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Stress and the domestic cat: have 
humans accidentally created an 
animal mimic of 
neurodegeneration?
Ingrid R. Niesman *

Department of Biology, SDSU Electron Microscopy Facility, San Diego State University, San Diego, CA, 
United States

Many neurodegenerative diseases (NDD) appear to share commonality of 
origin, chronic ER stress. The endoplasmic reticulum (ER) is a dynamic organelle, 
functioning as a major site of protein synthesis and protein posttranslational 
modifications, required for proper folding. ER stress can occur because of 
external stimuli, such as oxidative stress or neuroinflammatory cytokines, 
creating the ER luminal environment permissive for the accumulation of 
aggregated and misfolded proteins. Unresolvable ER stress upregulates a 
highly conserved pathway, the unfolded protein response (UPR). Maladaptive 
chronic activation of UPR components leads to apoptotic neuronal death. In 
addition to other factors, physiological responses to stressors are emerging 
as a significant risk factor in the etiology and pathogenesis of NDD. Owned 
cats share a common environment with people, being exposed to many of 
the same stressors as people and additional pressures due to their “quasi” 
domesticated status. Feline Cognitive Dysfunction Syndrome (fCDS) presents 
many of the same disease hallmarks as human NDD. The prevalence of fCDS 
is rapidly increasing as more people welcome cats as companions. Barely 
recognized 20 years ago, veterinarians and scientists are in infancy stages 
in understanding what is a very complex disease. This review will describe 
how cats may represent an unexplored animal mimetic phenotype for human 
NDD with stressors as potential triggering mechanisms. We will consider how 
multiple variations of stressful events over the short-life span of a cat could 
affect neuronal loss or glial dysfunction and ultimately tip the balance towards 
dementia.
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Introduction

Despite the original hypothesis proposed by Chambers et al. (1), the domestic cat is an 
underutilized model for NDD. When compared to transgenic rodent models or primates (2), 
felines are the only species extensively studied in which β-amyloid plaques (Aβ) and 
neurofibrillary hyperphosphorylated tau tangles (NFT) are found naturally comorbid (1, 3–6). 
Finding a translational animal model where early dementia-like behaviors and correlative 
biochemical signatures can predict final cognitive decline is a big leap forward in our 
understanding of the etiology of these devastating diseases. Cats, with significantly shorter life 
spans than humans, can bridge our gap in understanding the temporal progression in NDD 
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and in our current futility in finding clinically efficacious therapies 
that go beyond simple temporary cognitive gains.

Modern human and animal medicine has greatly lengthened 
lifespans with a staggering increase in reported cognitive issues and 
dementia in people and cats alike. There is an emerging consensus 
within veterinary medicine on the need to understand senile dementia 
in our pet population (7–11). fCDS is currently a diagnosis of 
exclusion and like human counterparts; there are limited treatment 
options. In a seminal paper published in 2007, Dr. Gunn-Moore and 
Dr. Head review the lab evidence, behavioral changes and 
neuropathology unique to fCDS in geriatric cats (12). Recent studies 
confirm and extend the human-like neuropathology phenotype as 
ever closer to many human NDD (13, 14). Much like humans in early 
stages of NDD, the initial clinical feline characteristics present as 
disorientation, short-term memory loss, sleep/wake disturbances, 
incontinence, anxiety and increased vocalizations (15).

The unfolded protein response (UPR) is a highly conserved 
evolutionary pathway. Within the endoplasmic reticulum (ER), 
nascent polypeptide chains are synthesized on associated ribosomes 
or imported for post-translational modifications, and further folded 
into cellular proteins to be  exported through Golgi-mediated 
pathways. Imbalances in this “conveyor belt” system cause backups 
and accumulation of defective or misfolded proteins, in essence 
blocking the carefully refined proteostasis between synthesis and 
degradation of cellular proteins; reviewed in (16–22). When the 
tipping point between accumulation and ER degradation of defective 
proteins in the ER lumen occurs, a condition called “ER stress” results. 
Resolving ER stress is critical to cell survival. Eukaryotic cells have 
evolved three distinct signaling pathways (UPR) to reprogram protein 
expression at multiple levels. Gene expression is regulated by 
activating transcription factor 6 (ATF6). Protein synthesis is regulated 
by eukaryotic initiation factor 2 (eIF2α) kinase (PERK), and 
modulation of protein folding through type I transmembrane protein 
inositol requiring 1 (IRE1α). These pathways are linked to 
ER-associated protein degradation (ERAD) and lysosomal 
degradation to remove problematic proteins (16).

