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Pathological neuropathic pain is a common complication following spinal 
cord injury. Due to its high incidence, prolonged duration, tenacity, and limited 
therapeutic efficacy, it has garnered increasing attention from both basic researchers 
and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is 
multifaceted, involving factors such as structural and functional alterations of 
the central nervous system, pain signal transduction, and inflammatory effects, 
posing significant challenges to clinical management. Currently, drugs commonly 
employed in treating spinal cord injury induced neuropathic pain include analgesics, 
anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients 
often experiences suboptimal therapeutic responses or severe adverse reactions. 
Therefore, emerging treatments are emphasizing a combination of pharmacological 
and non-pharmacological approaches to enhance neuropathic pain management. 
We provide a comprehensive review of past literature, which aims to aim both the 
mechanisms and clinical interventions for pathological neuropathic pain following 
spinal cord injury, offering novel insights for basic science research and clinical 
practice in spinal cord injury treatment.
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1 Introduction

Traumatic Spinal cord injury (SCI) is a prevalent critical clinical condition, with an 
estimated incidence ranging from 15 to 40 cases per million, attributed to various factors such 
as traffic accidents, falls from high altitudes, and violent impacts (1, 2). Patients afflicted with 
spinal cord impairment often experience subsequent sensory and motor dysfunctions, leading 
to a cascade of complications including secondary pulmonary infections, deep venous 
thrombosis, urinary retention, pressure ulcers, pain, and psychological distress (3). 
Neuropathic pain (NP) stands out as one of the most prevalent complications following SCI, 
affecting approximately 53 to 80% of individuals (4). This condition manifests as spontaneous 
pain, paresthesia, or hyperalgesia below the level of injury, predominantly in the lower limbs, 
with pain intensity typically higher at night than during the day (5, 6). Spontaneous pain can 
be further categorized into continuous and intermittent forms; the former is characterized by 
sensations of burning or squeezing, while the latter presents as electric shock-like pain or 
tingling sensations. Hyperalgesia involves heightened responses to noxious stimuli, while 
allodynia refers to various abnormally evoked responses to innocuous stimuli (7, 8). These 
symptoms significantly diminish patients’ quality of life and impose substantial personal and 
socioeconomic burdens (4, 9, 10). Moreover, NP can precipitate anxiety disorders, depression, 
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substance abuse, and other mental health conditions, and in severe 
cases, suicidal ideation (11, 12).

The pathogenesis of NP following SCI is intricate and arises from 
a combination of multiple pathological reactions (13). The 
development and maintenance of pain involve the peripheral nervous 
system, the spinal cord, and the higher central nervous system 
structures above the spinal cord. Due to the complex pathogenesis of 
neuralgia after SCI, its treatment has always posed a significant 
challenge in clinical practice. Currently, drugs primarily used for NP 
treatment are opioid analgesics, anticonvulsants (14), such as 
Tramadol (15), gabapentin (16, 17), pregabalin (18), lamotrigine (19), 
and amitriptyline (20), which aim to alleviate pain. However, many 
patients remain dissatisfied with pain relief (21). Simultaneously, these 
medications are associated with numerous side effects, including fever, 
nausea, dizziness, rash, weakness, drowsiness, and other psychiatric 
disorders (14, 21, 22). Additionally, various other therapeutic 
strategies exist, such as natural compounds (23, 24), 
electroacupuncture stimulation (25), repetitive transcranial magnetic 
stimulation therapy (26), transcranial direct current stimulation (27), 
and spinal cord stimulation (28). In this review, we discuss and analyze 
the mechanisms and therapeutic measures of NP after SCI in hopes of 
aiding for better treatment.

2 Mechanisms of pathologic 
neuropathic pain following SCI

NP following SCI is characterized by alterations in normal sensory 
signals at various levels, including peripheral structures, the spinal 
cord, and supraspinal regions. These changes occur over weeks or 
months, leading to an amplification of nociceptive information and 
resulting in central sensitization of pain perception. NP following SCI 
is generally characterized by widespread and multifaceted sensory loss 
and/or chronic pain (29, 30). Pain was observed not only at the site of 
the injury but also in regions below the level of the injury, and it did 
not diminish over time. The underlying mechanisms are complex. To 
elucidate the pathophysiology of neuropathic pain following SCI, this 
section will be divided into three parts: the peripheral nervous system, 
the spinal cord itself, and the supraspinal structures. Figure  1 
illustrates the schematic representation of the pathophysiology of NP 
following SCI.

2.1 Peripheral level

Current mechanistic studies on NP after SCI have primarily 
focused on neuronal changes within pain pathways at both spinal and 
supraspinal levels, particularly those associated with inflammation 
and glial activation. However, chronic hyperexcitability also occurs in 
primary nociceptors following SCI, leading to altered function and 
spontaneous activity of peripheral receptors throughout the neural 
pathway (31). Neuronal alterations in spinal and supraspinal pain 
pathways affect central processes in primary sensory neurons, 
triggering hyperexcitable states and spontaneous activity in 
nociceptors, which consequently drive hypersensitivity and pain (31). 
Increasing preclinical evidence indicates that mitigating heightened 
activity in primary sensory neurons by selectively targeting receptors 
in peripheral nervous system effectively alleviates peripheral nervous 

system pain (32). Ritter et al. (33) reported on the downregulation of 
Kv3.4 potassium channels in dorsal root ganglion neurons post-SCI, 
highlighting its dysregulation in SCI-NP models. This downregulation 
contributes to the hyperexcitability of nociceptors, forming the basis 
for persistent pain after SCI. Yang et  al. (34) showed that 
downregulation of Nav1.8 channels was able to reduce SCI-induced 
spontaneous nociceptor activity, thereby further reducing 
SCI-NP. Two weeks post-cervical hemicontusion injury, contralateral 
nociceptor hyperexcitability was observed, attributed to diminished 
Kv3.4 channel membrane expression (35). In 2017, the group 
elucidated in a novel publication that spinal cord injury (SCI)-induced 
Kv3.4 channel dysfunction is mediated through the inhibition of the 
calcineurin phosphatase (36).

