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Background: We investigated the potential relationship between age-related 
conditions, particularly sarcopenia and ischemic stroke (IS), through a two-
sample Mendelian randomization (MR) study.

Methods: We conducted a two-sample bidirectional MR study to investigate 
the relationship between sarcopenia and stroke. Genetic instruments for 
sarcopenia were derived from the UK Biobank, while data on IS and its subtypes 
were obtained from the MEGASTROKE consortium. Inverse variance weighting 
(IVW) served as the primary analytical method. Additionally, heterogeneity and 
pleiotropy were assessed to ensure the robustness of the findings.

Results: The analysis indicates a negative correlation between appendicular 
lean mass (ALM) and small vessel stroke (SVS; OR  =  0.790, 95% CI: 0.703–0.888, 
p  <  0.001), a positive correlation with cardioembolic stroke (CES; OR  =  1.165, 
95% CI: 1.058–1.284, p  =  0.002), and no causal relationship with any ischemic 
stroke (AIS) or large artery stroke (LAS). Additionally, SVS is negatively associated 
with right-hand grip strength (OR  =  0.639, 95% CI: 0.437–0.934, p  =  0.021), 
while AIS, LAS, and CES do not exhibit a causal relationship with grip strength. 
Furthermore, no causal relationship was identified between left-hand grip 
strength, usual walking pace, and IS or its subtypes. MR analysis reveals only a 
negative association between CES and usual walking pace (OR  =  0.989, 95% CI: 
0.980–0.998, p  =  0.013), with no associations found between other IS subtypes 
and sarcopenia-related traits.

Conclusion: This study demonstrates that a reduction in ALM and right-hand 
grip strength is associated with SVS, whereas decreased ALM may serve as a 
protective factor against CES. Conversely, our analysis suggests that CES can 
impact walking speed. Overall, these findings provide valuable insights into the 
prevention and treatment of these conditions.
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1 Introduction

Stroke is the second leading cause of death and disability 
globally (1). In China, the incidence of stroke is rising each year, 
making it the leading cause of mortality (2, 3). According to a 2019 
study, common risk factors for stroke include hypertension, high 
body mass index (BMI), elevated fasting glucose, air pollution, and 
smoking (4). However, given the increasing incidence of stroke, it 
is crucial to explore additional risk factors. Sarcopenia, which has 
been identified as influencing the incidence and outcomes of 
stroke, has primarily been studied through observational data 
(5–8). These observational studies are often subject to confounding 
factors, complicating the establishment of accurate causal 
relationships. While the impact of sarcopenia on stroke risk has 
been explored, most studies have focused on the overall risk of 
stroke without analyzing specific stroke subtypes. Additionally, 
several studies have reported a relatively high incidence of 
sarcopenia following a stroke (9–11), which can adversely affect 
patient recovery and quality of life. Despite this, the relationship 
between stroke subtypes and sarcopenia has been largely 
overlooked, with limited research addressing this area. To fill this 
gap, we employed the Mendelian randomization (MR) method to 
investigate the causal relationship between sarcopenia and the risk 
of various stroke subtypes, providing new insights for clinical 
prevention and intervention strategies.

Sarcopenia was first introduced in the late 1980s by Rosenberg. 
The term is derived from Greek, with “sarx” meaning flesh and 
“penia” meaning loss (12). As the global population ages, 
sarcopenia has emerged as a significant health concern, with an 
estimated 500 million people projected to be affected by 2050 (13). 
Sarcopenia is associated with an increased risk of falls, fractures, 
disability, weakness, and mortality (14). According to the European 
Working Group on Sarcopenia in Older People (EWGSOP), 
sarcopenia is defined by a decline in both muscle mass and 
function (15). In 2018, the EWGSOP2 updated the diagnostic 
criteria, proposing a stepwise approach. Initially, muscle strength 
is assessed, typically through grip strength measurement, with 
reduced grip strength suggesting possible sarcopenia. Next, 
appendicular lean mass (ALM) is evaluated using dual-energy 
X-ray absorptiometry, bioelectrical impedance analysis, computed 
tomography, or magnetic resonance imaging, with a diagnosis 
confirmed by decreased muscle mass and quantity. Finally, low 
physical capacity is used to assess the severity of sarcopenia, with 
commonly used indicators including gait speed and a timed 
400-meter walk; reduced performance on these tests indicates 
severe sarcopenia (16). Consequently, we selected three variables 
to evaluate the onset and progression of sarcopenia: ALM, grip 
strength, and walking pace.

