an elevated occurrence of adverse effects beyond 
certain thresholds. Specifically, prednisone dosages greater than 
7.5 mg per day could cause glaucoma and hypertension while dosages 
greater than 5 mg per day could cause weight gain (185).

Steroid induced osteoporosis may additionally result from such 
treatment as 6 mg of prednisone per day for only 6 months has been 
noted to lead to bone loss and fractures (186). This statement is 
supported by another study which examined glucocorticoid-induced 
osteopenia and found that 53% of patients receiving a cumulative 
prednisone dose of greater than 30 mg had fractures (187).

Although most dermatologic effects are benign, impaired wound 
healing is consequential. However, steroid-inhibited wound repair is 
uncertain and should be further examined (188). While some studies 
have associated steroid use for rheumatoid arthritis with increased 
risks of infection (189, 190), a meta-analysis of 38 studies concluded 
that there was no difference in postoperative infection rates between 
surgical patients treated with dexamethasone as compared to no 
treatment or placebo (188).

As for peptic ulcer disease, a retrospective study of 1,415 patients 
found a two-fold increased risk for peptic ulcer disease in patients 
taking corticosteroids and relative risk of 4.4 in patients simultaneously 
taking NSAIDs and corticosteroids (191). Corticosteroid effects on the 
HPA axis are clearer; corticosteroids suppress hypothalamic 
corticotropin-releasing hormone, anterior pituitary 
adrenocorticotropic hormone, and adrenal cortex cortisol (184). One 
study found 5 mg of prednisolone per day for 1 month duration 
increases risk of HPA axis suppression while another study reported 
that 100% of patients undergoing long-term glucocorticoid use 
experience adrenal insufficiency (132, 192).

The hyperglycemic effects of steroids can eventually lead to diabetes 
mellitus which alone has an abundance of long-term deleterious effects. 
One report found a strong correlation between accumulated prednisone 
and the development of diabetes mellitus (193).

Aside from detrimental long-term adverse effects, short-term 
high doses can result in acute psychiatric symptoms. In children, high-
dose corticosteroid toxicity has occasionally resulted in acute 
psychosis (184, 194).

Furthermore, the route of administration of steroids has also been 
implicated in adverse events. Case reports have described iatrogenic 
nerve injury following steroid injection for carpal tunnel syndrome 
(195). Additionally, repetitive steroid injections are implicated in 
worse postoperative complications in carpal tunnel release as well as 
tendon and fascial ruptures (4, 196). Nerve and tendon injuries could 
be mitigated through careful, ultrasound-guided injection; however, 
increased pain and fascial tears are primarily an unavoidable result of 
needle insertion.

4.7 Future directions

While there is evidence that steroids decrease inflammation and 
improve nerve regeneration/functionality, there is still a gap in the 
literature as to whether they have a defined therapeutic use in the 
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treatment of peripheral nerve injury. Furthermore, peripheral nerve 
injury treatment still lacks a comprehensive regimen for regaining 
complete functionality and addressing nerve dysesthesia (197, 198). 
We recommend future studies to address these topics, in addition to 
elucidating the role of local steroids in multimodal pain treatment.

Some future avenues of steroid use in peripheral nerve injury to 
explore include radial tunnel syndrome, ulnar neuropathy, meralgia 
paresthetica, brachial neuritis, CIDP, diabetic neuropathy, and 
CIPN. Future data is needed to assist in timing of use, length of use, 
dosage, defining when to transition from nonoperative treatment to 
surgical intervention, as well as discussion of when injections prior to 
surgery play a role in surgical outcomes (199).

Additionally, we recognize the importance of leprosy neuropathy 
among treatable peripheral neuropathies, particularly in light of recent 
observations in Florida, United States, where a previously undetected 
endemic was identified. Given the significance of this condition, 
we suggest that leprosy neuropathy should be the subject of a separate, 
dedicated systematic review to further explore its implications and 
treatment options.

5 Conclusion

This review highlights the lack of cohesive literature regarding the 
use of corticosteroids in various peripheral nerve disorders. Amid the 
uncertainty, promising results have been obtained on the use of 
steroids in addressing peripheral nerve injury and assisting nerve 
regeneration (4, 29, 39, 50, 101, 176, 196–198, 200–203). Given the 
wide range of clinical indications for steroids, few applications have 
been studied with sufficient depth. Due to anti-inflammatory and 
regenerative effects on peripheral nerves, steroids may be a beneficial 
adjunct in multi-modal pain treatment to improve pain after 
peripheral nerve surgery, useful in compression neuropathy, and a 
useful arm of the management of non-compression neuropathy. 
We  suggest more focused investigation into the mechanisms of 
corticosteroids as potentially favorable adjuvants and clinical trials in 
the conditions for which they may provide improved treatment.
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