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Objectives: Obstructive sleep apnea (OSA) is a common sleep-disordered 
breathing condition linked to the accelerated onset of mild cognitive impairment 
(MCI). However, the prevalence of undiagnosed MCI among OSA patients is 
high and attributable to the complexity and specialized nature of MCI diagnosis. 
Timely identification and intervention for MCI can potentially prevent or delay 
the onset of dementia. This study aimed to develop screening models for MCI in 
OSA patients that will be suitable for healthcare professionals in diverse settings 
and can be effectively utilized without specialized neurological training.

Methods: A prospective observational study was conducted at a specialized 
sleep medicine center from April 2021 to September 2022. Three hundred 
and fifty consecutive patients (age: 18–60  years) suspected OSA, underwent 
the Montreal Cognitive Assessment (MoCA) and polysomnography overnight. 
Demographic and clinical data, including polysomnographic sleep parameters 
and additional cognitive function assessments were collected from OSA 
patients. The data were divided into training (70%) and validation (30%) sets, 
and predictors of MCI were identified using univariate and multivariate logistic 
regression analyses. Models were evaluated for predictive accuracy and 
calibration, with nomograms for application.

Results: Two hundred and thirty-three patients with newly diagnosed OSA 
were enrolled. The proportion of patients with MCI was 38.2%. Three diagnostic 
models, each with an accompanying nomogram, were developed. Model 1 
utilized body mass index (BMI) and years of education as predictors. Model 2 
incorporated N1 and the score of backward task of the digital span test (DST_B) 
into the base of Model 1. Model 3 expanded upon Model 1 by including the 
total score of digital span test (DST). Each of these models exhibited robust 
discriminatory power and calibration. The C-statistics for Model 1, 2, and 3 were 
0.803 [95% confidence interval (CI): 0.735–0.872], 0.849 (95% CI: 0.788–0.910), 
and 0.83 (95% CI: 0.763–0.896), respectively.

Conclusion: Three straightforward diagnostic models, each requiring only 
two to four easily accessible parameters, were developed that demonstrated 
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high efficacy. These models offer a convenient diagnostic tool for healthcare 
professionals in diverse healthcare settings, facilitating timely and necessary 
further evaluation and intervention for OSA patients at an increased risk of MCI.
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obstructive sleep apnea, mild cognitive impairment, clinical prediction model, 
diagnostic model, nomogram

1 Introduction

Obstructive sleep apnea (OSA) is a highly prevalent disorder 
characterized by impaired breathing that can occur regardless of 
hypoxia, hypercapnia, or fragmented sleep (1). Globally, OSA impacts 
nearly a billion individuals, with prevalence rates exceeding 50% in 
some nations (2). The presence of disordered breathing during sleep 
has been observed to precipitate the onset of Mild cognitive 
impairment (MCI) by approximately 10 years (3). MCI is recognized 
as a prodromal condition for dementia (4). In contrast to the 
irreversible pathophysiological alterations characteristic of dementia, 
timely identification and intervention for MCI can potentially prevent 
or delay the onset of dementia (5). Effective management of OSA 
through the application of continuous positive airway pressure 
(CPAP) has demonstrated significant improvements in global 
cognitive functioning, executive functioning, attention, and memory 
(6, 7). Notably, individuals diagnosed with both OSA and mild 
cognitive impairment (OSA + MCI) often display a diminished 
recognition of their cognitive impairments compared to those without 
OSA (8). Therefore, early diagnosis of MCI in patients with OSA is 
extremely necessary.

The Montreal Cognitive Assessment (MoCA) is a highly utilized 
screening tool, known for its high sensitivity and specificity in 
detecting MCI (9). Although the MoCA tool is comprehensive, it 
requires over 10 min to complete and involves 11 distinct tasks, each 
with its own set of instructions. Therefore, its complexity and the need 
for specialized training to administer it effectively limits its use in 
various healthcare settings, particularly in healthcare settings where 
experienced neurologists are scarce. Consequently, there is a pressing 
need for the development of convenient and universally applicable 
tools for MCI screening that can be  utilized across different 
healthcare environments.

