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Background: The systemic immune-inflammation index (SII) is a novel 
inflammatory marker used to assess the immune-inflammatory status of the 
human body. The systemic immune inflammation has an interplay and mutual 
relationship with neurological disorders. Serum neurofilament light chain (sNfL) 
is widely regarded as a potential biomarker for various neurological diseases. 
The study aimed to examine the association between SII and sNfL.

Methods: This cross-sectional investigation was conducted in a population 
with complete data on SII and sNfL from the 2013–2014 National Health and 
Nutrition Examination Survey (NHANES). The SII was calculated by dividing 
the product of platelet count and neutrophil count by the lymphocyte count. 
Multivariate linear regression models and smooth curves were used to explore 
the linear connection between SII and sNfL. Sensitivity analyses, interaction 
tests, and diabetes subgroup smoothing curve fitting were also performed.

Results: A total of 2,025 participants were included in our present research. SII 
showed a significant positive association with the natural logarithm-transformed 
sNfL (ln-sNfL) in crude model [0.17 (0.07, 0.28)], partially adjusted model [0.13 
(0.03, 0.22)], and fully adjusted model [0.12 (0.02, 0.22)]. In all participants, the 
positive association between SII and ln-sNfL served as a linear relationship, as 
indicated by a smooth curve. Interaction tests showed that age, gender, BMI, 
hypertension, and diabetes did not have a significant impact on this positive 
association (p for interaction >0.05). The subgroup analysis of diabetes was 
conducted using smooth curve fitting. It was found that compared to the group 
without diabetes and the group in a pre-diabetic state, the effect was more 
pronounced in the group with diabetes.

Conclusion: Our findings suggest that there is a positive association between SII 
and sNfL. Furthermore, in comparison to individuals without diabetes and those 
in a pre-diabetic state, the positive association between SII and sNfL was more 
pronounced in individuals with diabetes. Further large-scale prospective studies 
are needed to confirm the association between SII and sNfL.
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1 Introduction

Neurofilament light chain (NfL) as a part of the neuronal 
structure, supports the radial growth of axons and maintains their 
size, shape, and caliber (1). When various factors lead to neuronal 
damage, NfL is released into the interstitial fluid and diffuses into the 
cerebrospinal fluid (CSF) and blood. For example, in the case of 
ischemic stroke (IS), a significant increase of NfL level can be detected 
in both CSF and blood (2). There is an association between serum NfL 
(sNfL) and CSF NfL concentration. Since peripheral blood is easier to 
collect, measuring serum level is considered as a more accessible and 
repeatable technique for assessing NfL level (3, 4). Currently, sNfL is 
widely recognized as a potential biomarker for various neurologic 
diseases (5). Recent studies have shown that NfL can be used as a 
biomarker to predict disease activity, severity, prognosis, and monitor 
treatment response in multiple sclerosis (MS) (6). A previous study 
conducted by Aamodt et al. has shown that Parkinson’s disease (PD) 
individuals with high plasma NfL are more likely to develop to 
cognitive impairment. Their results proved plasma NfL is a useful 
prognostic biomarker for PD, and predicted a clinical conversion to 
mild cognitive impairment or dementia (7). In addition to PD, NfL 
has also been shown to be  a biomarker for various neurological 
diseases such as stroke, Alzheimer’s disease (AD), and others (8–10).

The systemic immune-inflammation index (SII) is a novel 
biomarker of inflammation that reflects the balance of inflammatory 
and immune status. The calculation method is as follows: SII = P × N/L, 
where P, N, and L represent the platelet, neutrophil, and lymphocyte 
counts, respectively. Initially developed by Hu et al., for predicting the 
prognosis of hepatocellular carcinoma patients (11), SII has 
subsequently been used in prognostic research for other tumors. SII 
has shown superior prognostic value compared to neutrophil–
lymphocyte ratio (NLR), and platelet–lymphocyte ratio, making it a 
promising prognostic predictor for lung cancer (12). It has also been 
identified as an independent predictor of overall survival or 
progression free survival in gastrointestinal cancer patients (13), as 
well as being associated with the prognosis of breast cancer and colon 
cancer (14, 15). Furthermore, other related studies have suggested that 
SII can be used for prognostic research in inflammatory diseases such 
as cardiovascular and cerebrovascular diseases (16, 17).