2.2 Spinal level

After a SCI, numerous pathological changes occur within the 
spinal cord, leading to a heightened focus on NP pathogenesis 
research. Key areas of study include alterations in neuronal excitability 
(37), glial cell activation (38, 39), upregulation of calcium channel 
expression (7, 40, 41), immune-inflammatory responses (42), 
disrupted neurotransmitter secretion (43), imbalances in neurotrophic 
factors (44), and the roles of non-coding RNAs (2).

2.2.1 Neuronal and glial cells in post-spinal cord 
injury neuropathic pain

Neuronal hyperactivity, characterized by heightened spontaneous 
excitability or abnormal increases in neuronal activity in response to 
thermal, chemical, and mechanical stimuli, is a notable phenomenon. 
In the context of SCI, ischemia and upregulated neurotrophic factor 
levels contribute to the structural atrophy of the spinal cord and 
synaptic circuit alterations. These changes induce spontaneous and 
secondary hyperexcitability in spinal cord sensory neurons, leading to 
a decreased threshold potential, enlarged receptive fields, and 
heightened nociception to similar stimuli (37, 45–47). The hallmark 
of this state is the shift of the resting membrane potential toward less 
negative values, potentially precipitating spontaneous depolarization 
and the subsequent activation of neurons, a phenomenon termed 
“central sensitization.”

Glial cells, including astrocytes, microglia, and oligodendrocytes, 
are widespread in the nervous system. SCI triggers the activation of 
astrocytes and microglia, resulting in a notable increase in cell size 
and the thickening of their processes (48). This activation leads to the 
release of bioactive substances and cytokines, which heighten the 
sensitivity of spinal dorsal horn nerves to pain sensation and 
contribute to the maintenance of pathological pain (38, 39, 49, 50). 
The time course of astrocyte activation appears to coincide with both 
the transition from acute to chronic pain and the maintenance phase 
of chronic pain (51). Astrocyte activation following SCI is dependent 
on the secretion of several proteins, including connexin 43, calbindin 
S100B, and aquaporin-4. In numerous NP models, there is a notable 
increase in the number of gap junction channels and an upregulation 
of connexin 43 (Cx43) expression (52). This upregulation contributes 
to the secretion of various cytokines involved in NP development. 
Cx43 is predominantly expressed in astrocytes, and gap junctions 
formed by Cx43 play a critical role in the pathogenesis of NP 
following SCI. Post-injury, there is a substantial increase in gap 
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junction channels both between neurons and glial cells, as well as 
among glial cells themselves. Additionally, glial cells exhibit enhanced 
sensitivity to pain mediators such as ATP. Prolonged exposure to ATP 
leads to the release of a cascade of cytokines from these cells, which 
further activates glial cells and exacerbates neuronal damage (52). 
Research indicates that Cx43 is rapidly and persistently upregulated 
in astrocytes following SCI. Furthermore, the use of Cx43 inhibitors 
has been linked to relief from NP (52, 53). S100β, a calcium-binding 
protein of the EF-hand family, is predominantly expressed by 
astrocytes within the central nervous system. Its production and 
secretion are markedly elevated in reactive astrocytes. At high 
extracellular concentrations, S100β exhibits neurotoxic effects and its 
secretion into the extracellular space further stimulates astrocyte 
activation, leading to S100β autocrine signaling (54). Inhibiting 
S100β production by astrocytes may provide an effective strategy to 
suppress astrocyte activation. In a rat model of incomplete SCI, the 
administration of an S100β inhibitor was found to alleviate NP 
following SCI. Histological analyses support the conclusion that 

inhibiting S100β production and astrocytic activation contributes to 
the reduction of NP. Moreover, there is a strong correlation between 
the intensity of S100β expression at the injury sites and the severity 
of NP (55). Aquaporins are a family of small, integral membrane 
proteins, with Aquaporin-4 (AQP-4) being a prominent member and 
one of the most extensively studied aquaporins (56). Evidence from 
both in vitro and in vivo studies suggests that AQP-4 plays a critical 
role in astrocyte activation. In wound healing and scratch assays, 
impaired migration was observed in astrocyte cultures derived from 
AQP-4 deficient mice compared to wild-type mice, with no significant 
differences noted among the wild-type samples (57). Auguste et al. 
employed an adult mouse astrocyte migration assay to investigate the 
involvement of AQP-4 in astrocyte migration in vivo. Their findings 
revealed that AQP-4 +/+ astrocytes exhibited preferential migration 
toward the wound site, whereas AQP-4 −/− astrocytes demonstrated 
significantly reduced migratory ability (56, 58). Additionally, Yu et al. 
utilized a rat T13 spinal cord hemi-section model and found that 
AQP-4 expression was significantly upregulated in in L4/5 spinal cord 

FIGURE 1

The schematic representation of the pathophysiology of NP following SCI.
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segments, primarily in astrocytes within the spinal dorsal 
horn (SDH).