MR is a method used to infer causal relationships between an 
exposure and an outcome, grounded in Mendel’s Second Law. This 
approach reduces confounding bias and addresses the limitations 
inherent in traditional observational studies. By selecting single 
nucleotide polymorphisms (SNPs) associated with the exposure as 
instrumental variables (IVs), genetic variation is utilized to derive 
robust causal inferences between exposure factors and outcomes (17). 
In this study, we employed a two-sample MR analysis to evaluate the 
causal relationship between sarcopenia and IS.

2 Materials and methods

2.1 Study design

The MR study was carried out in two distinct phases. Initially, a 
forward MR analysis was performed, utilizing three key characteristics 
of sarcopenia as exposures and various stroke subtypes as outcomes. 
In the second phase, a reverse MR analysis was conducted, where the 
roles of exposure and outcome were inverted. To ensure the validity 
of the MR analysis, three key assumptions must be satisfied (Figure 1): 
(1) The selected genetic instruments must be strongly associated with 
the exposure, fulfilling the relevance assumption; (2) The chosen 
genetic instruments must not be related to any confounding factors, 
adhering to the independence assumption; (3) The genetic instruments 
should affect the outcome only through the exposure, satisfying the 
exclusion restriction assumption (18). For this study, we  utilized 
publicly available, large-scale genome-wide association study (GWAS) 
meta-data sets that had been previously published. In the original 
GWAS studies, all participants provided informed consent.

2.2 Data sources

The EWGSOP2 defines the cut-off values for muscle mass as 
ALM < 20 kg for men and < 15 kg for women, and ALM/
height2 < 7.0 kg/m2 for men and < 5.5 kg/m2 for women. The thresholds 
for low grip strength are <27 kg for men and < 16 kg for women, while 
the cut-off for walking pace is ≤0.8 m/s (16). ALM was measured 
using bioelectrical impedance analysis, based on data from the UK 
Biobank (n = 450,234) (19). GWAS summary data were also obtained 
from the UK Biobank for left-hand grip strength (n = 461,089) and 
right-hand grip strength (n = 461,026) (20). Additionally, the UK 
Biobank collected data on usual walking pace from 459,915 European 
individuals through touchscreen questionnaires (20).

The stroke GWAS dataset was sourced from the MEGASTROKE 
consortium and comprises 40,585 cases and 406,111 controls (21). IS 
is categorized by etiology into large artery stroke (LAS), small vessel 
stroke (SVS), and cardioembolic stroke (CES) based on the Trial of 
Org 10,172 in acute stroke treatment classification. To reduce bias 
from population stratification, all individuals included in the study 
were of European descent. Table 1 provides detailed information on 
the GWAS dataset utilized for the MR analysis.