In recent years, an increasing number of studies have found that 
inflammation affects the function of the neurological system. Axonal 
injury may play an important role in the pathogenesis of multiple 
system atrophy (MSA). Zhang et al. observed that blood biomarkers 
representing peripheral inflammation, such as C-reactive protein and 
NLR, are predictive biomarkers for wheelchair dependence in MSA 
patients. This supports the significance of inflammation in the 
prognosis of MSA (18). Brain injury biomarkers show an elevation in 
a severity-dependent manner during the acute phase of COVID-19, 
and these elevations are associated with both increased 
pro-inflammatory cytokines and the presence of autoantibodies, as 
well as with sNfL (19). Patients with acute ischemic stroke (AIS) 

typically present severe neurological disorder. Xu et  al. found an 
association between SII and increased risk of overall stroke and its 
subtypes (20). Another study has explored the association between SII 
at admission and short and moderate term adverse outcomes in 
patients with AIS, which suggest that high SII is strongly associated 
with poor outcomes in stroke patients (17). Thus, SII may serve as an 
index for the progression of AIS in patients.

Previous study results indicated a close relationship between 
inflammation and the functioning of the nervous system. However, 
no studies have been reported on the association between SII and the 
neurologic disease biomarker sNfL. Therefore, our study aimed to 
clarify the relationship between SII and sNfL from a cross-sectional 
perspective, utilizing a large sample of data from the National Health 
and Nutrition Examination Survey (NHANES).

2 Materials and methods

2.1 Study population

In this cross-sectional study, we used publicly available data from 
the National Health and Nutrition Examination Survey (NHANES) 
from 2013 to 2014 conducted by the Centers for Disease Control and 
Prevention (CDC). NHANES is a series of cross-sectional, complex, 
multistage surveys conducted by the CDC to provide health and 
nutrition data on a nationally representative, non-institutionalized 
sample of the US population. More information can be  found at: 
http://www.cdc.gov/nchs/nhanes/index.htm, which provides a 
detailed description of the NHANES survey’s continuous design. All 
study protocols in the NHANES survey protocol were authorized by 
the Ethics Review Board of the National Center for Health Statistics, 
and all participants signed informed permission.

Due to the limited availability of sNfL data, our analysis focused 
exclusively on the NHANES 2013–2014 cycle. The exclusion criteria 
for participants in our analysis were (1) missing complete data about 
SII (2) missing complete data about sNfL (3) pregnant, and (4) with 
extreme values of SII. A total of 10,175 participants were enrolled at 
first; after the exclusion of participants with missing data about SII 
(n = 1,656), sNfL (n = 6,458), those who were pregnant (n = 18), and 
those with extreme values of SII (n = 18), a total of 2,025 eligible 
participants aged ≥20 years were included in our final analysis 
(Figure 1).

2.2 Measurement of sNfL

The quantitative detection of sNfL utilized a highly sensitive 
immunoassay developed by Siemens Healthineers specifically for 
sNfL. This assay combined acridinium ester (AE) chemiluminescence 
and paramagnetic particle technology, enabling efficient integration 
into the fully automated Attelica immunoassay system. The method 
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involved the formation of a stable antigen–antibody complex through 
specific binding of AE-labeled antibodies to the NfL antigen and 
capture antibodies coated on paramagnetic particles. Unbound 
antibodies were then accurately separated and removed, initiating a 
chemiluminescent reaction that is measured for light emission 
intensity, thereby achieving high-precision quantification of sNfL. To 
ensure the reliability and accuracy of analytical measurements, 
rigorous quality control and quality assurance procedures were 
implemented. This included regular analysis of low, medium, and high 
concentration quality control samples, as well as other replicate 
samples, with calculation of coefficients of variation and other relevant 
statistical data to describe the overall measurement range of the 
quality control samples. In practical applications, the lower limit of 
quantification (LLOQ) for this method was 3.9 pg/mL, while no cases 
exceeding the upper limit of quantification (ULOQ, 500 pg/mL) were 
observed in this study. Detailed information about the research 
methodology can be found on the relevant website.1

2.3 SII and covariates

SII served as the exposure variable in this investigation. Utilizing 
automated hematology analyzing devices (Coulter® DxH 800 
analyzer), the lymphocyte, neutrophil, and platelet counts were 
measured and reported as ×103 cells/μL. The SII level was determined 

1 https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/SSSNFL_H.htm

by multiplying the platelet count by the neutrophil count divided by 
the lymphocyte count.

