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Introduction

The space race set in motion by the Cold War intensified in the 1960s, with

the Soviet Union first paving the path to manned space flight in 1961 (1). In high

relevance to astronauts’ mission readiness (2–5), experiments conducted in this decade,

contrasting persons with functioning and bilaterally non-functioning labyrinths, solidified

the contributions of the vestibular inputs to production of spatial perception and motion

sickness during exposure to passive motion or microgravity (6). However, all forms of

labyrinthine deactivation are not created equal. For example, patients may undergo total

vestibular nerve section as a treatment for vertigo due to eighth nerve neuroma orMénière’s

disease (7, 8); others may for varying causes sustain selective damage within the vestibular

end-organs while retaining functioning nerves, as may be the case for candidates of

vestibular implants (9, 10). Selective inactivation of otolithic signals may even be induced

environmentally under microgravity in space. Examining information processing in the

central vestibular mechanism known as velocity storage in various contexts of labyrinthine

inactivationmay shed further light on health and perceptual anomalies during or following

space flight.

What is velocity storage?

Activated by head rotation, large-field visual motion, or proprioceptive cues for

continuous rotation, velocity storage is a central neural circuit that sustains a rotational

velocity estimate of ongoing self-motion (11–16). The mechanism serves a working

memory-like function of self-motion and spatial orientation to shape ocular and postural

reflexes in the brainstem and presumably perception in the cerebral cortex (13–15, 17–19).

The key to understanding the working of velocity storage has been in eye movement

measurement. Nystagmus, such as occurs during the vestibulo-ocular reflex (VOR), is an

automatic eye movement made in response to signals that indicate self-rotation relative to

the surrounding world. Nystagmus facilitates the acquisition of visual information with

the eyes moving in opposition to and in compensation for the detected rotation (slow

phases) but for quick “resetting” interruptions (fast phases; Figure 1A). The presence of a

common, sub-cerebral cortical mechanism for multimodal sensory integration had long

been presumed based on experimental observations such as: (a) coordinated shaping,

rather than a simple superposition, of nystagmus of different sensory origins takes place

during combined stimulation (11); (b) the nystagmic reaction to either visual (optokinetic)

or vestibular stimulation is subject to a “central inertia,” demonstrated with a prolonged
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response or after-response (11); (c) optokinetic nystagmus (OKN)

can be induced in animals with visual cortical lesions (11, 20); and

(d) bilateral vestibular nerve sections degrade OKN and abolish

optokinetic after-nystagmus (OKAN) (21, 22).

Animal experiments in the 1970s demonstrated that spiking

activity in certain second-order vestibular neurons correlated with

the strength of either vestibularly- or optokinetically-induced

nystagmus (23–25). With this discovery, the functional operation

of the central processing system that soon came to be known

as velocity storage became a valuable focus of rigorous model-

based testing of behavioral and physiological data (13–15, 26,

27), These neurons belong to the vestibular-only (VO) class, so-

termed to differentiate from other secondary vestibular neurons

that display saccade or eye position sensitivity (28). Importantly,

while the decay time constant of the primary afferent activity

after the cessation of head angular acceleration, contributed by

the semicircular canal endolymph’s inertia, amounts only to 3–6 s,

the activity of VO neurons is typically characterized with a time

constant of 10–40 s, corresponding to the aforementioned “central

inertia” (25, 29–32).

Besides vestibular or optokinetic means, and indeed in the

absence of actual motion or visual motion, an illusion of

body rotation (circular vection) and corresponding compensatory

nystagmus can be induced in a stationary person when a

rotating surround is passively followed with an extended arm

(Figure 1B) (12) or when the person steps along a fictitious,

circular trajectory on a counter-rotating floor (Figure 1C) (16).

Compensatory nystagmus is also generated in the absence of

vision or steady activation of coplanar semicircular canals when

the subject is continuously rotated about a tilted axis (off-vertical

axis rotation—OVAR; Figure 1D) (33–35) or when sinusoidally

pitched or rolled during earth-vertical axis rotation (pitch/roll

while rotating—PWR/RWR; Figure 1E) (36, 37).

That nystagmus can be generated and sustained without

coplanar optokinetic or semicircular canal activation indicates that

the velocity storage mechanism actively reconstitutes self-motion

signals from multimodal sensory inputs. Additionally, the stored

estimate of self-motion can be dynamically transformed such that

the outcome nystagmus tends to align to the gravito-inertial field.

For example, horizontal OKN induced while tilted laterally gives

way to OKAN with a vertical component (38–40). Similarly, the

per-rotatory nystagmus in response to off-center rotation with

forward or backward tangential motion develops an out-of-plane,

vertical component as the centripetal acceleration tilts the gravito-

inertial field (41). Thus, velocity storage is also equipped with

orienting properties to act as a “neural gyroscope” (40, 42, 43),

making it more fitting to be identified as “working memory-like”

rather than mere storage.