2.3 Genetic tool variable selection

First, SNPs with genome-wide significance (p < 5.0 × 10−8) were 
selected, and linkage disequilibrium among them was excluded 
(r2  < 0.001, kb = 10,000). This step ensured the identification of 
independent SNP loci that met the correlation assumption. Second, 
palindromic SNPs with intermediate allele frequencies were removed 
(Supplementary Table S8). Subsequently, we utilized PhenoScanner 
(http://www.phenoscanner.medschl.cam.ac.uk) to systematically 
search for the selected SNPs and exclude those associated with the 
outcome and potential confounding factors, including diabetes, 
hypertension, dyslipidemia, coronary artery disease, BMI, smoking, 
and alcohol consumption (Supplementary Table S9) (22), in order to 
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satisfy the second and third assumptions. Additionally, SNPs with an 
F-statistic greater than 10 were considered significantly associated 
with the exposure. The F-statistic was calculated using the formula: 
F = [R2 / (1-R2) × (n-2), R2 = 2 × MAF × (1-MAF) × β2]. N represents the 
sample size, and MAF represents minor allele frequency. Weak IVs 
with F values <10 were excluded (23). Finally, MRPRESSO was 
employed to identify and remove outlier SNPs from the final set of 
IVs. Proxy SNPs were not included in this MR analysis.

2.4 MR analysis

For MR analysis, inverse variance weighting (IVW), weighted 
median, and MR-Egger were utilized as the primary analytical methods. 
IVW was employed as the main method, sequentially combining the 
Wald ratio estimates of each SNP to determine the overall causal effect 
(24). The weighted median and MR-Egger methods were used as 
complementary approaches to IVW. When the selected IVs comprise 
more than half of the total IVs, the weighted median method can 

reliably provide accurate estimates (25). MR-Egger is capable of 
detecting and adjusting for horizontal pleiotropy, though it has limited 
statistical power (26). Therefore, in this study, MR-Egger was applied 
primarily to test for pleiotropy rather than to evaluate causal effects.

2.5 Sensitivity analysis

The robustness of the results and potential biases were evaluated 
using sensitivity analysis methods in the MR study. Heterogeneity was 
assessed through Cochran’s Q test and funnel plots (27). To evaluate 
horizontal pleiotropy, the MR-Egger intercept test was conducted by 
calculating the intercept via linear regression analysis (28). The Leave-
One-Out method was also employed, which involves removing 
individual SNPs and performing MR analysis to determine their 
influence on the outcomes (29). Additionally, MR-PRESSO was 
utilized to identify and exclude potential outliers and detect horizontal 
pleiotropy, thereby minimizing their impact on the causal effect 
assessment. If MR-PRESSO identified any outliers, the corresponding 

FIGURE 1

Plot of three assumptions of MR (by Figdraw 2.0).

TABLE 1 Data sources for IS and its subtypes and sarcopenia-related traits.

Type Sample size Population Consortium GWAS ID/ PubMed ID

ALM 450,243 European UK Biobank ebi-a-GCST90000025/33097823

Hand grip strength (left) 461,026 European UK Biobank ukb-b-7478/NA

Hand grip strength (right) 461,089 European UK Biobank ukb-b-10215/NA

Usual walking pace 459,915 European UK Biobank ukb-b-4711/NA

AIS 440,328 European MEGASTROKE ebi-a-GCST006908/29531354

LAS 150,765 European MEGASTROKE ebi-a-GCST006907/29531354

CES 211,763 European MEGASTROKE ebi-a-GCST006910/29531354

SVS 98,048 European MEGASTROKE ebi-a-GCST006909/29531354
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SNPs were excluded, and MR analysis was re-conducted. The excluded 
outliers are listed in Supplementary Table S10 (30).

2.6 Enrichment analysis

To explore the biological pathways and mechanisms underlying 
risk genes associated with sarcopenia-related phenotypes, IS, and its 
subtypes, we performed enrichment analysis using Gene Ontology 
(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). 
GO analysis was used to assess gene enrichment within the categories 
of cellular components, biological processes, and molecular 
functions. KEGG analysis was conducted to identify gene enrichment 
in specific metabolic pathways, which is crucial for understanding 
genomic interactions.

Statistical analysis for this study was performed using R software 
(version 4.3.2). The TwoSampleMR (version 0.5.8) and MR-PRESSO 
(version 1.0) packages were applied for MR analysis, and the 
clusterProfiler (version 4.4.4) package was used for enrichment analysis.