A recent study introduced a multimodal predictive model for 
assessing cognitive impairment risk in OSA patients (10). As the 
model required the urine biomarker AD7c-NTP, its clinical application 
may be  challenging and economically infeasible. Furthermore, a 
recent study devised a predictive model for MCI in OSA patients aged 
≥45 years (11). The predictive model’s reliance on a lengthy self-
compiled lifestyle scale for one of its factors renders it less 
straightforward and convenient. Moreover, OSA is a heterogeneous 
disorder (12). Although previous studies have confirmed the 
association between OSA and MCI, there are significant differences in 
cognitive impairment profiles between younger patients and those 
>60 years (13). Younger patients with OSA, who contribute 
significantly to society and may experience an impact on work 
performance (14), often remain undiagnosed and untreated. 
Nevertheless, the identification of younger patients with OSA + MCI 

continues to be inadequate because of the absence of a practical and 
convenient screening tool.

Therefore, the purpose of this study was to develop and validate 
diagnostic models for MCI in OSA patients that are both effective, 
straightforward and easy to apply across various healthcare settings, 
even where neurologist expertise is limited. Our models aim to 
provide OSA patients, especially those who are young or moderately 
affected, with timely evaluations and interventions that are essential 
for slowing the progression of cognitive impairment. This proactive 
approach is vital for reducing the overall disease burden associated 
with OSA and enhancing patient outcomes.

2 Materials and methods

2.1 Study design and population

This study was a prospective, observational investigation 
conducted at the Sleep Medicine Center of the Second Affiliated 
Hospital of Fujian Medical University, a tertiary hospital in Quanzhou, 
China, from April 2021 to September 2022. Informed consent was 
obtained from all participants, and the study was approved by the 
Institutional Review Board (IRB) of the Second Affiliated Hospital of 
Fujian Medical University (IRB No. 2021-49).

Young and middle-aged individuals who were newly diagnosed 
with OSA were enrolled consecutively. The inclusion criteria were: (1) 
young patients aged 18–44 years or middle-aged patients aged 
45–60 years. (2) Underwent overnight polysomnography (PSG) 
monitoring for at least 4 h. (3) Receiving a diagnosis of OSA. The 
exclusion criteria were: (1) a prior diagnosis of OSA. (2) Presence of 
other respiratory diseases or sleep disorders, such as central sleep 
apnea, obesity hypoventilation syndrome, chronic obstructive 
pulmonary disease, asthma, insomnia, among others. (4) Previously 
treated by positive airway pressure machine, oral appliance, or surgery 
to alter upper airway ventilation.

2.2 OSA diagnosis

Participants suspected of OSA underwent overnight PSG in the 
sleep medicine center. Two types of monitoring devices were utilized 
in our center: SOMNO screen™ plus PSG+ (SOMNOmedics GmbH, 
Randersacker, Germany) and the Compumedics Grael HD-PSG 
system (Compumedics, Abbotsford, Victoria, Australia). The 
monitoring data was manually inspected in accordance with the 
guidelines outlined in the AASM manual (15) for the purpose of 
scoring sleep. Participants exhibiting an apnea hypopnea index (AHI) 
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of 5 or more events per hour of sleep, along with symptoms related to 
OSA, were diagnosed with OSA.

2.3 MCI diagnosis

MCI diagnosis was performed prior to PSG monitoring upon patient 
admission to our sleep medicine center. The MoCA Beijing version1 was 
employed for the assessment of global cognitive function. Cutoff points 
for diagnosis were established at 14 for individuals with limited literacy, 
20 for those with 1 to 6 years of education, and 25 for individuals with 7 
or more years of education (16). Scores falling below these cutoff points 
were classified as MCI. Sensitivity was reported at 83.8%, and specificity 
was at 82.5%. The assessments were conducted in a quiet interview room 
at the sleep medicine center by a single experienced physician with 
expertise in cognitive disorders. Due to the absence of PSG monitoring 
and other cognitive function assessments, the physician was unaware of 
PSG parameters and patients’ clinical characteristics.

2.4 Other cognitive function assessments

Following the MoCA assessment, subsequent cognitive function 
evaluations were conducted. The digital span test (DST) was used to 
assess memory and attention function, with scores recorded for both 
forward (DST_F) and backward (DST_B) tasks. The total DST score 
was calculated as the sum of the forward and backward scores.