Based on previous researches, potential confounding factors 
linked with SII and sNfL were included in the final analysis. The 
covariates included age, gender, race, education level, income-to-
poverty ratio, alcohol status, smoking status, BMI, waist circumference, 
hypertension, diabetes, hypercholesterolemia, stroke, and estimated 
glomerular filtration rate (eGFR). Among them, race was categorized 
as Mexican American, Non-Hispanic White, Non-Hispanic Black, 
other Hispanic, and other race. Education level was designated as less 
than high school, high school, and more than high school. Alcohol 
status was determined based on participants consuming at least 12 
alcoholic drinks per year. Environmental tobacco smoke exposure is 
typically estimated using questionnaires, although questionnaires are 
not reliable. Studies have shown that cotinine is the optimal biomarker 
for nicotine exposure (21). Therefore, in this study, serum cotinine 
level was utilized as a measure of smoke exposure, and categorized 
into heavy smoke exposure (≥3 ng/mL), light smoke exposure 
(0.05 ~ 2.99 ng/mL), and no smoke exposure (< 0.05 ng/mL) groups 
based on previous research findings (22). BMI was categorized as <25, 
25–29.9, and ≥ 30 kg/m2, corresponding to normal weight, overweight, 
and obesity, respectively. Diabetes was defined as a self-reported 
physician diagnosis of diabetes, use of insulin or oral hypoglycemic 
medication or having a hemoglobin A1c (HbA1c) level ≥ 6.5%, fasting 
plasma glucose (FPG) level ≥ 7 mmol/L, or 2 h oral glucose tolerance 
test (OGTT) plasma glucose level ≥ 11.1 mmol/L in accordance with 
the 2013 American Diabetes Association guidelines. Prediabetes was 
defined as any one of the following: 5.7% ≤ HbA1c < 6.5%, FPG 
between 5.6 mmol/L and 7.0 mmol/L, and a 2 h FPG value between 
7.8 mmol/L and 11.1 mmol/L during an OGTT. Hypertension was 
diagnosed when at least one of the following criteria was fulfilled: 
systolic pressure/diastolic pressure ≥ 140/90 mmHg, a self-reported 
physician’s diagnosis of hypertension, or the self-reported use of 
hypertension medication. Similarly, hypercholesterolemia was 
confirmed if any of the following criteria were met: a cholesterol 
level ≥ 240 mg/dL, a self-reported physician’s diagnosis, or use of 
hypercholesterolemia medication. A history of stroke was determined 
if participants self-reported being previously diagnosed by a doctor. 
The eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation, which incorporates 
demographic factors such as gender, race, age, and serum creatinine 
to estimate the eGFR for each participant (23).

2.4 Statistical analysis

SII was divided into tertiles from lowest (T1) to highest (T3); 
continuous variables were expressed as means with standard deviations 
(SDs) and categorical variables as proportions. Because of the sNfL 
concentration value deviated from the normal distribution, we included 
the natural logarithm (ln) transformation of this variable in the analysis. 
The differences among participants grouped by SII tertiles were assessed 
using a weighted t-test. To examine the association between SII and the 
natural logarithm-transformed sNfL (ln-sNfL), multiple linear 
regression analysis between SII and ln-sNfL was used to construct 
multivariate tests using three models: model 1: no variables adjusted; 
model 2: gender, age, and race adjusted; model 3: adjusted for all 
covariates. And SII and ln-sNfL were evaluated using standardized 

FIGURE 1

Flowchart of participant selection. NHANES, National Health and 
Nutrition Examination Survey.
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regression coefficient (β) and 95% confidence interval (CI) in the 
models. In sensitivity analysis, linear trend tests were conducted with 
SII tertile groups as independent variables to evaluate its robustness. 
Using three models, multivariate tests were constructed by controlling 
for variables and fitting a smooth curve. Additionally, subgroup analysis 
and interaction tests were conducted to explore the relationship between 
SII and ln-sNfL in different groups. Finally, a smooth curve was fitted 
to the subgroup of diabetes. The statistical analyses were conducted 
using R studio (Version 4.2.2) and EmpowerStats (Version 2.0). A 
p-value <0.05 was determined to be significant. In order to mitigate the 
significant volatility of our dataset, we employed a weighting approach.