3 Results

Using sarcopenia-related traits as exposures, 617 SNPs for ALM, 
140 SNPs for left-hand grip strength, 161 SNPs for right-hand grip 
strength, and 36 SNPs for usual walking pace were chosen as IVs 
(Supplementary Tables S1–S4) for MR analysis. For the reverse MR 
analysis, with IS and its subtypes as exposures, 7 SNPs for AIS, 3 SNPs 
for LAS, 4 SNPs for CES, and 0 SNPs for SVS were selected as IVs 
(Supplementary Tables S5–S7).

3.1 The causal effect of sarcopenia on IS

The IVW analysis revealed a negative correlation between ALM 
and SVS (OR = 0.790, 95% CI: 0.703–0.888, p < 0.001), while a positive 
correlation was observed between ALM and CES (OR = 1.165, 95% CI: 
1.058–1.284, p = 0.002). No causal relationship was identified between 
ALM and either AIS or LAS. Additionally, MR analysis indicated that 
right-hand grip strength was negatively correlated with SVS 
(OR = 0.639, 95% CI: 0.437–0.934, p  = 0.021), with no significant 
associations with AIS, LAS, or CES. Furthermore, no causal 
relationships were found between left-hand grip strength, usual 
walking pace, and IS or its subtypes. The analysis results are detailed 
in Table  2, with visual representations of the causal relationships 
provided in Figure 2. Cochran’s Q test, MR-Egger intercept test, and 
MR-PRESSO global test indicated no evidence of heterogeneity or 
horizontal pleiotropy (Table 3). The Supplementary Figure include 
scatter plots from IVW, MR-Egger, and weighted median methods, 
along with leave-one-out and funnel plots.

3.2 The causal effect of IS on sarcopenia

The MR results demonstrated a negative correlation between CES 
and usual walking pace (OR = 0.989, 95% CI: 0.980–0.998, p = 0.013) 
(Table 4). However, no significant causal relationships were observed 
between CES and either ALM or grip strength, as illustrated in 

Figure 3. Sensitivity analyses, including Cochran’s Q test, MR-Egger 
intercept test, and MR-PRESSO global test, revealed no evidence of 
heterogeneity or horizontal pleiotropy (Table 5). Furthermore, the MR 
analyses did not establish any causal association between AIS, LAS, 
and sarcopenia-related traits. The Supplementary Figure provide 
scatter plots from the IVW, MR-Egger, and weighted median methods, 
along with leave-one-out and funnel plots.

3.3 Enrichment analyses

During the enrichment analysis between ALM and CES, right-
hand grip strength and SVS, as well as between CES and walking 
speed, we identified a limited number of significant pathways. As a 
result, we focused the GO and KEGG enrichment analyses on the 
SNPs identified by ALM and SVS. The corresponding gene names are 
listed in Supplementary Table S11. GO analysis revealed that the 
mitotic cell cycle phase transition, G1/S transition of the mitotic cell 
cycle, and chondrocyte differentiation are associated with Molecular 
Function (MF). The transcription regulator complex is linked to 
Cellular Component (CC), while insulin receptor substrate binding 
and peptide hormone binding are related to Biological Process (BP). 
KEGG analysis indicates significant enrichment in pathways related 
to Human cytomegalovirus infection, Human immunodeficiency 
virus, and Viral carcinogenesis (Figure 4).

4 Discussion

The study assessed the bidirectional causal relationship between 
sarcopenia and ischemic stroke (IS) using two-sample MR analysis. 
The results indicated that increased ALM was associated with a 
reduced risk of SVS but an elevated risk of CES. An inverse causal 
relationship was found between right-hand grip strength and 
SVS. Reverse MR analysis identified a correlation solely between CES 
and usual walking pace.