Microglia play both deleterious and protective roles in NP 
following SCI (59). Activation of microglia results in the release of 
proinflammatory cytokines and chemokines that enhance neuronal 
reactivity, thereby exacerbating pain (60–62). The formation of a glial 
scar is a typical response to SCI. This scar comprises astrocytic 
processes and a significant quantity of glial fibers. Although the 
mechanical strength of a glial scar is inferior to that of a collagenous 
scar, it plays a crucial role in providing structural support to the 
injured tissue and in preventing further damage (63). However, glial 
scars can also contribute to the emergence of NP, with microglial 
activation considered necessary for glial scarring (64–66). 
Additionally, microglia have functions such as removing cell debris, 
tissue repair, promoting the release of anti-inflammatory cytokines, 
and aiding axonal regeneration, which can have a positive impact on 
pathological NP after SCI (67–69). The role of oligodendrocytes in the 
pathogenesis of NP has been less explored, but given their abundance 
as a type of glia, their role cannot be disregarded. Many multiple 
sclerosis patients experience pain alongside oligodendrocyte loss, 
suggesting a potential interaction between oligodendrocyte damage 
and human pain (70). Furthermore, studies have shown that 
oligodendrocyte ablation using diphtheria toxin in adult mice leads to 
the development of NP behaviors (71). As research on 
oligodendrocytes continues, the involvement of activated glial cells in 
pain transmission after SCI will be further elucidated.

2.2.2 Calcium channel in post-spinal cord injury 
neuropathic pain

Voltage-gated calcium channels depolarize the cell membrane, 
allowing calcium to enter the cell. This process has various 
physiological effects, including secretion, contraction, 
neurotransmission, and gene expression (72). The alpha-2-delta-1 
(Cavaα2δ-1) subunit protein plays a crucial role in the functional 
assembly of voltage-gated calcium channels, regulating calcium 
channel current density and synaptogenesis (73–75). Experimental 
evidence has shown that excessive up-regulation of the calcium 
channel Cavaα2δ-1 subunit protein in the spinal dorsal horn leads to 
the development of tactile allodynia in Peripheral nerve injury model 
(76). Conversely, blocking the up-regulation of the Cavaα2δ-1 subunit 
protein, such as through knockdown of Cavaα2δ-1, Cavaα2δ-1 
antisense oligodeoxynucleotide, or drugs inhibiting Cavaα2δ-1 
subunit protein, can prevent and treat the development of pathological 
NP (7, 77, 78).

2.2.3 Immuno-inflammatory reaction in 
post-spinal cord injury neuropathic pain

The immune-inflammatory responses triggered by SCI play a 
crucial role in the development of NP. Pro-inflammatory factors 
exacerbate local tissue damage, while anti-inflammatory factors aid in 
repair, depending on the timing and activation state of immune cells 
(79–82). After SCI, the permeability of the blood-spinal cord barrier 
(BSCB) increases, allowing macrophages, granulocytes, and 
lymphocytes from the bloodstream to infiltrate the injured spinal cord 
(83). These cells, along with other inflammatory factors, induce 
inflammatory responses in the tissues surrounding the injury site, 
leading to neuronal apoptosis, scarring, and dysfunction of peripheral 
nerves within the injured spinal cord (84–87). In the context of SCI, 

M1 macrophages exert detrimental effects on nerves, whereas M2 
macrophages promote neuronal and axonal regeneration and mitigate 
local inflammatory responses (88, 89). Following SCI, M1 
macrophages are rapidly and persistently upregulated, while M2 
macrophages are expressed more slowly and transiently. The 
imbalance in M1/M2 macrophage expression results in a robust 
inflammatory response that contributes to pain induction (90).

Moreover, the migration of T and B lymphocytes to the injury site 
after SCI initiates a multifaceted adaptive immune response. This 
response is characterized by increased expression of pro-inflammatory 
cytokines such as IL-1α, IL-1β, and TNF-α, which transmit noxious 
information to the central nervous system and exacerbate secondary 
injury in patients with acute or chronic SCI (91). These 
pro-inflammatory factors may sensitize injured spinal dorsal horn 
neurons by promoting the release of excitatory amino acids and 
substance P, thereby inducing pain (92, 93).

2.2.4 Neurotransmitter in post-spinal cord injury 
neuropathic pain

Serotonin (5-HT) is an endogenous neurotransmitter widely 
distributed throughout the nervous system, exerting dual effects of 
both causing and relieving pain (94, 95). While 5-HT1 and 5-HT2 
receptor subtypes generally have analgesic effects, models of persistent 
pain suggest that activation of the 5-HT3 receptor plays a role in 
sustaining pain (94). In the central nervous system, serotonergic 
neurons are primarily located in the raphe nucleus of the brainstem 
and play a crucial role in the descending analgesic system; intrathecal 
injection of 5-HT demonstrates a significant analgesic effect after SCI 
(96). Following SCI, 5-HT within the peripheral nervous system can 
transmit nociceptive signals either directly through second messengers 
or indirectly by modulating ion channel activity (97). Glutamate (Glu) 
in the central nervous system is implicated in the transmission of 
nociceptive information and neurotoxicity, closely associated with the 
onset of pain following SCI (98). Gamma-aminobutyric acid (GABA) 
serves as an inhibitory neurotransmitter, whose expression decreases 
post-SCI, consequently disrupting the “GABA-glutamate-glutamine 
cycle” in vivo (99, 100). Studies have shown that the administration of 
GABA receptor agonists significantly alleviates pain in rats with SCI 
(99). Substance P, a neuropeptide closely linked to pain, also 
participates in the regulation of NP following SCI. Inhibiting the 
release of substance P delays the onset of NP by 1 to 4 days (101). 
Additionally, substance P-fragment 1–7, a metabolite of substance P, 
demonstrates significant pain-alleviating effects when administered 
peripherally to alleviate SCI-induced pain (102).