The properties of velocity storage are nearly exclusively

characterized by the dynamics of slow-phase eye velocity of

nystagmus. However, many of so-characterized properties have also

been demonstrated in the activity of VO neurons (29, 44, 45).

Insight into the working of velocity storage has been conversely

Abbreviations: OKAN, optokinetic after-nystagmus; OKN, optokinetic

nystagmus; OVAR, o�-vertical axis rotation; PWR, pitch while rotating; RWR,

roll while rotating; VO, vestibular-only; VOR, vestibulo-ocular reflex.

derived from VO neuron activity as well. For example, while most

VO neurons receive convergent inputs from different semicircular

canal and otolith afferents, many show preferences to activation

near or orthogonal to the plane of a specific push-pull canal

pair (29, 46). Thus, VO neurons appear to collectively code the

three-dimensional action of velocity storage using a coordinate

system consistent with the geometric alignment of the semicircular

canals and extraocular muscles, which is common across lateral-

or frontal-eyed species (29, 47). Further, while vestibular afferents

cannot differentiate active from passive motion, VO neurons

reportedly show different responses (48–51). Accordingly, velocity

storage may be activated and controlled differently during active

and passive motion.

Velocity storage is under the inhibitory control of the cerebellar

nodulus and, likely, the adjacent caudal uvula. Damage to these

areas destabilizes velocity storage, triggering periodic alternating

nystagmus and elongating the time constant of the decay of the

VOR nystagmus during a rotational test (52–55). Such damage

also results in loss of compensatory nystagmus during OVAR

and sinusoidal PWR/RWR (56, 57) as well as in a compromised

ability to reorient eye velocity to the gravito-inertial field (55,

57, 58). Reversible unilateral inactivation of the nodulus induces

spontaneous nystagmus in darkness with contralaterally-directed

slow phases and abnormal eye velocity orientation to gravity (59).

The nodulus and caudal uvula target a wide variety of cell types

in the vestibular nuclei, including VO neurons (60). Nodular

micro-electrical stimulation results in shortening of the decay time

constant of the VOR or OKAN with ipsilateral slow phases (60,

61), but may also yield further different effects depending on the

duration and exact location of the stimulation (59, 62).

Lastly, velocity storage is malleable. For example, repeated

rotation in darkness shortens the VOR decay time constant

(decreased “central inertia”) in a long-retained effect known as

vestibular habituation (63–65). The spatial orientation properties

of velocity storage, such as observed in eye movements outside

the stimulus plane during the VOR, can also be modified (66,

67), possibly to facilitate adaptation to a new gravito-inertial

environment (68–70). Relatedly, the spatial tuning of VO neurons

can be modified with prolonged tilt (71). As the cerebellum plays

a major role in motor learning and calibration (72, 73), the

malleability of velocity storage likely depends on the nodulus and

uvula (64). Mal de débarquement syndrome, a chronic illness

primarily characterized by a persistent illusory perception of self-

motion, is thought to result from a failure in velocity storage to

readapt to a normal acceleration environment after adapting to

passive motion (74–76).

Correlates of velocity storage
perturbation

Studies conducted in humans and animals with bilaterally non-

functioning labyrinths, including those from the 1960s, found

that these subjects were immune to motion sickness when

exposed to otherwise highly provocative vestibular tests, such as

PWR/RWR, OVAR, and other unusual motion stimuli (6, 77–79).

Such immunity merits re-examination in parallel with patterns of

velocity storage activation (Table 1). Differences and similarities
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FIGURE 1

Characteristics of nystagmus and examples of unusual stimuli that can induce nystagmus. (A) Sawtooth pattern of eye position change over time

during nystagmus. Slow-phase movements are directed against, thus in compensation for, the detected head rotation, whereas fast-phase

movements facilitate maintenance of eye position within the oculomotor range. (B) Arthrokinetic stimulation. (C) Circular treadmill locomotion. (D)

OVAR. (E) Whole-body sinusoidal PWR (a). As a variation in human testing, a disorienting sensation and motion sickness may be induced with a

discrete, rather than continuous, head tilt while seated in a rotating chair (b). Note that in (B, C), the head stays spatially stationary, and when

conducted in darkness, the stimuli can generate nystagmus without labyrinthine or visual input. In (D, E), at steady state, the semicircular canals do

not signal the rotation continuing about the axis indicated by the dotted line.

in perceptual experiences are also considered when illuminating

information is available.

Vestibular habituation, identified with a shortened velocity

storage time constant, reportedly reduces susceptibility to motion

sickness (101, 102). The GABA-B agonist baclofen has been

indicated to also reduce the velocity storage time constant and

motion sickness susceptibility to RWR, but reversibly (103, 104).

Given that bilateral vestibular nerve sections result in loss of

OKAN (21, 22), and that loss of or impaired vestibular functions

due to ototoxicity or other causes significantly reduces OKAN

(80–83), the immunity to motion sickness to provocative motion

stimuli in labyrinthine-defective individuals may be explained by

their loss of or reduced ability to store velocity signals. However,

motion sickness and circular vection can still be induced with

head movements in a rotating visual environment after vestibular

neurectomy (7). The effect of baclofen on visually induced motion

sickness is not known.