Sarcopenia and IS are prevalent conditions among the elderly, 
and some studies have identified a correlation between the two. A 
longitudinal study conducted over 3.6 years, which included 
approximately 15,000 Chinese individuals, revealed that after 
adjusting for confounding factors, the risk of stroke was significantly 
higher in patients with probable sarcopenia (HR = 1.59, 95% CI: 
1.26–2.00, p < 0.001) or confirmed sarcopenia (HR = 1.67, 95% CI: 
1.17–2.40, p < 0.01) (5). Furthermore, a meta-analysis involving 
63,738,162 participants supported these findings, indicating an 
increased stroke risk in sarcopenia patients (OR = 1.67, 95% CI: 
1.18–2.37, p = 0.004) (7). However, these studies did not examine the 
influence of sarcopenia on specific stroke subtypes. To address this 
gap, we expanded upon previous research by utilizing MR analysis 
to assess the causal effect of genetically predicted sarcopenia on 
different stroke subtypes.

Inflammation, metabolic disorders, physical inactivity 
associated with a sedentary lifestyle, hormonal changes related to 
aging, and endothelial dysfunction collectively contribute to the 
connection between sarcopenia and stroke. A sedentary lifestyle 
exacerbates metabolic disorders, endothelial dysfunction, and 
inflammation levels (31, 32). Insulin resistance and endothelial 
dysfunction have a reciprocal relationship (33), while the decline 
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TABLE 2 The causal association of sarcopenia on IS by MR analysis results.