2.2.5 Neurotrophic factors in post-spinal cord 
injury neuropathic pain

The neurotrophic family includes neurotrophin-3 (NT-3), ciliary 
neurotrophic factor (CNTF), basic fibroblast growth factor (bFGF), 
insulin-like growth factor (IGF), glial cell-derived neurotrophic factor 
(GDNF), and brain-derived neurotrophic factor (BDNF). These 
factors are crucial for promoting the survival, proliferation, and axonal 
regeneration of various cell types following SCI. Neurotrophin-3 
(NT3) is a potent neurotrophic factor that plays a crucial role in 
neuronal regeneration and functional recovery following SCI. Besides 
sustaining the survival of sympathetic neurons, sensory neurons, basal 
forebrain cholinergic neurons, and motor neurons, NT3 also supports 
the differentiation of dopaminergic neurons and promotes the 
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sprouting of lateral branches of the corticospinal tract (CST) (103). 
However, spinal cord function markedly improves with elevated NT3 
concentrations (104). Ciliary neurotrophic factor (CNTF), a 
polypeptide, activates signaling cascades including JAK/STAT, MAPK, 
ERK1/2, AMPK, mTOR, and AKT via its receptors (105–108). CNTF 
exerts pivotal roles in neuronal development and nervous system 
homeostasis by enhancing survival and differentiation in sensory, 
sympathetic, and motor neurons through the modulation of gene 
expression (109). Fibroblast growth factors (FGFs) are classified into 
acidic FGF (aFGF) and basic FGF (bFGF) based on their isoelectric 
properties. Both aFGF (acidic Fgf1) and bFGF can enhance the 
regeneration of spinal cord and dorsal root ganglion neurons in both 
human and animal models following SCI (110–112). aFGF exhibits 
strong neurotrophic effects and promotes neuronal growth (113). The 
mechanism of action of bFGF includes inhibiting apoptosis and c-fos 
gene expression at the injury site, stabilizing calcium and magnesium 
ion levels to prevent toxicity, regulating glial cell responses, and 
reducing glial scar formation (103). Glial cell line-derived 
neurotrophic factor (GDNF), a member of the transforming growth 
factor beta (TGF-β) superfamily, exhibits strong neurotrophic effects 
on motor, sensory, and dopaminergic neurons. It has been shown to 
effectively stimulate axonal regeneration and promote myelin repair 
in central nervous system (CNS) injuries (114). Transplantation of 
lentivirus-mediated GDNF-secreting cells into the SCI site 
significantly increased nerve fiber density at the injury site and 
improved motor function recovery (115). The truncated isoform of 
the tyrosine receptor kinase (BTrkB), a primary receptor for brain-
derived neurotrophic factor (BDNF), mediates BDNF signaling 
through various classical pathways (44, 116, 117). BDNF binds to the 
tropomyosin receptor kinase (Trk) B receptor, promoting the 
development, differentiation, and regeneration of sensory neurons, 
cholinergic neurons, dopaminergic neurons, and GABAergic neurons 
(114, 118). Additionally, BDNF facilitates myelination, regulates 
synaptic plasticity, and influences synaptic transmission (119). 
Notably, BDNF, as a member of the neurotrophic family, also 
modulates NP following SCI (44, 120, 121). Post-SCI upregulation of 
BDNF in the spinal dorsal horn is implicated in hyperalgesia and 
tactile allodynia, with TrkB-specific knockdown in mice markedly 
attenuating pain responses (44).

2.2.6 Non-coding RNAs in post-spinal cord injury 
neuropathic pain

Noncoding RNAs (ncRNAs) typically do not encode proteins but 
rather regulate protein expression and numerous cellular, biochemical, 
and physiological processes. They are generally classified into micro 
RNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs 
(lncRNAs) (2). MiRNAs, composed of approximately 22 nucleotides, 
are involved in secondary injury and repair processes following 
SCI. For example, reduced expression of miRNA-139-5p in the spinal 
cord of mice post-SCI was associated with pain hypersensitivity, 
whereas intrathecal administration of miRNA-139-5p agonist 
mitigated pain hypersensitivity, enhanced survival of damaged spinal 
cord neurons, and promoted motor function recovery (122). 
Moreover, miRNA-139-5p was found to reduce pain sensitivity and 
facilitate functional recovery in SCI mice by targeting 20-like kinase 
1 in mammalian sterile lines (122). Additionally, intrathecal injection 
of miRNA-132-3p mimics in rats mimicked hyperalgesia attributed to 
spinal α-aminomethyloxazolopropionate receptor 1 expression, 

implicating miRNA-132-3p in pain information processing (123). In 
a study utilizing peripheral blood samples from SCI patients for 
sequencing, two lncRNAs (LINC01119 and LINC02447) were directly 
implicated in the NP pathway (124). Zhao et al. (125) discovered a 
conserved lncRNA, Kcna2 antisense RNA, correlated with Kcna2 in 
rat DRG sensory neurons, which is significantly upregulated by 
peripheral nerve injury, resulting in Kcna2 repression and neuropathic 
pain onset. Conversely, inhibition of Kcna2 antisense RNA expression 
effectively reverses the neural injury-induced downregulation of 
Kcna2  in the DRG, thereby mitigating both the development and 
maintenance of neuropathic pain. This suggests a potential significant 
role for these lncRNAs as biomarkers in SCI-induced NP pathways. 
Circular RNAs, a type of abundant lncRNAs characterized by a closed 
continuous loop structure, exhibit high stability. These circRNAs, 
shown to be neuron-specific, modulate miRNA expression during NP 
pathology (2). The mechanisms and roles of non-coding RNAs in 
regulating NP after SCI are still in early stages and necessitate further 
in-depth investigation in the future.