Mild ER stress from temporary or mild physiological or 
pathological events is resolved through adaptive cytoprotective UPR 
mechanisms. However, continuous, or excessive protein synthesis of 
imperfect product or a slowing of the transport or degrading systems 
induces prolonged activation of UPR pathways, leading to maladaptive 
cellular signaling and ultimately, cell damage or death. Given the 
abundance of potential aggregating proteins associated with NDD, it 
is not surprising that links between ER stress and upregulation of UPR 
mechanisms is an emerging therapeutic area for all forms of NDD 
(18, 23–26).

Another critical factor upregulating maladaptive UPR pathways 
is the presence of neuroinflammation. Activated UPR components 
have been shown to increase known pro-inflammatory cytokines, 
IL-6, TNF-α, IL-1β, through the common transcription factor nuclear 
factor-κβ (NF-κβ) (27). Within the CNS, both microglia and astrocytes 
can synthesize and secrete pro-inflammatory proteins and cytokines, 
beginning a positive feedback loop and crosstalk between increasing 
ER stress, upregulation of UPR mechanisms and increasing levels of 
neuroinflammation. This prolonged activation of pro-apoptotic 
components of the UPR eventually leads to synaptic loss or neuronal 
cell death (28). Aβ accumulation may be  an early triggering 
mechanism for this crosstalk loop initiation. When Aβ is administered 

to rats, an upregulation of ER stress and inflammatory markers is seen 
with a concomitant increase in cognitive impairment (29).

Oxidative stress is the third branch of a triumvirate with UPR 
components and neuroinflammation in the pathway to NDD. This 
state is an imbalance between reactive oxygen species (ROS) and 
antioxidant mediators (redox). Outside of mitochondrial oxidative 
phosphorylation, the ER generates about a quarter of total cellular 
ROS through protein folding (30). Disulfide bridging, required for 
some protein folding, occurs in the oxidizing environment of the ER 
lumen. Problems arise when oxidative stress overwhelms ER ROS 
defenses and protein transport is impeded (31). The UPR is then 
activated and if the excess ROS becomes chronic, neuronal apoptosis 
is likely (32).

Cats are unique pets. Dogs have lost genetic components found in 
their wild counterparts, allowing for easier cohabitation with humans 
(33). Paleogenetic studies support the concept that cats, not humans, 
initiated their coexistence (34, 35). Modern feline DNA is nearly 
identical between the suspected wild ancestor of our modern housecat; 
Felis sylvestris lybica and current pet or feral felines (Felis sylvestris 
catus). However, key genetic signatures have been found in specific 
genes associated with behavior and reward systems (36) in cats living 
with humans, demonstrating the physical and social pressures cats 
may experience when dwelling amongst humans. Indoor only cats 
display enhanced problem-solving in a task that assesses social 
engagement with humans over mainly outdoor living cats (37). Actual 
feline facial morphology and expressions have been shaped by 
interactions with humans (38). Humans apparently like their 
housecats to appear “cute” over feral. Cats may be able to somewhat 
adapt to our world but the stressors can occasionally become 
overwhelming (39), with predictable behavioral issues.

There are few comparative studies of stressors between human 
and felines (40, 41). Funding for companion animals, cats in particular, 
is limited for pathologies such as fCDS. Given those constraints, 
chronic stressors must be viewed synergistically between humans and 
cats. Common environmental stressors are shared within a household 
and affect each species simultaneously (42). Many studies exist on 
effects of stressors on humans or model systems, like mice, rats, or 
dogs, but far fewer exist for felines alone. This review will breakdown 
what is known about the effects of predictable stressors on cats, 
categorized as environmental, social-behavioral, and physiological 
stress, and the potential for oxidative stress, neuroinflammation or 
increased expression of activated UPR from these stressors to induce 
cellular damage or cell death leading to an NDD-like pathology 
(Figure 1).