Exposure Outcome Methods SNPs OR (95%CI) p-value

ALM AIS IVW 528 0.955 (0.905–1.008) 0.092

MR Egger 528 0.982 (0.861–1.120) 0.787

Weighted median 528 1.016 (0.937–1.101) 0.705

ALM LAS IVW 529 0.877 (0.769–1.001) 0.052

MR Egger 529 0.997 (0.720–1.380) 0.984

Weighted median 529 0.918 (0.761–1.108) 0.373

ALM CES IVW 526 1.165 (1.058–1.284) 0.002

MR Egger 526 1.191 (0.937–1.512) 0.154

Weighted median 526 1.180 (1.012–1.376) 0.034

ALM SVS IVW 529 0.790 (0.703–0.888) < 0.001

MR Egger 529 0.686 (0.515–0.915) 0.010

Weighted median 529 0.786 (0.659–0.938) 0.008

Hand grip strength (left) AIS IVW 136 0.981 (0.825–1.168) 0.832

MR Egger 136 1.590 (0.766–3.301) 0.215

Weighted median 136 1.064 (0.824–1.373) 0.636

Hand grip strength (left) LAS IVW 136 0.729 (0.474–1.121) 0.150

MR Egger 136 1.524 (0.248–9.379) 0.650

Weighted median 136 0.716 (0.379–1.351) 0.302

Hand grip strength (left) CES IVW 136 1.138 (0.815–1.588) 0.448

MR Egger 136 1.543 (0.376–6.332) 0.548

Weighted median 136 1.146 (0.688–1.910) 0.600

Hand grip strength (left) SVS IVW 135 0.718 (0.475–1.086) 0.117

MR Egger 135 0.743 (0.127–4.337) 0.742

Weighted median 135 0.730 (0.412–1.296) 0.283

Hand grip strength (right) AIS IVW 151 1.004 (0.840–1.201) 0.961

MR Egger 151 1.154 (0.552–2.411) 0.705

Weighted median 151 1.083 (0.852–1.378) 0.514

Hand grip strength (right) LAS IVW 151 0.786 (0.519–1.189) 0.253

MR Egger 151 0.518 (0.093–2.901) 0.456

Weighted median 151 0.840 (0.467–1.513) 0.562

Hand grip strength (right) CES IVW 151 1.089 (0.793–1.496) 0.597

MR Egger 151 0.957 (0.255–3.596) 0.949

Weighted median 151 1.173 (0.746–1.847) 0.490

Hand grip strength (right) SVS IVW 150 0.639 (0.437–0.934) 0.021

MR Egger 150 0.545 (0.111–2.678) 0.456

Weighted median 150 0.537 (0.307–0.939) 0.029

Usual walking pace AIS IVW 35 0.809 (0.467–1.400) 0.449

MR Egger 35 0.340 (0.022–5.197) 0.444

Weighted median 35 1.300 (0.649–2.604) 0.460

Usual walking pace LAS IVW 35 1.076 (0.310–3.728) 0.907

MR Egger 35 0.020 (0.000–11.262) 0.235

Weighted median 35 2.326 (0.471–11.474) 0.300

Usual walking pace CES IVW 35 0.622 (0.256–1.510) 0.294

MR Egger 35 0.289 (0.003–24.804) 0.589

(Continued)
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TABLE 3 Sensitivity analysis of sarcopenia to IS.

Exposure Outcome IVW MR Egger MR-PRESSO 
P-value

Cochran’s Q 
test

P-value Cochran’s Q 
test

P-value Intercept Intercept 
P-value

ALM

AIS 637.949 6.330E-04 637.699 5.839E-04 -6.555E-04 0.649 7.273E-04

LAS 630.037 0.001 629.198 0.001 −0.003 0.402 0.002

CES 556.907 0.162 556.868 0.155 −4.964E-04 0.849 0.128

SVS 574.353 0.080 573.146 0.080 0.003 0.293 0.086

Hand grip 

strength (left)

AIS 126.504 0.687 124.725 0.705 −0.006 0.185 0.719

LAS 130.830 0.585 130.160 0.578 −0.009 0.415 0.584

CES 126.587 0.685 126.398 0.667 −0.004 0.664 0.713

SVS 142.481 0.292 142.480 0.271 −3.931E-04 0.969 0.265

Hand grip 

strength 

(right)

AIS 179.187 0.052 179.014 0.047 −0.002 0.705 0.027

LAS 157.622 0.319 157.371 0.303 0.005 0.626 0.260

CES 153.766 0.400 153.726 0.378 0.002 0.844 0.363

SVS 151.481 0.428 151.439 0.406 0.002 0.839 0.294

Usual walking 

pace

AIS 50.513 0.034 49.901 0.030 0.008 0.529 0.014

LAS 42.064 0.161 40.140 0.183 0.035 0.217 0.158

CES 35.913 0.379 35.785 0.339 0.007 0.733 0.433

SVS 40.772 0.166 40.693 0.139 0.007 0.804 0.175

TABLE 2 (Continued)

Exposure Outcome Methods SNPs OR (95%CI) p-value

Weighted median 35 0.288 (0.081–1.025) 0.055

Usual walking pace SVS IVW 34 1.592 (0.492–5.146) 0.437

MR Egger 34 0.751 (0.002–302.402) 0.926

Weighted median 34 2.139 (0.441–10.368) 0.345

FIGURE 2

The IVW method estimates the causal effects of sarcopenia on IS.
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in testosterone and estrogen with age further accelerates 
endothelial dysfunction (34, 35). The interaction of these factors 
increases the risk of stroke. Sarcopenia is marked by a 
pro-inflammatory state driven by cytokines and oxidative stress 
(36), which also plays a significant pathogenic role in stroke (37, 
38). Skeletal muscles secrete myokines in response to physical 
activity, which have anti-inflammatory effects (39). Enhancing 
muscle mass can promote myokine secretion to combat 
inflammation (40, 41). An eight-year study demonstrated a 

negative correlation between grip strength and inflammation (42), 
and another study found that individuals with low grip strength 
had elevated C-reactive protein (CRP) levels (OR = 1.60, 95% 
CI = 1.03–2.49) (43). CRP, as an inflammation marker, is closely 
associated with stroke risk. This research helps explain how the 
decline in muscle mass and strength may increase stroke risk 
through inflammatory pathways. However, our study suggests a 
more pronounced relationship between muscle issues and SVS, 
possibly due to inadequate collateral circulation in small arteries.