The Stroop color-word test (SCWT) (version 1935) was used to 
assess executive function (17). This test comprises three subtasks in which 
participants were instructed to read three cards in a sequential manner as 
quickly and accurately as possible. The first card (card A) presents 50 
color words in random order (red, yellow, green, and blue) printed in 
black ink. The second card (card B) features 50 solid color patches in one 
of the four basic colors. The third card (card C) exhibits 50 color words 
printed in an incongruent ink color (e.g., the word “red” printed in blue 
ink). Participants were instructed to identify the ink color of the printed 
words. The time taken to complete each condition (CWT_A, CWT_B, 
CWT_C) and the number of correct responses for each condition 
(NCW_A, NCW_B, NCW_C) were recorded. Two scores were calculated 
to measure the Stroop interference effect, one based on the reading speed 
(SIE_T) and the other on accuracy (SIE_N), by using the following 
formulae: SIE_T = CWT_C − (CWT_A + CWT_B)/2 and 
SIE_N = NCW_C − (NCW_A + NCW_B)/2. A higher SIE score indicates 
greater difficulty in the inhibiting interference.

The Chinese-version of the Subjective Cognitive Decline 
Questionnaire (SCD) (18) was administered to assess subjective 
cognitive complaints. The total SCD score ranges from 0 to 9, with 
higher scores indicating better cognitive functioning.

2.5 Additional data collection

Age, sex, marital status, year of education, body mass index (BMI) 
(kg/m2), neck circumference (cm), and waist-to-hip (W-H) ratio were 

1 www.mocatest.org

collected at the time of PSG monitoring in the evening by clinical 
nurses. Marital status was categorized into three groups, which were 
subsequently combined into two categories: with partner and without 
partner category (reference category). The study gathered PSG 
parameters from medical records, including AHI (events/h); the 
distribution of sleep stages N1, N2, and N3 as a ratio of total sleep time; 
longest durations of apnea and hypopnea; slowest and fastest heart 
rates; nadir and mean SpO2; and sleep efficiency. Excessive daytime 
sleepiness (EDS) was identified as a significant factor in screening for 
OSA. The Chinese version of the Epworth Sleepiness Scale (ESS) was 
utilized to assess daytime sleepiness. The total ESS score ranges from 0 
to 24, with higher scores indicating increased levels of sleepiness.

2.6 Statistical analysis

Statistical analyses were conducted using SPSS version 26 (IBM 
Corporation, Armonk, NY, United  States) and R version 4.2.1 (R 
Foundation for Statistical Computing). The normality of continuous 
variables was assessed using skewness and kurtosis, the graphical 
method, and the Kolmogorov–Smirnov test. Continuous variables with 
normal distributions were presented as mean ± standard deviation with 
the Student’s t-test employed for analysis; for non-normally distributed 
variables, the median (25th, 75th percentiles) was reported, and the 
Mann–Whitney U test was utilized. Categorical variables were 
expressed as frequencies (percentages), and the chi-squared test was 
applied. p < 0.05 was considered statistically significant.

Enrolled patients were randomly assigned to a training set (70%) 
and a validation set (30%). The candidate predictors included 20 
demographic and clinical characteristics and six cognition factors: age; 
BMI; sex; year of education; marital status; neck circumference; W-H 
ratio; AHI; proportions of N1, N2, N3, and REM sleep stages; longest 
apnea duration; longest hypopnea duration; sleep efficiency; mean 
SpO2; nadir SpO2; slowest HR; fastest HR; ESS; DST; DST_F; DST_B; 
SIE_T; SIE_N; and SCD. These candidate predictors were subjected to 
univariate regression analyses to determine their association with 
MCI. Given our study’s limited sample size and exploratory aim, 
we set a broader threshold for statistical significance to avoid missing 
key variables in the univariate analysis by using p < 0.2 as the criterion. 
Subsequently, two types of diagnostic models were developed using 
stepwise multivariable logistic regression analysis. (a) Basic model: 
utilizing the 20 demographic and clinical characteristic predictors. (b) 
Cognition factor model: incorporating one significant cognitive factor 
alongside the demographic and clinical predictors. The fitness of the 
models was assessed through the Hosmer–Lemeshow (HL) test, while 
their discriminatory performance was evaluated by calculating the 
area under the receiver operating characteristic’s curve (AUC). The 
agreement between predicted probabilities and observed frequencies 
was examined through the construction of a calibration plot by using 
the val.prob() function in R. The internal validity of the model was 
determined by a calibration plot derived from the validation set. 
Additionally, for clinical application, each model was represented 
visually with a nomogram. The score for each independent variable 
was determined from the scale in the first row and added to yield the 
total points, which was then translated into predicted probabilities in 
the final row. This study adheres to transparent reporting of a 
multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD) guidelines (19, 20).