2.3 Supraspinal level

The spinal cord, as a central component of the nervous system, not 
only causes localized pathological changes after injury but also 
transmits pain signals through its ascending pathways to the brainstem 
and thalamus, eventually projecting to the cerebral cortex. Following 
SCI, bidirectional signal transduction between the spinal cord and 
cerebral cortex is disrupted. This destruction of sensory and motor 
conduction pathways leads to plastic changes in the structure of the 
cerebral cortex. Such remodeling affects not only sensory and motor 
functions but also the regulation of nociceptive information. In the 
early stages of SCI, atrophy occurs in the primary sensory cortex (S1) 
and primary motor cortex (M1), with the degree of atrophy correlating 
positively with the severity of the injury (126). Functional magnetic 
resonance imaging (fMRI) studies have confirmed dynamic 
reorganization in the sensory and motor cortices following SCI in 
patients with complete cervical SCI, revealing decreased functional 
connectivity between these regions and highlighting the plastic 
changes in the brain after SCI (127). Patients experiencing pain 
post-SCI exhibit reduced gray matter volume in the paracentral lobule 
of the S1 region. Incomplete sensory afferent and efferent information 
may lead to maladaptive remodeling of the S1 region, which can 
contribute to pain development. Additionally, a robust correlation 
exists between the extent of S1 region reorganization post-SCI and the 
severity of persistent neuropathic pain (128). The subcortical 
thalamus, serving as a relay station for sensory information, receives 
various types of sensory input (excluding olfactory information) from 
across the body. It plays a crucial role in sensing and regulating 
nociceptive information and is considered a key site for endogenous 
pain modulation (129). Seminowicz et al. (130) demonstrated that, 
7 days after SCI, functional connectivity between the ventral 
posterolateral nucleus (VPL) and the S1 region of the thalamus 
decreased, while connectivity between the S1 region and other 
nociceptive processing cortical areas (such as the insula and anterior 
cingulate cortex) increased. By day 14 post-injury, connectivity 
between the VPL and the contralateral thalamus had increased. The 
temporal correlation between the enhanced functional connectivity 
within thalamic and cortical regions and the development of 
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mechanical hyperalgesia in SCI rats suggests that abnormal pain 
perception after SCI may result from dysregulation in functional 
connectivity between the thalamus and pain perception 
cortical regions.

Metabolic changes in the brain after SCI also significantly impact 
NP. Magnetic resonance spectroscopy (MRS) can detect alterations in 
brain metabolism in NP patients following SCI, providing further 
insight into pain mechanisms. Studies have found changes in cingulate 
metabolism in NP patients post-SCI, including decreased levels of 
N-acetylaspartate (NAA) and γ-aminobutyric acid (GABA), and 
increased levels of inositol (Ins) (131, 132). These metabolic changes 
correlate with pain severity, with the NAA/Ins and glutamate (Glu)/
Ins ratios significantly affected. Additionally, GABA aggregation has 
been associated with changes in functional connectivity, with thalamic 
GABA content negatively correlating with connectivity in 
thalamocortical tracts. Specifically, greater loss of thalamic GABA 
corresponds to closer connections between the VPL and other brain 
regions such as S1, S2, and the Insular lobe (131).

3 Pharmacological therapeutic 
interventions of pathologic 
neuropathic pain following SCI

3.1 Commonly used clinical 
pharmacological therapeutic interventions 
for post-spinal cord injury neuropathic 
pain

Clinically, various drug treatments are available for NP following 
SCI. However, some patients may experience poor therapeutic 
outcomes or serious adverse reactions (21, 133). Anticonvulsants are 
commonly utilized in clinical practice, with gabapentin drugs 
(pregabalin, gabapentin) being particularly prevalent. These drugs do 
not directly act on GABA receptors but enhance inhibitory neuronal 
activity through interactions with N-type voltage-gated calcium 
channels or indirectly on NMDA receptors. Additionally, they reduce 
glutamate release and inhibit nociceptive information transmission in 
chronic constriction injury model (134), but have not been validated 
in SCI models. Numerous studies have demonstrated the pain-
relieving effects of pregabalin and gabapentin in SCI-induced NP, with 
common adverse effects including mild to moderate transient 
drowsiness, dizziness, and edema (133). Amitriptyline, a commonly 
used tricyclic antidepressant in clinical practice, has demonstrated 
some analgesic efficacy for NP following SCI in randomized controlled 
trials (135). Tricyclic antidepressants exert their effects through 
multiple mechanisms, primarily by inhibiting the reuptake of 
norepinephrine and serotonin, thus inhibiting nociceptive information 
transmission (136, 137). Common side effects of amitriptyline at an 
average maximum daily dose of 50 mg include dry mouth, drowsiness, 
fatigue, constipation, increased cramps, urinary retention, and 
sweating (133, 138). Anticonvulsants like lamotrigine reduce neuronal 
hyperexcitability by inhibiting voltage-sensitive sodium channels 
(Nav) and inhibiting the pathological release of glutamate (19). 
However, lamotrigine is indicated only for NP caused by incomplete 
SCI and has side effects such as vertigo, nausea, visual impairment, 
and rash (19, 139). Opioid analgesics are also clinically utilized to 
manage neuralgia post-spinal cord injury. Tramadol’s analgesic effect 

results from weak opioid-like mechanisms and monoaminergic 
actions, as well as a synergistic effect of the two. A randomized, 
double-blind, controlled study demonstrated that tramadol reduced 
pain intensity scores and injury severity in 35 SCI patients after 
4 weeks of treatment, significantly alleviating pain below the injury 
level and improving sleep, although it did not significantly improve 
depression (15). Therefore, the pursuit of newer, more effective, and 
safer treatment modalities for post-SCI neuralgia continues.