TABLE 4 The causal association of IS on sarcopenia by MR analysis results.

Exposure Outcome Methods SNPs OR (95%CI) P-value

AIS ALM IVW 7 0.983 (0.954–1.012) 0.252

MR Egger 7 1.110 (0.906–1.359) 0.360

Weighted median 7 0.983 (0.952–1.016) 0.315

AIS Hand grip strength (left) IVW 5 1.009 (0.987–1.031) 0.420

MR Egger 5 1.015 (0.862–1.196) 0.868

Weighted median 5 1.003 (0.978–1.028) 0.839

AIS Hand grip strength (right) IVW 5 1.014 (0.987–1.041) 0.317

MR Egger 5 0.921 (0.776–1.092) 0.412

Weighted median 5 1.011 (0.984–1.039) 0.434

AIS Usual walking pace IVW 4 1.018 (0.996–1.040) 0.106

MR Egger 4 1.006 (0.807–1.255) 0.960

Weighted median 4 1.016 (0.991–1.042) 0.204

LAS ALM IVW 3 1.004 (0.987–1.020) 0.671

MR Egger 3 0.978 (0.938–1.019) 0.478

Weighted median 3 1.008 (0.989–1.028) 0.395

LAS Hand grip strength (left) IVW 2 0.995 (0.980–1.010) 0.517

MR Egger NA NA NA

Weighted median NA NA NA

LAS Hand grip strength (right) IVW 2 1.000 (0.982–1.018) 0.966

MR Egger NA NA NA

Weighted median NA NA NA

LAS Usual walking pace IVW 2 1.000 (0.988–1.013) 0.942

MR Egger NA NA NA

Weighted median NA NA NA

CES ALM IVW 4 1.000 (0.989–1.012) 0.931

MR Egger 4 1.008 (0.986–1.030) 0.559

Weighted median 4 1.002 (0.990–1.014) 0.738

CES Hand grip strength (left) IVW 4 0.996 (0.979–1.012) 0.609

MR Egger 4 1.018 (0.998–1.038) 0.219

Weighted median 4 1.004 (0.993–1.015) 0.527

CES Hand grip strength (right) IVW 4 0.986 (0.971–1.001) 0.059

MR Egger 4 1.004 (0.983–1.026) 0.749

Weighted median 4 0.991 (0.980–1.002) 0.119

CES Usual walking pace IVW 4 0.989 (0.980–0.998) 0.013

MR Egger 4 0.995 (0.975–1.015) 0.648

Weighted median 4 0.986 (0.977–0.996) 0.005
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Additionally, research indicates that sarcopenia is an aging-related 
syndrome closely associated with immune function (44). This may 
suggest an increased risk of viral infections in elderly patients (45). 
Chronic or acute stimulation of the immune system by viral exposure 
can lead to coagulation dysfunction and subsequently induce IS (46–
48). The GO and KEGG enrichment analysis in this study corroborate 
this finding.

We identified a positive correlation between ALM and CES 
using MR, which contrasts with the findings for SVS. Causes of CES 
include atrial fibrillation, heart failure, coronary artery disease, 
cardiomyopathy, valvular heart disease, and other related conditions 
(49). To date, only a few clinical studies have examined the 
relationship between muscle mass and these conditions (50–52), 

and no studies have specifically addressed CES. Based on our 
findings, one possible mechanism involves iron metabolism. 
Previous research has shown that reduced muscle mass is associated 
with iron deficiency (53). Chang et al. reported that individuals 
with thrombotic and embolic strokes had a higher incidence of 
prior iron deficiency diagnoses compared to healthy controls (54). 
However, this alone does not fully explain the paradoxical result. 
Enrichment analysis also failed to uncover an effective biological 
mechanism. Considering that CES primarily results from cardiac 
conditions, whereas SVS is caused by intrinsic lesions in small 
cerebral vessels, the differing etiologies may account for the 
observed outcome variations. Future research should explore the 
mechanisms linking muscle mass to IS subtypes.