Experimentally known effects of stressors 
on domestic cats

Environmental stressors
Although this review will mainly focus on research using client-

owned cats, rather than feral individuals, many of the same 
environmental conditions exist for free-roaming or feral animals. 
Toxic chemicals, noises and excessive lighting exist as abundantly in 
outdoor environments as in our home settings. One of the most 
prominent indoor pollutants is tobacco smoke and the associated 
toxins from either cigarettes or vaping. Cats have highly developed 
olfactory systems, thus, even small amounts of second or third hand 
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smoke evoke biochemical responses. Like human counterparts, cats 
respond to tobacco smoke with increased levels of pro-inflammatory 
cytokines, indicating states of enhanced oxidative stress (43). As 
neurons require significant oxygen to maintain high levels of 
oxidative phosphorylation, an imbalance between reactive oxygen 
species (ROS) and antioxidant compounds exists. Microglial 
phenotypes are found to be altered in human cell cultures following 
exposure to nicotine, further increasing localized ROS (44). The ER 
has a critical function in oxygen regulation and in situations of 
oxidative stress, the UPR is upregulated to mitigate the damage. 
Prolonged exposure to cigarette smoke for cats will therefore 
be considered a chronic stressor, with the potential to trigger the 
apoptotic wing of UPR over time in neurons by the generation of 
pro-inflammatory cytokines and increasing levels of oxidative stress 
in microglia and astrocytes.

Cats develop acute hearing at very early ages. They can 
discriminate ambient sounds outside of the human auditory range. 
Computer monitors, fluorescent light bulbs and other high frequency 
emitters are within their capabilities. Loud unpredictable sounds 
cause indoor cats stress when hiding places are limited. Resident and 
ambient noise is a consistent feature in homes. A typical range has 
been measured at 51–78.2 dB (45). White noise in the range of 
5-20 kHz at 115 dB leads to auditory neuron degeneration in mice 
within hours of exposure (46). The same range of exposure in adult 
male cats resulted in synaptic dysfunction within the colliculus 
inferior over a period of 10 days exposure to 1 hour of noise daily 
(47). Whether synaptic dysfunction proceeds or precedes oxidative 
stress, the result is the same; neuronal loss and overall 
neurodegeneration (48). Thus, our noisy lives, with music, TV, traffic 
background and electronic white noise, has the potential to increase 
ROS, and begin the downward spiral of oxidative stress-UPR-
neuroinflammation cycles.

Humans have disrupted the natural cycles of light and dark with 
artificial lighting. We have even stretched that further with bright 
LED illumination, increasing blue light (λ = 460–480 nm) and 
electronics left on 24 h. Light cycles are a critical aspect of circadian 
rhythms that govern wakefulness, sleep pattern and daily functioning. 
All cats sleep a typical 12–20 h per day, with peak wakefulness at 
sunrise or sunset to coordinate with prey activity. Light can affect the 
sleep of domestic cats, as it does in humans or rodents, by depressing 

expression of melatonin, interrupting normal intensity of sleep 
patterns or extend diurnal or nocturnal activity (49). Nighttime light 
exposure is shown to increase depression in humans (50, 51) and in 
rodent models (52–54). An unexplored aspect of sleep disruption is 
a recently recognized impairment of the brain waste disposal system; 
the astrocyte-mediated glymphatic system (55). Sleep disturbances 
increase CSF levels of toxic Aβ (56, 57), which accumulates into 
extracellular plaques. Hyperphosphorylated tau is usually found 
intracellularly but a recent study has found extracellular tau in the 
glymphatic system, indicating clearance could also be impaired with 
altered sleep (58). As cats present with both senile Aβ plaques and 
NFT tau isoforms (1, 3–6), stress of nighttime light may contribute 
to developing NDD.