https://doi.org/10.3389/fneur.2024.1431127
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.mocatest.org


Wang et al. 10.3389/fneur.2024.1431127

Frontiers in Neurology 04 frontiersin.org

3 Results

3.1 Patient and cognitive function 
characteristics

In this study, a total of 350 individuals suspected of OSA underwent 
PSG monitoring. Of these, 233 patients were diagnosed with OSA and 
included in the model development (Figure 1), with 89 having MCI 
and 144 not having MCI. Significant differences were observed between 
patients with and without MCI across various parameters including 
age, year of education, BMI, MoCA score, DST-F, DST-B, DST, SIE_T, 
and SIE_N (p < 0.05) (Supplementary Table S1).

3.2 Development and validation of 
MCI-detecting models

3.2.1 Candidate predictors for MCI
Patients with OSA were divided into training and validation sets, 

comprising 163 and 70 individuals, respectively (Figure 1). With the 
exception of DST_B and SIE_T scores, patients in the training and 
validation sets exhibited comparable characteristics (Table  1). 
Univariate regression analyses identified age, BMI, sex, year of 
education, longest hypopnea duration, N1 sleep stage ratio, REM sleep 
stage ratio, mean SpO2, DST, DST_F, DST_B, and SIE_T as significant 
predictors of MCI (p < 0.2) (Table 2).

3.2.2 Basic model
Multivariate analysis, with results reported as odds ratio [95% 

confidence interval (CI)], identified BMI [1.132 (1.039–1.233)] and 
years of education [0.754 (0.681–0.835)] as significant predictors, 
which were subsequently included in the basic model (Model 1) 
(Table 3). A nomogram for Model 1 was developed (Figure 2A). The 

model demonstrated good accuracy in detecting MCI, with AUC of 
0.803 (95% CI: 0.735–0.872) (Figure 3). The calibration curve for MCI 
prediction also indicated satisfactory performance (Figure 2B), with 
the validation set results supporting the nomogram’s predictive 
accuracy (p > 0.05) (Figure 2C).

3.2.3 Cognition factor model
In the development of cognitive factor models, five cognitive 

factors were sequentially added to the multivariable regression 
analysis. This process led to the creation of two models: Model 2 and 
Model 3. Model 2 incorporated BMI [1.174 (1.066–1.293)], years of 
education [0.816 (0.728–0.915)], N1 sleep stage ratio [1.041 (1.001–
1.081)], and DST_B score [0.552 (0.4–0.761)], while Model 3 
included BMI [1.14 (1.044–1.244)], years of education [0.821 
(0.733–0.919)], and DST score [0.759 (0.633–0.911)]. Both models 
were statistically significant (Table 3). Corresponding nomograms 
for each model were constructed (Figures 4A, 5A). The AUCs for 
Model 2 and Model 3 were 0.849 (95% CI: 0.788–0.91) and 0.83 
(95% CI: 0.763–0.896), respectively (Figure 3). Calibration plots for 
all models showed a good agreement between predicted and 
observed MCI cases (Figures 4B, 5B). The predictive performance 
of both nomograms was validated with the validation set 
demonstrating good predictive accuracy (p > 0.05) (Figures 4C, 5C).

4 Discussion

The prevalence of MCI was found to be 38.2% among the young and 
middle-aged population with OSA. Three diagnostic models, each with 
a corresponding nomogram, were developed. All three models 
demonstrated strong performance in detecting MCI. The basic model 
was the most straightforward, utilizing only BMI and years of education. 
The two additional models incorporating sleep architecture and 

FIGURE 1

Flowchart of subjects inclusion.
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cognitive factors exhibited improved performance. These models 
provide a convenient diagnostic tool for healthcare professionals in 
diverse healthcare settings, enabling prompt and necessary further 
evaluation and intervention for OSA patients at an increased risk of MCI.