FIGURE 3

The IVW method estimates the causal effects of IS on sarcopenia.

TABLE 5 Sensitivity analysis of IS to sarcopenia.

Exposure Outcome IVW MR Egger MR-
PRESSO 
P-valueCochran’s Q 

test
P-value Cochran’s Q 

test
P-value Intercept Intercept 

P-value

AIS

ALM 9.988 0.125 7.794 0.168 −0.009 0.287 0.153

Hand grip strength (left) 4.406 0.398 4.055 0.256 4.771E-04 0.944 0.471

Hand grip strength (right) 6.224 0.183 4.392 0.222 0.007 0.345 0.240

Usual walking pace 1.297 0.730 1.287 0.525 0.001 0.928 0.746

LAS

ALM 1.808 0.405 0.005 0.946 0.006 0.407 NA

Hand grip strength (left) 0.366 0.545 NA NA NA NA NA

Hand grip strength (right) 1.402 0.236 NA NA NA NA NA

Usual walking pace 0.200 0.655 NA NA NA NA NA

CES

ALM 0.985 0.805 0.417 0.812 −0.002 0.530 0.845

Hand grip strength (left) 10.982 0.012 2.598 0.273 −0.006 0.126 0.094

Hand grip strength (right) 8.611 0.035 2.991 0.224 −0.005 0.192 0.157

Usual walking pace 4.414 0.220 3.554 0.169 −0.002 0.559 0.340
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Stroke can lead to systemic muscle mass loss and functional decline 
through various mechanisms, including prolonged bed rest, motor 
function loss, feeding difficulties, poor nutritional status, sympathetic 
activation, inflammatory responses, and nerve damage. These factors 
contribute to the onset and progression of sarcopenia, thereby 
increasing the overall burden on patients (55–58). The incidence of gait 
disorders due to neurological deficits from stroke is notably high and is 
typically characterized by reduced stride length, decreased walking 
speed, and impaired balance control. These impairments contribute to 
difficulties in daily activities and an increased risk of falls (59). 
Additionally, studies have shown that heart disease is associated with 
decreased walking speed (60, 61). In our MR study, cardiac causes of 
CES were found to be negatively correlated with usual walking pace, 
suggesting that these factors may synergistically contribute to gait 
disorders. However, due to the limited number of SNPs identified for 
stroke subtypes in our reverse MR analysis, our results have certain 
limitations. While our study found a significant relationship between 
CES and walking speed, the causal effect derived from the limited IVs 
may be relatively weak. Therefore, future studies should analyze and 
interpret causal relationships using larger GWAS datasets.

The MR study initially explored the causal relationships between 
sarcopenia-related traits and IS subtypes, yielding positive findings. 
Compared to traditional observational studies, MR research minimizes 
the influence of confounding factors, providing more robust results by 
accounting for heterogeneity and horizontal pleiotropy. However, several 
limitations exist. Firstly, unknown confounding factors may still 
be present, potentially influencing the outcomes. Secondly, the study 
population was exclusively of European descent, which limits the 
generalizability of the findings to other populations. Lastly, the proportion 
of IS subtypes varies across different racial groups, indicating the need for 
further studies to investigate causal effects in diverse populations.

5 Conclusion

In summary, our research utilized large-scale gene summary 
data to identify a bidirectional causal relationship between 
sarcopenia and IS. Specifically, sarcopenia indicators, such as ALM 
and right-hand grip strength, were negatively correlated with SVS, 
while ALM and CES assessment showed a positive correlation. 
Additionally, CES assessment was negatively correlated with usual 
walking pace. To further investigate the complex relationship 
between sarcopenia and stroke, additional studies involving diverse 
populations and experimental research are required to clarify the 
underlying mechanisms and improve prevention and 
treatment strategies.
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