3.2 Natural compound for post-spinal cord 
injury neuropathic pain

The development of a novel drug entails a substantial investment 
of time and financial resources (140, 141). Therefore, natural 
compounds have garnered attention in the treatment of various 
diseases in recent years due to their minimal side effects and cost-
effectiveness (142). Han et al. developed a rat model of thoracic SCI 
to demonstrate that intrathecal administration of resveratrol 
effectively alleviated pain post-SCI in rats, possibly by inhibiting 
neuroinflammation via the JAK2/STAT3 signaling pathway in the 
lumbar spinal dorsal horns (143). Additionally, several other natural 
compounds, including salidroside, betulinic acid, and quercetin, have 
shown promising results in the function recovery of post-spinal cord 
injury, but more evidence is needed to confirm these role in treating 
neuropathic pain (144–146).

3.3 Antisense oligonucleotides as a 
prospective therapeutic agent for 
post-spinal cord injury neuropathic pain

Antisense oligonucleotides represent a class of drugs designed to 
modulate expression levels by targeting both coding and non-coding 
RNAs, showing considerable potential across diverse fields including 
genetic diseases, cancer, neurodegenerative diseases, and NP (147). 
These oligonucleotides exhibit specificity based on their sequence, 
thereby offering the capability to target virtually any known RNA 
sequence. Their customizable sequences and chemistry render them 
highly versatile and adaptable (147). This therapeutic approach has 
garnered approval from the US Food and Drug Administration (FDA) 
for clinical treatment (148). However, the necessity for high-quality 
randomized controlled clinical trials persists to validate its efficacy 
and assess associated risks in future applications. Pharmacotherapy 
remains an important integral part of the treatment of SCI-induced 
NP due to its high compliance and relatively small financial burden 
(Figure 2).

4 Non-pharmacological therapeutic 
interventions of pathologic 
neuropathic pain following SCI

4.1 Electroacupuncture stimulation for 
post-spinal cord injury neuropathic pain

Acupuncture, a traditional Chinese medicine treatment method 
with over three thousand years of practical experience, has been 
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utilized in the management of various diseases (149). 
Electroacupuncture (EA) is a specific acupuncture technique that has 
demonstrated efficacy in treating numerous SCI-related conditions, 
such as dyskinesia, NP, and spasticity (150). However, the precise 
mechanism underlying electroacupuncture’s effectiveness in 
alleviating NP remains unclear and warrants further investigation. Liu 
et al. explore the effect that electroacupuncture treatment in SCI rats 
activating miR-214,which targeted pain related protein Nav1.3, may 
reduce NP after SCI Given its non-invasive nature, safety profile, 
affordability, and minimal side effects, electroacupuncture holds 
significant promise in managing NP post-spinal cord injury.

4.2 Non-invasive stimulation techniques 
for post-spinal cord injury neuropathic 
pain

Repetitive transcranial magnetic stimulation (rTMS) is a 
non-invasive neuromodulation technique that utilizes electromagnetic 
coils to generate magnetic fields, forming pulse stimuli in the cerebral 
cortex and even deep brain regions, thereby regulating cortical 
excitability and promoting functional remodeling (151). In published 
studies, the most common stimulation site for NP following SCI with 
rTMS is the M1 region, and the most commonly used dose is 5–10 Hz, 
which has been shown to produce the best analgesic effects after 5–10 
treatments (152). In a randomized double-blind controlled study of 
rTMS for acute NP (pain duration ≤3 weeks) after SCI, 48 patients 
were randomly divided into a high-frequency rTMS group (rTMS 
stimulation frequency of 10 Hz, stimulation site of M1 contralateral to 
the affected hand, once a day, for a total of 18 sessions) and a sham 
stimulation group. No analgesic drugs (such as gabapentin, pregabalin, 
etc.) were taken during the treatment period, and the results showed 
that the high-frequency rTMS group had significantly reduced pain 

after treatment compared with the sham stimulation group (153). 
Other studies have also investigated the effects of 10 Hz rTMS over the 
dorsolateral left prefrontal cortex (DLPFC) region (once a day for a 
total of 10 treatments over a 2-week period) on NP following SCI 
(154). Results showed a significant decrease in daily pain scores during 
stimulation in the high-frequency rTMS group but not in the sham 
group. Although the target areas stimulated in the rTMS studies were 
different, they all resulted in significant pain reduction for the patients. 
Regarding the mechanism of action, transcranial magnetic stimulation 
seem reduce pro-inflammatory cytokines, such as IL-1b, IL-6, and 
TNF-a, while increasing anti-inflammatory cytokines, including IL-10 
and brain-derived neurotrophic factor (BDNF), in cortical and 
subcortical tissues (152); additional in vitro and in vivo studies and 
clinical trials are required to investigate these mechanism. This 
inhibits neuroinflammation after SCI, consequently reducing NP.