4.1 Cognition characteristics

Prior research has predominantly focused on the middle-aged and 
older patients. In contrast, our study examined a younger cohort with 

a mean age of 39 years (21, 22). Age plays a crucial role in the 
development of both OSA and MCI. In middle-aged individuals with 
OSA, cognitive impairments are predominantly observed in the 
cognitive domains of executive, attention, and memory. Conversely, 
older patients showed impairment in global cognition rather than in 
specific cognitive domains (13). Our results showed significant declines 
in executive, attention, and memory domains among young and 
middle-aged patients with OSA + MCI. However, this decline was not 
reflected in subjective cognitive function reports. The discrepancy 
between subjective and objective cognitive impairment may lead to 
reduced emphasis on OSA and lower treatment adherence 
among patients.

4.2 Factors associated with MCI

While year of education has been recognized as a risk factor for 
MCI, age, sex, and obesity are well-established risk factors for OSA (23), 
In our study, these factors were also found to be associated with MCI in 
patients with OSA, and BMI and years of education emerged as 
independent risk factors for MCI. Higher BMI and fewer years of 
education were associated with an increased risk of MCI. The literature 
presents conflicting findings, with some studies reporting a correlation 
between the severity of OSA, as measured by AHI, and cognitive 
performance (24, 25), while others found no such association (26). 
Researchers have put forward that the heterogeneity of OSA complicates 
the accurate assessment of disease severity using the AHI (12). 
Conversely, the existing literature lacks sufficient evidence regarding the 
impact of mild to moderate OSA, as studies have predominantly focused 
on patients with moderate-to-severe OSA (AHI ≥30) (27). In this study, 
which included younger patients and those with mild OSA, the 
association between AHI and cognitive deficits was not observed. 
Despite being a hallmark symptom of OSA, EDS was observed in only 
41.4% of male and 44.6% female patients (28). Therefore, AHI and ESS 
score may not be  the most reliable predictors for MCI in patients 
with OSA.

Although the precise mechanisms linking OSA to cognitive 
decline remain a subject of debate (24, 29, 30), several key factors 
such as sleep fragmentation, chronic intermittent hypoxia, 
oxidative stress, and cerebrovascular alterations have been 
identified as potential contributors to the pathophysiology of 
cognitive deficits in OSA patients (24, 29). However, consensus on 
the specific pathways through which these deficits manifest is 
lacking. It is also possible that these factors interact in complex 
ways, indicating the need for further investigations to elucidate 
their interplay in the development of OSA-associated cognitive 
impairment. In our study, only stage N1 was incorporated into 
Model 2, suggesting a potential association between an increase in 
light sleep and MCI. This finding aligns with previous research 
conducted on older patients (age, >65 years) (25). Increased light 
sleep may impair cognition through two potential mechanisms. 
First, it could degrade nighttime sleep quality, leading to 
diminished daytime attention (30). Second, it may reduce deep 
sleep duration, resulting in decreased cortical activation and the 
structural deterioration of gray and white matter in key brain 
regions such as the frontal and parietal cortices, temporal lobes, 
hippocampus, and cerebellum, thereby adversely impacting 
cognitive function (29).

TABLE 1 Univariate analysis of training and validation sets.

Variable OSA t/ꭓ2 p

Train data 
(n =  163)

Valid data 
(n =  70)