3 Results

3.1 Baseline characteristics of participants

A total of 2,025 participants were involved, with an average age of 
45.14 ± 15.14 years and a gender split of 49.29% male to 50.71% female. 
The quartiles for SII and sNfL are as follows: for SII, the first quartile (Q1) 
is 309.93, the second quartile (Q2) is 423.69, and the third quartile (Q3) 
is 595.65; for sNfL, the first quartile (Q1) is 8.2 pg/mL, the second quartile 
(Q2) is 12.3 pg/mL, and the third quartile (Q3) is 19.1 pg/mL.

Participants were divided into three groups based on the tertiles 
of SII: T1 group (n = 675), T2 group (n = 675), and T3 group (n = 675). 
The clinical characteristics of the participants according to SII as a 
column-stratified variable are shown in Table 1. SII was statistically 
significant with age, gender, race, education level, serum cotinine level, 
BMI, waist circumference, diabetes, hypertension, hypercholesterolemia, 
and sNfL (p < 0.05). Compared to those with low SII, individuals with 
high SII tended to be older, female, non-Hispanic white or Mexican 
American, with a BMI ≥ 30 kg/m2, larger waist circumference, lower 
education level, higher serum cotinine level, and had higher 
prevalence of diabetes, hypertension, hyperlipidemia, as well as having 
higher level of sNfL.

3.2 Association between SII and ln-sNfL

Because the effect value was not apparent, SII/1000 was used to 
amplify the effect value by 1,000 times. The constructed weighted 
multivariate linear regression models are listed in Table 2. SII showed 
a significant positive association with sNfL in the crude model, the 
partially adjusted model, and the fully adjusted model [model 1: 0.17 
(0.07, 0.28); model 2: 0.13 (0.03, 0.22); model 3: 0.12 (0.02, 0.22)]. In 
the fully adjusted model, each one-unit increase in SII/1000 score was 
associated with a 0.12-unit increase in ln-sNfL. The results of the trend 
test further demonstrated that the above linear relationships remained 
stable across SII tertiles (p for trend < 0.05), with ln-sNfL in T3 group 
of SII being 0.10-unit increase than those in T1 group under the same 
conditions. Smooth curve was also performed, which showed a linear 
positive association between SII and ln-sNfL (Figure 2).

3.3 Subgroup analysis

To further explore factors influencing the association between SII 
and sNfL, we conducted stratified analyses based on sex, age, BMI, 

hypertension, diabetes, and hypercholesterolemia. Further subgroup 
analyses revealed that the association between SII and ln-sNfL was not 
consistent, as shown in Figure 3. Significant associations between SII 
and ln-sNfL (p < 0.05) were observed across all age groups, including 
females and individuals with obesity, hypertension, diabetes, and 
hypercholesterolemia. Interaction tests indicated that sex, age, BMI, 
hypertension, and diabetes did not significantly influence this positive 
association (p for interaction >0.05).

We performed subgroup smooth curve fitting for individuals with 
diabetes (Figure 4), and the results indicated that the effect size was 
more significant in individuals with diabetes compared to those 
without diabetes and those in a pre-diabetic state.

4 Discussion

In our cross-sectional study, we found an association between higher 
SII values and higher sNfL concentrations. The results from subgroup 
analysis and interaction tests indicated that this association was consistent 
across the population. In the subgroup analysis, we also observed that the 
effect was more pronounced in individuals with diabetes compared to 
those without diabetes and those in a prediabetic state.

As far as we know, no previous research has investigated the 
association between SII and sNfL. Previous studies have reported the 
relationship between inflammation and NfL. For instance, Disanto 
et al. found a significant positive association between sNfL and focal 
inflammatory MRI lesions in both brain and spinal cord (24). Their 
analysis of clinical variables associated with sNfL showed that in 
addition to age, the presence of recent relapses and disability as 
measured by the Extended Disability Status Scale (EDSS) were 
independently and positively associated with sNfL level. The results 
suggest that sNfL level may be associated with acute inflammatory 
injury and chronic diffuse neuronal loss. Li et al. discovered NfL 
level notably increased in anti-N-methyl-d-aspartate receptor 
(NMDAR) encephalitis patients in acute phase and positively 
correlated with disease severity (25). In anti-NMDAR encephalitis 
patients, NfL was positively correlated with pro-inflammatory 
cytokines and modified Rankin Scale (mRS) scores, suggesting that 
NfL may be  associated with inflammatory responses. Moreover, 
interleukin (IL)-1β is considered as a contributing factor in 
autoimmune inflammatory diseases (26). Meyer et al. demonstrated 
an association between elevated level of inflammatory cytokines 
(IL-6 and IL-5) and NfL (27). Additionally, studies utilizing high-
throughput and scalable assays have shown that sNfL is associated 
with clinical disability, inflammatory disease activity, and whole-
brain atrophy in MS (28). Consistent with most studies, our research 
indicates a positive association between SII and sNfL level, 
suggesting that high SII may independently cause or worsen 
neurological disorders.