Transcranial direct current stimulation (tDCS) is a non-invasive 
technique that employs a constant, low-intensity direct current 
(typically ranging from 1 to 2 mA) to modulate neuronal activity in 
the cerebral cortex (155). Research has explored the application of 
tDCS, specifically with a single current intensity of 2 mA, on NP 
patients following SCI. Assessment was conducted after 20 min of 
continuous treatment, revealing significantly lower pain scores in the 
tDCS group compared to the sham stimulation group immediately 
post-treatment and 24 h later. This suggests that the analgesic effect of 
single tDCS extends beyond the stimulation period, manifesting as an 
aftereffect well beyond the duration of stimulation (156). In a 
randomized controlled trial, the efficacy of tDCS on NP post-SCI was 
evaluated in two treatment phases separated by a 3-month interval. In 
the initial stage, 33 patients were randomly assigned to either the 
tDCS group (n = 16) or the sham stimulation group (n = 17). The 
treatment involved administering tDCS at a 2 mA DC intensity, once 
every 20 min, once daily, for a total of 5 days. In the subsequent phase 
(comprising 9 patients in total, 6 in the tDCS group and 3 in the sham 

FIGURE 2

Current types of pharmacological treatments for SCI-induced neuropathic pain.
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stimulation group), a further 10 tDCS sessions (one session per day 
lasting 20 min) were administered. Results demonstrated a significant 
reduction in pain scores in the tDCS group compared to the sham 
group at the 1-week follow-up in the first phase and at the 4-week 
follow-up in the second phase (157). The most widely proposed 
mechanism underlying the effectiveness of tDCS for NP following SCI 
involves the modulation of spontaneous cortical neuronal activity 
through polarized resting membranes. This modulation affects various 
pain-related structures, including the anterior cingulate gyrus and 
periaqueductal gray, ultimately modulating the affective components 
of pain perception and experience (27). In summary, both rTMS and 
tDCS have demonstrated analgesic effects on NP following 
SCI. However, limited clinical data and studies exist, necessitating 
further research to elucidate their effects and mechanisms of action.

4.3 Invasive stimulation techniques for 
post-spinal cord injury neuropathic pain

Spinal cord stimulation (SCS) was initially proposed based on 
Melzack and Wall’s gating theory, which posits the existence of a “gate 
action” mechanism within the spinal cord and brain’s pain conduction 
pathways. According to this theory, afferent impulses from Aδ and C 
fibers open the gate, allowing pain signals to be transmitted to the 
central nervous system and produce the sensation of pain. Conversely, 
when SCS stimulates Aβ fibers, the gate closes, resulting in retrograde 
inhibition of nociceptive signals entering the spinal cord, thus 
achieving analgesia (158). Subsequent research has revealed that SCS 
not only activates brainstem nuclei and the rostral ventromedial 
medulla oblongata but also modulates nociceptive signals at the spinal 
cord level through descending fiber projections from supraspinal cell 
regions (159). Furthermore, SCS can activate the frontal gyrus, limbic 
system, and thalamus via the pain ascending conduction pathway, 
thereby exerting analgesic effects and improving cognitive function 
(160). Spinal cord electrical stimulation has been widely utilized for 
various refractory pain conditions. This procedure involves identifying 
the corresponding spinal cord segments of pain under local anesthesia 
and implanting electrodes into the spinal epidural space to deliver 
pulse currents and stimulate the spinal cord nerves (28). The post-
operative spinal cord electrical stimulation typically occurs in two 
phases: a test phase and a permanent implant phase. During the test 
phase, a trial system is implanted for approximately one week to assess 
its effectiveness. If there is a 50% or greater improvement in pain 
baseline values, the permanent implant system is then implanted 
(161). SCS has been found to be more effective in improving pain in 
patients with incomplete SCI compared to those with complete 
SCI. This efficacy may be influenced by factors such as the distance 
between the injury site and the implanted SCS electrode, as well as the 
number of residual intact nerve fibers (28). With advancements in 
technology, various new modes of SCS have emerged. One such mode 
is burst SCS, which is characterized by low-energy delivery. Burst SCS 
applies five continuous wave pulse sequences at specific internal 
frequencies (500 Hz) and pulse widths (1 ms, with intervals of 1 ms), 
occurring 40 times per second. Burst SCS has been shown to 
effectively inhibit pain below the level of injury in patients with 
complete paraplegia. A case report demonstrates a significant 
reduction in the frequency and intensity of pain, with therapeutic 
effects lasting over three months (162). However, extensive clinical 

trials are still required to substantiate these findings. The other is high-
frequency SCS therapy, which provides electrical stimulation pulses 
of short duration (30 μs) and high frequency (10,000 Hz) without 
paresthesia compared with traditional spinal cord stimulation. A 
sham-controlled study showed that both high-frequency SCS and 
burst SCS could reduce levels of SCI-related NP (163). In summary, 
for patients with NP after spinal cord injury, non-pharmacological 
treatment has different characteristics (Figure 3), but all of them have 
great potential in reducing pain and improving quality of life.