Age 38.60 ± 8.45 39.37 ± 9.48 0.615 0.539

Male 141 (86.50) 62 (88.57) 0.187 0.666

Marital status (have 

partner)
140 (85.89) 54 (77.14) 2.688 0.101

Education 12.96 ± 3.93 12.30 ± 3.78 −1.195 0.233

AHI 41.97 ± 27.40 45.39 ± 26.17 0.887 0.376

BMI 28.10 ± 4.42 28.49 ± 4.35 0.615 0.539

W-H ratio 1.01 ± 0.74 0.96 ± 0.06 −0.599 0.55

Neck_cm 40.74 ± 3.36 40.62 ± 3.75 −0.245 0.807

ESS_score 8.92 ± 4.93 9.34 ± 5.11 0.592 0.555

Longest apnea 

duration_s
52.26 ± 27.91 55.24 ± 25.64 0.763 0.446

Longest hyponea 

duration_s
45.91 ± 20.27 51.40 ± 25.66 1.591 0.114

Sleep efficiency 83.52 ± 11.40 83.59 ± 11.83 0.043 0.965

Stage N1 12.50 ± 10.48 12.18 ± 9.82 −0.221 0.826

Stage N2 57.00 ± 14.82 59.53 ± 15.24 1.188 0.236

Stage N3 15.64 ± 11.55 14.34 ± 10.74 −0.804 0.422

Stage REM 12.02 ± 6.19 12.03 ± 6.65 0.008 0.994

Mean SpO2 91.01 ± 5.77 90.99 ± 5.75 −0.023 0.982

Lowest SpO2 73.31 ± 12.19 73.34 ± 11.10 0.021 0.983

Slowest HR 52.29 ± 6.98 51.93 ± 6.15 −0.38 0.704

Fastest HR 104.00 ± 13.63 106.16 ± 12.75 1.129 0.26

MoCA_optimal 

score
24.64 ± 3.52 24.39 ± 3.32 −0.511 0.61

MCI_China 56 (34.36) 33 (47.14) 3.392 0.066

DST_F 5.91 ± 1.41 5.83 ± 1.52 −0.414 0.679

DST_B 5.39 ± 1.70 4.80 ± 1.31 −2.847 0.005**

DST 11.31 ± 2.73 10.66 ± 2.31 −1.759 0.08

SIE_T 33 (24, 40.25) 28 (21, 37.44) −2.474 0.013*

SIE_N 0 (−1, 0) 0 (−1, 0) −0.608 0.543

SCD 3.09 ± 2.92 3.74 ± 2.71 1.582 0.115

*p < 0.05 and **p < 0.01. AHI, apnea hypopnea index; BMI, body mass index; W-H, waist-to-
hip; cm, circumference; ESS, Epworth Sleepiness Scale; s, second; HR, heart rate; MCI, mild 
cognitive impairment; REM, rapid eye movement; DST, digital span test, the score forward 
(DST_F) and the score backward (DST_B); SIE_T, time of interference effect; SIE_N, correct 
number of interference effect; SCD, subjective cognition decline questionnaire.
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TABLE 3 Diagnostic models for MCI in patients with OSA.

Model name Predictor B S.E. Wald Sig. Exp. (B) 95% CI

Lower Upper

Model 1

BMI 0.124 0.044 8.019 0.005 1.132 1.039 1.233

Education −0.282 0.052 29.434 <0.001 0.754 0.681 0.835

Constant −0.663 1.316 0.254 0.615 0.515 — —

Model 2

BMI 0.16 0.049 10.567 0.001 1.174 1.066 1.293

Education −0.203 0.058 12.24 <0.001 0.816 0.728 0.915

Stage N1 0.04 0.02 4.139 0.042 1.041 1.001 1.081

DST_B −0.594 0.164 13.156 <0.001 0.552 0.4 0.761

Constant −0.181 1.427 0.016 0.899 0.834 — —

Model 3

BMI 0.131 0.045 8.533 0.003 1.14 1.044 1.244

Education −0.198 0.058 11.698 0.001 0.821 0.733 0.919

DST −0.275 0.093 8.827 0.003 0.759 0.633 0.911

Constant 1.115 1.451 0.59 0.442 3.049 — —

BMI, body mass index; DST, digital span test; DST_B, the score of backward of digital span test.

TABLE 2 Univariate analysis of demographic and clinical characteristics in MCI and non-MCI groups (training set).