Currently, sNfL has been widely considered as a potential 
biomarker for neurological diseases (5). Previous research has found 
that elevated level of NfL in CSF and serum are often associated with 
clinical progression in primary neurodegenerative diseases (29). An 
investigation based on an ultrasensitive sNfL assay in healthy controls 
and independent MS patients found that sNfL level in MS patients 
were not only significantly elevated, but also correlated with the 
presence and activity of focal lesions in the brain and spinal cord, 
confirming the value of sNfL level as a biomarker of tissue damage in 
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MS (5). In a cross-sectional study, elevated sNfL level was found to 
be positively correlated with an increased risk of early PD-related 
symptoms, and that sNfL level was significantly negatively correlated 
with cognitive function test results, suggesting that sNfL may serve as 
a potential biomarker for early PD (24). Additionally, a previous study 
found that elevated sNfL level in the late phase after stroke can be used 
as a biomarker for adaptive neural plasticity and a positive predictor 

of functional improvement, indicating that sNfL can predict the 
adverse outcome in the acute phase after stroke and the improvement 
in the late phase (8). Furthermore, Steffen Tiedt et al. found that after 
adjusting for age, gender, hypertension and recurrent ischemic lesions, 
the association between sNfL level and secondary neurodegeneration 
still existed, indicating that sNfL is expected to be a biomarker for 
monitoring primary and secondary axonal injury and predicting 

TABLE 1 Baseline characteristics of study population according to SII tertiles, weighted.

SII Overall T1 group 
(n  =  675)

T2 group 
(n  =  675)

T3 group 
(n  =  675)

p for trend

Age (years) 45.14 ± 15.14 43.81 ± 15.55 45.78 ± 14.81 45.70 ± 15.00 0.0294

Gender (%) <0.0001

  Male 49.29 55.89 52.29 40.57

  Female 50.71 44.11 47.71 59.43

Race (%) <0.0001

  Mexican American 9.62 9.44 9.60 9.81

  Other Hispanic 5.84 4.73 6.48 6.22

  Non-Hispanic White 65.17 59.50 66.05 69.34

  Non-Hispanic Black 11.67 17.83 9.04 8.73

  Other Races 7.70 8.49 8.83 5.91

Education level (%) 0.0219

  Less than high school 15.84 16.92 12.76 17.83

  High school 20.19 21.59 18.55 20.53

  Above high school 63.97 61.50 68.69 61.64

Income-to-poverty ratio 2.91 ± 1.69 2.98 ± 1.71 2.95 ± 1.69 2.80 ± 1.67 0.1231

Serum cotinine level (%) 0.0140

  < 0.05 ng/mL 55.28 57.81 57.72 50.70

  0.05–2.99 ng/mL 16.27 17.16 15.04 16.67

  ≥ 3 ng/mL 28.45 25.03 27.24 32.63

Alcohol status (%) 0.0628

  Yes 78.72 75.45 79.94 80.45

  No 21.28 24.55 20.06 19.55

BMI (%) <0.0001

  <25 29.49 31.78 29.87 27.08

  25–30 32.52 36.73 33.82 27.55

  ≥30 37.99 31.49 36.31 45.36

Waist circumference (cm) 99.76 ± 17.12 97.04 ± 15.56 99.53 ± 15.85 102.48 ± 19.13 <0.0001

eGFR (ml/min/1.73 m2) 95.99 ± 20.57 96.84 ± 19.87 95.78 ± 20.27 95.44 ± 21.42 0.4366

Diabetes (%) 0.0024

  No 49.17 54.73 48.09 45.28

  Yes 13.66 10.60 13.48 16.54

  Prediabetes 37.17 34.66 38.43 38.19

Hypertension (%) 36.91 33.38 35.84 41.07 0.0112

Hypercholesterolemia (%) 40.22 34.40 42.71 42.98 0.0016

Stroke (%) 2.47 2.24 2.65 2.49 0.8872

ln-sNfL 2.54 ± 0.67 2.48 ± 0.60 2.53 ± 0.64 2.60 ± 0.74 0.0034

Mean ± SD for continuous variables: the p-value was calculated by weighted linear regression model. % for categorical variables: the p-value was calculated by a weighted chi-square test. BMI, 
body mass index; eGFR, estimated glomerular filtration rate; SII, systemic immune-inflammation index; ln-sNfL, the natural logarithm-transformed serum neurofilament light chain.
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functional outcomes after IS (30). All in all, various studies have 
shown the wide application of sNfL in clinical aspects.