5 Future and prospect of NP treatment 
after SCI

Despite the variety of treatments available for SCI, current options 
remain insufficient to fully address the associated clinical problems, 
and many patients continue to experience persistent pain. Recent 
research has increasingly focused on the role of gut microbiota in 
SCI. Chen et al. analyzed the relationship between gut microbiota, 
inflammatory markers in serum, and pain behavior parameters. Their 
findings revealed a significant increase in the abundance of 
Helicobacter pylori, Bacillus spp., Streptococcus spp., Roche spp., and 
Lactobacillus spp., while genera such as Ignacillus spp., Butyric monas 
spp., and Escherichia spp. showed reduced abundance. Another study 
highlighted that oral antibiotics could induce changes in gut 
microbiota that mitigate the development of NP, accompanied by 
improvements in inflammatory parameters. This suggests that gut 
microbiota might influence the development and progression of NP, 
potentially through the modulation of pro-inflammatory and anti-
inflammatory T cells (164). These findings could offer new avenues 
for studying NP following SCI. Additionally, NP after SCI is often 
linked with psychological factors such as fatigue, anxiety, and 
depression. In this context, mental imagery (MI) therapy has garnered 
increasing interest. Research indicates that MI can effectively alleviate 
NP in SCI patients (165). This method is noted for its simplicity, safety, 
and reproducibility; however, its efficacy can vary among patients. 
While most studies report that MI significantly relieves NP after SCI 
(166, 167), some research suggests that MI may be less effective or 
even exacerbate pain in certain cases (168, 169). These discrepancies 
may stem from differences in SCI severity, timing, and location of 
injury, or variations in MI treatment protocols. Therefore, further 
investigation is necessary to clarify its efficacy and underlying 
mechanisms. Nanomedicine represents an emerging field within 
nanotechnology, characterized by unique biological properties such 
as a high surface-to-volume ratio, distinctive structural attributes, 
capacity for surface modification, ability to permeate biological 
barriers, and extended circulation time in the bloodstream (170). The 
utilization of nanomedicines can significantly enhance the 
pharmacokinetic and pharmacodynamic profiles of drugs, enable 
prolonged release, and achieve targeted delivery to specific sites 
through labeling with selective ligands. In the realm of cell therapy, 
nanomedicine plays a pivotal role by efficiently guiding cell 
differentiation and trans differentiation, and mitigating immunogenic 
responses associated with cell therapy through the encapsulation of 
various proteins and polymers. In gene therapy, nanomaterials serve 
as proficient vectors for delivering different genes, thereby addressing 
the limitations inherent in both viral and non-viral vectors (171). 
Hence, nanomedicine enables targeted drug delivery for neuropathic 
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pain (NP) following spinal cord injury (SCI), enhancing therapeutic 
efficacy and minimizing side effects. Furthermore, it facilitates the 
orientation of reparative cells, biological factors, and genes, thereby 
advancing spinal cord regeneration and alleviating pain. 
Nanomaterials offer a novel and promising vehicle for the treatment 
of NP following SCI, demonstrating substantial potential for future 
development. In clinical practice, it is essential to differentiate patients 
based on factors such as symptomatology, pain levels, complications, 
gender, and age. Tailoring treatment plans to these individual 
differences, and employing a combination of therapeutic approaches, 
may lead to optimal outcomes.

6 Conclusion

Neuropathic pain is a prevalent complication of SCI, described by 
patients as an intolerable condition that significantly impacts their 
long-term quality of life. It emerges as a consequence of neuronal 
remodeling subsequent to SCI, representing a pathological response 
triggered by neurological injury induced by local mechanical 
compression, ischemia, and inflammation of the spinal cord. The 
pathogenic mechanisms underlying NP following SCI are intricate, 
with most studies focusing on rodent models. This review 
comprehensively summarizes current research on the mechanisms 
underlying spinal cord injury (SCI)-related neuropathic pain (NP). At 
the peripheral level, it discusses nociceptor hyperexcitability and 
spontaneous activity. At the spinal cord level, it addresses changes in 
neuronal excitability, glial cell activation, calcium channel expression, 

immune-inflammatory responses, neurotransmitter secretion 
disorders, neurotrophic factor imbalances, and the role of non-coding 
RNAs. Furthermore, at the supraspinal level, it explores structural 
plasticity changes in brain regions and alterations in brain metabolism.

In clinical practice, the primary treatments for SCI-related NP 
typically involve analgesic, anticonvulsant, antidepressant, and 
antispasmodic medications. However, their effectiveness is often 
limited, and they may elicit adverse reactions that do not fully address 
the needs of patients. Emerging therapies for SCI-NP include novel 
drugs such as natural compounds and antisense oligonucleotides, 
which offer advantages such as minimal side effects, easy access to raw 
materials, and adaptability. Nonetheless, their established therapeutic 
efficacy requires validation through additional clinical trials.

Electroacupuncture, a therapeutic modality in traditional Chinese 
medicine, plays a significant role in the management of 
SCI-NP. Particularly beneficial for patients unable to undergo 
conventional medical treatment, electroacupuncture offers fewer side 
effects and enhanced therapeutic outcomes. Furthermore, it can 
be  integrated with other treatments to potentially reduce dosage 
requirements and achieve a synergistic therapeutic effect.

Both rTMS and tDCS are non-invasive brain stimulation 
techniques that have shown promise in reducing NP following SCI, 
thereby improving patients’ quality of life. However, the lack of a 
definitive and standardized treatment regimen for either rTMS or 
tDCS, along with the heterogeneity of existing studies in terms of 
intervention cycles and outcome measures, complicates comparisons 
between interventions and anticipated outcomes. This lack of 
consensus in clinical application results in variable treatment 

FIGURE 3

Current nonpharmacological treatments for SCI-induced neuropathic pain and their characteristics.
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outcomes. While spinal cord stimulation holds promise for treating 
NP after SCI, research in this area is still in its developmental stages. 
Practical limitations such as cost, intervention protocols, treatment 
frequency, and technical variability, as well as ethical considerations 
regarding the use of sham interventions, hinder its widespread 
adoption. Further research is warranted to establish its precise efficacy. 
In cases where patients exhibit poor responsiveness to conventional 
and non-invasive treatments, early consideration of spinal cord 
stimulation intervention may be  beneficial in delaying pain 
progression and improving overall symptoms and quality of life.

In conclusion, the intricate mechanism underlying NP after SCI 
underscores the need for individualized treatment plans tailored to 
each patient’s unique condition. Optimal outcomes are likely to 
be achieved through a combination of various treatment modalities.
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