Variable B S.E. Wald df Sig. Exp. (B) 95% CI

Lower Upper

Age 0.035 0.02 3.076 1 0.079* 1.035 0.996 1.076

Male −0.758 0.463 2.677 1 0.102* 0.469 0.189 1.162

Marital status (have partner) 0.454 0.507 0.802 1 0.37 1.574 0.583 4.248

Education −0.272 0.05 29.404 1 <0.001* 0.762 0.691 0.841

AHI 0.005 0.006 0.744 1 0.388 1.005 0.993 1.017

BMI 0.108 0.04 7.385 1 0.007* 1.114 1.031 1.205

W-H ratio 1.746 2.867 0.371 1 0.543 5.732 0.021 1580.9

Neck_cm −0.015 0.051 0.085 1 0.771 0.985 0.891 1.089

ESS_score 0.027 0.034 0.67 1 0.413 1.028 0.962 1.098

Longest apnea duration_s −0.005 0.006 0.75 1 0.387 0.995 0.983 1.007

Longest hyponea duration_s 0.012 0.008 2.286 1 0.131* 1.012 0.996 1.029

Sleep efficiency −0.005 0.014 0.13 1 0.718 0.995 0.967 1.023

Stage N1 0.024 0.016 2.346 1 0.126* 1.024 0.993 1.056

Stage N2 −0.002 0.011 0.047 1 0.828 0.998 0.976 1.02

Stage N3 −0.007 0.015 0.248 1 0.619 0.993 0.965 1.021

Stage REM −0.037 0.027 1.895 1 0.169* 0.963 0.913 1.016

Mean SpO2 −0.046 0.028 2.708 1 0.1* 0.955 0.903 1.009

Lowest SpO2 −0.006 0.014 0.203 1 0.653 0.994 0.968 1.021

Slowest HR 0.015 0.025 0.362 1 0.547 1.015 0.967 1.066

Fastest HR 0.005 0.013 0.132 1 0.716 1.005 0.98 1.03

DST_F −0.482 0.129 13.97 1 <0.001* 0.618 0.48 0.795

DST_B −0.698 0.138 25.506 1 <0.001* 0.497 0.379 0.652

DST_total −0.394 0.078 25.27 1 <0.001* 0.674 0.578 0.786

SIE_T 0.034 0.011 10.2 1 0.001* 1.035 1.013 1.057

SIE_N 0.004 0.005 0.579 1 0.447 1.004 0.994 1.014

SCD 0.048 0.056 0.721 1 0.396 1.049 0.939 1.172

*p < 0.2. AHI, apnea hypopnea index; BMI, body mass index; W-H, waist-to-hip; cm, circumference; ESS, Epworth Sleepiness Scale; s, second; HR, heart rate; MCI, mild cognitive impairment; 
REM, rapid eye movement; DST, digital span test, the score forward (DST_F) and the score backward (DST_B); SIE_T, time of interference effect; SIE_N, correct number of interference effect; 
SCD, subjective cognition decline questionnaire.
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4.3 Comparison of models

Based on literature review, there is a scarcity of convenient models 
to detect MCI in patients with OSA. Prior studies have primarily 

focused on exploring peripheral body fluid biomarkers (e.g., plasma, 
serum, urine) and neuroimaging biomarkers (utilizing MRI-or 
PET-based) linked to MCI. One model utilized urinary AD7c-NTP 
in conjunction with other selected factors to evaluate the cognitive 

FIGURE 2

Nomogram and calibration plots of Model 1. (A) Nomogram. (B) Calibration plots for training set. (C) Calibration plots for validation set. BMI, body mass 
index.
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FIGURE 3

The area under the receiver operating characteristic’s curve (AUC) of the three diagnostic models.

risk in OSA patients (10). Although the model demonstrated a high 
level of accuracy in assessing cognitive risk (AUC: 0.841), concerns 
remain regarding the practicality of using urinary AD7c-NTP as a 
predictor, particularly in terms of financial burden and convenience. 
In our study, we developed three straightforward models for MCI in 
OSA patients. Our developed models, as well as the urinary biomarker 
models, displayed comparable performance in predicting 
MCI. Another model for predicting MCI was established at the time 
of writing this report (11). However, that model was originally 
designed based on data from middle-aged and older individuals, with 
one predictive factor derived from a self-compiled lifestyle scale. 
Although the specific profiles of cognitive deficits in OSA patients is 
an ongoing debate, consensus has been reached on deficits in 
attention, memory, and executive function (31, 32). Including 
additional cognitive domains in diagnostic models may enhance their 
predictive accuracy. Specifically, the assessment of memory and 
attention using DST was found to be  particularly effective for 
predicting MCI in OSA patients. This finding is consistent with 
previous imaging biomarker studies for MCI, which emphasizes the 
importance of the basal nucleus and cortical nucleus subregions in 
predicting the MoCA score (33). These brain regions are integral to 
memory and attention functions, which can be  evaluated 
through DST.

In the context of discriminatory performance, an AUC >0.7 is 
generally considered acceptable, and one >0.8 is particularly good. 
Our models which achieved this level of discriminatory performance 
without the incorporation of physiological predictors have 
demonstrated a satisfying performance. The MoCA typically requires 
around 10 min to complete (9), whereas our study observed that the 
DST can be  efficiently completed within 3–5 min. The DST’s 
streamlined design, with its two tasks and clear instructions, may also 
reduce the evaluator bias, often associated with the more complex 

MoCA. The simplicity of this approach could enhance the DST’s 
utility as an accessible screening tool for non-specialists and may 
improve the consistent identification of MCI, especially in settings 
where complex assessment protocols remain impractical. 
Furthermore, a brevity test might improve patient compliance and 
reduce the risk of assessment discontinuation, which is crucial for 
ensuring that MCI cases are not overlooked.