Further increasing stress in a domestic cat are human 
expectations. Humans typically sleep between 10 PM – 6 AM and 
dislike nighttime disturbances such as wandering or pouncing cats. 
Playtimes are shifted towards daytime when cats would naturally 
be inactive. Domestic cats have had to suppress typical behaviors to 
maintain their human-cat bonds. Therefore, their ingrained sleep 
patterns may become more fragmented. In mice, fragmented sleep 
increases Aβ (40 and 42) in the hippocampus and increases microglial 
activation and secretion of pro-inflammatory cytokines (59). Dim 
light exposure of pig retinal organotypic cultures up-regulates 
markers of ER stress and electron microscopic analysis reveals 
photoreceptor degeneration (60). Our continual use of artificial light 
may be  a major triggering mechanism over a lifespan of a cat 
towards NDD.

Social - behavioral stressors
Traditionally considered solitary hunters (61), modern feral 

cats frequently reside in large colonies (62). Although, there is 
limited research on domestic cats and social structures (63, 64), 
studies exist on larger cat species from zoos suggesting housing 
with unrelated conspecifics, and a lack of hiding spaces contributes 
to captive large cat stress (65, 66). Within a household, solitary cats 
do not have the daily stress of feline hierarchical conflicts, but in 
multi-cat homes, such daily stressors can have a profound effect on 
individual cats. A 2020 survey found that almost 74% of owners 
reported inter-cat conflict signals early in stages of introduction, 
with 50% reporting physical contact. There was a correlation 

FIGURE 1

Tipping the scales over the lifespan of an owned cat towards neurodegeneration. Kittens and adolescent cats have capacity for resilience and 
adaptability to acute stresses and have fewer interactions with chronic stressors. By the time they reach adulthood, the burden of chronic stressors is 
accelerating and neural damage accumulating. Senior cats (10  years and older) are exposed to a multitude of stresses and increasing effects of health 
and age-related issues just as humans. Their capacity for resilience and adaptation is more limited, further increasing the potential for neural damage 
and loss.
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between the number of resident cats and the reporting of conflicts 
(67). Some earlier studies show conflicting data. Urinary or fecal 
cortisol levels were not significantly different in multi-cat, single cat 
or sheltering housing conditions (68, 69), indicating that circulating 
cortisol levels do not fully reflect the full spectrum of behavioral 
aspects of feline stress. A more realistic assessment for feline stress 
relies on observational scores for behavioral demeanor for 
individual cats (70).

Individual cats frequently respond differently to stimuli regardless 
of their social ranking (71). Cats can and do live cooperatively. Yet, 
many feel and react to the stress of a lack of hiding resources, limited 
litter resources and especially the presence of a dominant bully cat. 
The aggressor cat and the bullied cat are at risk for oxidative stress and 
neuroinflammation (72). When aggressive mice are treated with 
antioxidants, biomarkers for oxidative stress, pro-inflammatory 
cytokines and aggressive behaviors decreased (73). The less dominant 
cat is at risk for depression, just as their human counterparts (74–76). 
Major depressive disorder (MDD) has its pathological roots in 
dysfunctional neurotransmission. Yet, there is increasing evidence 
that MDD further triggers neuroinflammation and concomitantly 
induces ER stress and upregulation of activated UPR components 
(77–79).

More pet parents are bowing to increasing public pressure to 
protect cat’s lives by restricting or eliminating their access to the 
outdoors. Although their impacts to wildlife are overblown (80), the 
dangers to owned pets by cars, coyotes, theft, or injury is real. For 
many cats, restricting their movements is a real stressor (81). In 
rodent models of restraint, rats display depressive like behaviors; 
reviewed by (82) and have increased expression of UPR components 
(83). Living in close contact with humans creates social stresses in 
our territorial pet cats that earlier generations of felines never 
experienced. Multi-cat homes, less range, and more restrictions over 
fundamental physiological needs has provided a seeding ground for 
psychological issues that could progress to actual 
neurological pathologies.