The underlying mechanism of this positive association between 
SII and sNfL has not been well understood. We speculate that the 
increased SII level in neuroinflammation and the related 
inflammatory factors disrupt blood–brain barrier (BBB) to induce 
neurodegeneration and worsen the damage of the nervous system, 
thus causing an increase in NfL level in the CSF. Research has shown 
that the main factor affecting the structure and function of BBB is 
inflammation, which is mainly caused by cytokines secreted by 
immune cells including IL-1β, IL-6 and tumor necrosis factor 

(TNF)-α (31). For instance, a rapid activation of proinflammatory 
cytokines such as IL-1β, IL-6 and TNF-α was observed both in 
animal models of acquired epilepsy and in brain tissue obtained from 
patients with temporal lobe epilepsy or cortical developmental 
malformations undergoing epilepsy surgery (32). Additionally, other 
cytokines have been shown to play a destructive role in BBB during 
neuroinflammation. Hania Kebir et al. demonstrated the expressions 
of IL-17 and IL-22 receptors on the BBB endothelial cells within MS 
lesions, thus indicating their involvement in disrupting the tight 
junctions (TJs) of BBB (33). Yosef N et al. demonstrated that IL-17 
can induce the release of inflammatory factors causing tissue 
infiltration and destruction, promote the maturation and chemotactic 
of dendritic cells and stimulate the activation of T cells (34). These 
findings suggest that the disruption of the BBB by inflammatory 
cytokines may contribute to the observed association between SII and 
sNfL. However, further research is needed to fully understand the 
complex relationship between systemic inflammation, 
neuroinflammation, BBB integrity, and neurodegeneration. These 
cytokines, which destroy BBB during neurodegeneration, may 
provide some promising new targets for clinical applications to treat 
neurological diseases and injuries. In the process of 
neurodegeneration and neuroinflammation, relevant inflammatory 
cell cytokines integrate with their specific receptors to disrupt TJs and 
transendothelial electrical resistance of the BBB (35, 36). In addition, 
aging makes BBB more vulnerable to the destruction of inflammatory 
cytokines, and the damage of BBB is easy to recruit more immune 
cells and cytokines into the brain parenchyma, thus inducing 
neurodegeneration (37). A study found that BBB structure can 
be damaged with age, making patients susceptible to neurological 
diseases such as AD (38). In summary, for the treatment of 
neurological diseases, it can be considered to develop new clinical 
therapies by controlling inflammation and regulating the major 
cytokines attacking BBB. Therefore, it is necessary to study the 
relationship between SII and sNfL.

In the subgroup analysis, the different states of diabetes and 
hyperlipidemia significantly influenced the association pattern were 
observed between SII and ln-sNfL. When exploring the impact of 
hyperlipidemia on this relationship, a smooth curve was attempted to 
be fit, similar to the approach for diabetes analysis using in this study. 
Unfortunately, due to the interference of extreme values in the SII data, 
the stable and highly credible conclusion was not able to be drawn. 
Therefore, this part of the findings was not included in the results. 
Instead, the focus was shifted to the crucial factor of diabetes, and it 
was found that higher sNfL levels were exhibited by diabetics compared 
to those without diabetes or participants in a pre-diabetic state. 
Furthermore, the positive association between SII and sNfL appeared 
to be  more phanerous in the diabetes. However, the underlying 
mechanisms behind this relationship have not been well elucidated. 
We speculate on the following reasons: the state of hyperglycemia may 
lead to chronic inflammation, oxidative stress and endothelial cell 
dysfunction, which in turn can contribute to reduced kidney function 
(39, 40). This reduced kidney function may result in decreasing renal 
clearance and glomerular filtration rate of NfL, while also reducing the 
synthesis of neuroprotective substances produced by the kidneys, such 
as erythropoietin and vitamin D, which could potentially lead to 
neuronal damage (41–43). Additionally, the obesity associated with 
hyperglycemia and proinflammatory metabolism produced by insulin 
resistance (44) may further exacerbate neuronal and vascular damage 

TABLE 2 The association between SII and ln-sNfL.