4.4 Models’ application

The basic model was the most straightforward, requiring only 
BMI and years of education. It enables the prediction of MCI presence 
without the need for PSG monitoring or other cognitive function 
assessments. Consequently, this model may serve as a valuable 
screening tool in large-scale populations. Model 2 required an 
additional factor related to sleep architecture, determined by PSG 
monitoring. This model exhibited the most discriminative 
performance. Compared to the basic model, the remaining two 
models each incorporated a cognitive function variable, which require 
a quiet environment for the assessment of cognitive functions to 
be accurate. Hence, the basic model is the most accessible, suitable for 
use in various settings, particularly in busy outpatient clinics and 
primary healthcare facilities. Model 2 is an appropriate choice when 
the PSG report is accessible.

4.5 Strengths and limitations

Considering the elevated risk of MCI in patients with OSA 
and the potential impact of CPAP treatment on cognitive 
deterioration (7, 34), identifying MCI in these patients is crucial. 
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The simplistic yet efficient models we devised can be customized 
for various contexts. This study has concentrated on young and 
middle-aged subjects, thereby contributing novel evidence from a 

relatively younger demographic. The guidance provided by 
interviewers during cognitive assessments may significantly 
influence participants’ performance. Therefore, all cognitive 

FIGURE 4

Nomogram and calibration plots of Model 2. (A) Nomogram. (B) Calibration plots for training set. (C) Calibration plots for validation set. BMI, body mass 
index; DST_B, the score of backward of digital span test.
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FIGURE 5

Nomogram and calibration plots of Model 3. (A) Nomogram. (B) Calibration plots for training set. (C) Calibration plots for validation set. BMI, body mass 
index.

evaluations in this study were conducted by a single physician 
specialized in cognitive disorders. This approach likely minimized 
biases stemming from inconsistencies in intra-and inter-
rater reliability.

This study has some limitations. First, the study cohort was 
solely based on outpatient clinic samples from a single institution. 
This may limit the generalizability of our models. Although the 
clinic and community samples shared similar cognitive profiles, 
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subtle differences in power of attention and quality of episodic 
memory were observed between them (35). Thus, it is imperative 
to validate the models’ performance by using community-based 
samples and data from multiple centers. Second, despite enrolling 
all eligible patients during the study period, the sample size was 
smaller than the optimal size. The validity of our developed 
models should be  confirmed by future studies with larger 
sample sizes.

4.6 Further research

Early detection of MCI may facilitate the prediction of potential 
impairment of decision-making capabilities (36). This predictive 
information can guide healthcare providers in offering additional 
support to patients when making decisions about CPAP treatment. 
Informing patients about their risk of MCI may help them make 
informed choices and improve adherence to CPAP therapy, 
potentially leading to modified long-term management for 
OSA. Timely early intervention is crucial for mitigating the risk of 
cognitive decline associated with aging and OSA. Further research is 
required to investigate the potential impact of clinical application of 
MCI nomograms on CPAP adherence and the prevalence of MCI. To 
enhance the accessibility of these models and minimize the need for 
human resources, efforts should be  directed towards developing 
cognitive function assessments that are web-based or utilize virtual 
reality technology. Given the feasibility of incorporating DST 
assessments into mobile applications, this approach may prove to 
be more accessible than other complex assessments.

5 Conclusion

We developed three straightforward diagnostic models for MCI 
in patients with OSA, predicated on a minimal set of easily accessible 
parameters, namely BMI, education years, DST performance, and N1 
sleep duration. These models serve as a practical diagnostic instrument 
for healthcare providers in diverse settings, streamlining the process 
of identifying OSA patients at an increased risk of MCI and requiring 
further assessment and intervention. Incorporating these models into 
routine clinical use can contribute to mitigate the progression of 
cognitive impairment in OSA patients, leading to more effective 
management of this common disorder. The models’ reliance on 
straightforward and accessible measures enhances their clinical utility 
and potential for widespread application.
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