Physiological stressors
A major human risk factor for development of NDD is obesity 

(84, 85). Obesity is not a typical problem for feral cats, as they rely 
on prey availability. The story is quite different for owned domestic 
cats. Worldwide, an estimated 11–63% of household living cats are 
overweight (86) and a third considered obese. Extra weight is a 
“heavy” physiological stressor, and for cats, a direct consequence of 
human control over nutritional choices for their cats. Hematological 
oxidative stress markers are elevated in obese cats over control and 
overweight cats (87), predisposing animals to neuroinflammation. 
Compelling evidence from human obesity studies, mainly using 
advanced imaging techniques, demonstrate significant structural 
changes in brains of obese individuals (88–91), with atrophy of key 
areas such as the hippocampus and subcortical structures. Hand in 
hand with obesity, is the specter of physiological malnutrition of 
domestic cats. As obligate carnivores, commercial foods high in fat, 
consisting of unnatural plant-derived proteins, and carbohydrate 
additives, such as corn, soy or grains, combined with low levels of 
omega-3 and omega-6 polyunsaturated fatty acids (PUFA), are not 
adequate substitutes for pure animal proteins (92). Insufficient 
intake of animal-derived essential amino acids (taurine for cats), 

vitamin D3 and cholesterol can impede neuronal development or 
effect feline cognition (93, 94). Examples of diet-related cognitive 
dysfunction are found in other animal models. Thiamine deficiency 
(vitamin B1) increases oxidative stress and is associated with 
neuroinflammation leading to potentially irreversible hippocampal 
damage in an organotypic culture experiment (95). Oxidative stress 
and impaired spatial memory are a feature of a mouse model of 
protein malnutrition (96). Combining overfeeding our cats, and the 
physiological stress of a nutrient restrictive diet, both of which have 
the potential to upregulate maladaptive UPR mechanisms, humans 
are creating conditions appropriate for development of NDD 
feedback loops.

Age is cited as the most prominent risk factor in human NDD. It 
is a stressor that both humans and cats share. We have expanded 
human life with advanced medicine. Bringing our cats inside and 
providing steady diets, effective vaccinations and life-saving care has 
greatly extended previous definitions of feline lifespans. It is not usual 
for owned cats to live well beyond 16 years, while feral cats struggle to 
<5 years. With this increase in life expectancy comes a staggering 
increase in the incidence of feline cognitive dysfunction (fCDS) (11, 
14, 15, 97–99). Extrapolating from human studies of aging and 
neuroinflammation, cats are expected to display similar increasing 
markers of neuroinflammation (100), but direct studies are lacking. 
Aged brains have increased levels of oxidized proteins and changes in 
membrane fatty acid composition with increased amounts of ROS 
susceptible monosaturated fatty acids and arachidonic acid (AA) 
(101). Systemic oxidative stress is reported in aging cats, with male 
cats at greater risks (102). Currently, there is more research on canine 
brain health than cats.

Discussion

Finding a translational animal model where early dementia-like 
behaviors and correlative biochemical signatures can predict final 
cognitive decline is a big leap forward in our understanding of the 
etiology of NDD. Homed or sheltered cats may fill this current void, 
benefitting cats and humans. That we have this ideal model sitting in 
our living rooms today, makes this idea even more novel and exciting. 
Human-influenced stressors in cat’s lives have the potential to prime 
the cycle of neuronal damage, synaptic dysfunction, and maladaptive 
glial function, all leading up to neuron death and degeneration. 
Prevalence of fCDS is on the rise as our cat population ages. Whereas 
canine CDS is well defined, feline CDS remains mysterious due to 
lack of awareness by owners and veterinarians and the ability of cats 
to hide symptoms. Like human NDD, there are no effective 
pharmacological interventions to stop the neurodegeneration once it 
begins. Thus, understanding potential triggers of neuronal damage 
may hold keys to identifying at risk feline populations and finding 
efficacious treatments. Triggers may be multi-factorial, combining 
throughout the life of a cat with the endpoint being NDD. With a 
shorter course of disease, assessing therapies that control cognitive 
loss and brain loss become attainable goals. Importantly, the ability 
to find the earliest biochemical signatures of disease becomes 
possible. At risk cats, individuals with a combination of identified life 
stresses along with careful owner observation, can be tracked over 
time looking for changes in biochemistry and behaviors that 
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eventually overlap with fCDS signalment (98) [Basepaws Aging 
survey]1. Thus, we advocate for more funding and more translational 
grants for feline research. Why else would the National Center for 
Advancing Translational Sciences be called NCATS?
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