Crude 
Model 

(Model 1)
β (95%CI), 
p-value

Partially 
Adjusted 

Model 
(Model 2)
β (95%CI), 
p-value

Fully 
Adjusted 

Model 
(Model 3)
β (95%CI), 
p-value

SII/1000
0.17 (0.07, 0.28) 

0.0016**

0.13 (0.03, 0.22) 

0.0079**

0.12 (0.02, 0.22) 

0.0166*

Categories

  T1 group Reference Reference Reference

  T2 group
0.05 (−0.02, 0.13) 

0.1474

0.01 (−0.05, 0.08) 

0.6656

0.02 (−0.05, 0.08) 

0.5898

  T3 group
0.12 (0.05, 0.19) 

0.0008**

0.10 (0.03, 0.16) 

0.0023**

0.10 (0.03, 0.17) 

0.0031**

Model 1, no covariates were adjusted. Model 2, age, gender, and race were adjusted. Model 3, 
age, gender, race, education level, income-to-poverty ratio, alcohol status, smoking status, 
BMI, waist circumference, hypertension, diabetes, hypercholesterolemia, stroke, and eGFR 
were adjusted. 95% CI, 95% confidence interval; β, standardized coefficient; SII, systemic 
immune-inflammation index; ln-sNfL, natural logarithm transformation of serum 
neurofilament light chain. *p < 0.05, **p < 0.01; p < 0.05 was considered statistically 
significant.

FIGURE 2

The association between SII and ln-sNfL. The solid red line 
represents the smooth curve fit between variables. Blue bands 
represent the 95% confidence interval from the fit. SII, systemic 
immune-inflammation index; ln-sNfL, the natural logarithm-
transformed serum neurofilament light chain.
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(45, 46), neurotoxicity, and changes in osmotic pressure, ultimately 
causing damage to BBB (47) and resulting in elevated sNfL level. The 
consequences of the proinflammatory metabolism can lead to 
endothelial cell dysfunction (48–50), which in turn may contribute to 
or exacerbate insulin resistance (51). Hyperglycaemia can also result in 
thickening the capillary basement membrane, increasing endothelial 

permeability, and inducing dysfunction of endothelial and vascular 
smooth muscle cells. These damages further promote the effect of the 
inflammatory response on sNfL level. Moreover, hyperglycaemia can 
cause demyelination and axonal loss in peripheral sensation and motor 
nerves, leading to the release of NfL into the bloodstream. Glycemic 
fluctuations in acute diabetes may also activate microglial, thereby 
exacerbating oxidative stress in the body and causing neuronal damage, 
resulting in increased level of sNfL (52).

This study has several strengths. Firstly, to our knowledge, this is 
the first study to examine the association between SII and 
sNfL. Secondly, the large sample size and the standardized protocols 
of the NHANES not only minimize potential biases but also enhance 
the reliability of the results. Additionally, we adjusted for relevant 
covariates to ensure the generalizability of our findings to a broad 
population, thereby improving the validity and representativeness of 
this study. However, this study also has limitations. The cross-sectional 
study design does not allow us to determine causality, and extensive 
prospective research is needed to elucidate any causal relationships. 
While we  controlled for certain confounding factors, other 
confounders may still have an impact on the outcomes.

5 Conclusion

Our results indicated a positive association between SII and 
sNfL. In subgroup analysis, significant association between SII and 
sNfL was observed consistently across all age groups, including 
females and individuals with obesity, hypertension, diabetes, and 
hypercholesterolemia (p < 0.05). Furthermore, the positive association 

FIGURE 3

Subgroup analysis for the association between SII and ln-sNfL. SII, systemic immune-inflammation index; ln-sNfL, the natural logarithm-transformed 
serum neurofilament light chain.

FIGURE 4

The association between SII and ln-sNfL stratified by diabetes. SII, 
systemic immune-inflammation index; ln-sNfL, the natural 
logarithm-transformed serum neurofilament light chain.
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between SII and sNfL was more pronounced in individuals with 
diabetes compared to those without diabetes or in a pre-diabetic state. 
However, these findings do not establish a causal relationship and 
more studies are expected.
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