Neuronally, while the ability to store velocity signals appears

to depend on the wellbeing of the primary afferents, there is no

evidence that VO neurons undergo anterograde transneuronal

degeneration after vestibular nerve sections (105, 106). Neuronal

activities ascribed to velocity storage functions that survive

labyrinthine deactivation remain to be identified. Behaviorally

however, nystagmus and circular vection can be induced in

labyrinthine-defective individuals during fictitious circular

stepping around in darkness (Figure 1C) (16), providing strong

evidence that reconstitution of self-motion velocity signals and

their storage are separate processes.

Motion sickness is typically induced in a context of passive

rather than active motion (107, 108). Likewise, VO neurons are

reportedly more sensitive to passive than active head movements

(48–51). Participation of these neurons in the vestibular-autonomic

circuits is not known (109–113), but motion sickness susceptibility

is likely not directly increased as a simple consequence of

increased VO neuron activation. For example, while congruent

optokinetic and vestibular inputs can synergistically activate VO

neurons and incongruent ones antagonistically (25–27, 29, 114),

vision of a stationary surround (i.e., optokinetic input congruent

with physical motion) protects against motion sickness and

perceptual disorientation during PWR/RWR or OVAR (79, 115–

120). Curiously, under microgravity in space or during parabolic

flight, active head movements with vision of a stationary surround

is more provocative than the same movements without vision

(3, 96).

Also curiously, while PWR/RWR is highly provocative

of motion sickness and perceptually disorienting on earth,

it is not so under microgravity in space or during parabolic

flight (3, 94, 95). Mirroring this environmental inactivation

of otolithic signals, after bilateral utricular nerve section and

saccular macula destruction, previously susceptible squirrel

monkeys reportedly become immune to motion sickness while

unrestrained inside a rotating cage (89), a condition that likely
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TABLE 1 Exemplar e�ects of localized vestibular-related functional inactivation.

Cause of vestibular-related
functional inactivation

E�ect on velocity storage E�ect on motion sickness
susceptibility

Non-surgical loss of bilateral labyrinthine

function

• Loss or significant reduction of OKAN (80–83) • Immunity for physical motion (6, 78)

• Immunity for visual motion (84)

Bilateral vestibular neurectomy • Loss of OKAN (21, 22, 35) • No change when physical motion is combined with

visual motion (7)

Canal plugging • Loss of ability to generate compensatory nystagmus

during sinusoidal PWR/RWR (36, 85)

• Reduction for motion generated on a swing with head

unrestrained (86)

Utriculosacculectomy • Reduced time constant (87)

• Loss of ability to generate compensatory nystagmus

during OVAR (88)

• Immunity for movement in a rotating environment

(89)

• Reduction for sinusoidal pitching with conflicting

visual stimulus (90)

Exposure to microgravity • Reduced time constant (91–93)

• During prolonged exposure, possible restoration of

time constant (93)

• Reduction for PWR/RWR (3, 94, 95)

• Increase for head movements with eyes open (3, 96)

Nodulo-uvular lesion • Increased time constant (54, 55, 64)

• Loss of spatial orientation properties (55, 57, 58)

• Loss of ability to generate compensatory nystagmus

during sinusoidal PWR/RWR and OVAR (56, 57)

• Immunity for motion generated on a swing (97, 98)

• No change in “pica” behavior for hypergravity

stimulation (99)

• Acutely, vomiting (55, 100)

• Acutely, vomiting (52, 53)

Italicized entries indicate observations based on animal experiments.

generates provocativeness through a PWR/RWR-like mechanism.

By contrast, semicircular canal deactivation precipitated by

ototoxicity, sparing otolithic functions, has also been shown to

induce immunity to motion sickness in unrestrained squirrel

monkeys in a rotating cage (121). Thus, the provocativeness of

PWR/RWR appears to arise from central integration of both

the semicircular canal and otolithic signals. By parallel, the

ability to generate nystagmus during sinusoidal PWR/RWR

is lost in macaque monkeys after selective deactivation of the

semicircular canal function with canal plugging (36, 85). The

counterpart effect of selective deactivation of the otolithic

input does not seem to have been experimentally tested, but

nystagmus generation during sinusoidal PWR/RWR is also

thought to require both otolithic and semicircular canal inputs

(57, 67, 85).

The involvement of the cerebellar nodulus and uvula provides

another parallel between velocity storage and motion sickness.

The nodulo-uvular involvement in motion sickness production

has long been suspected based on observations that nodulo-

uvular lesions rendered experimental animals immune to motion

sickness (97, 98). Doubts raised against this view (99, 100)

may be partially addressed by considering the acute vs. chronic

effects of such lesions and the presence of parallel vestibular-

cerebellar circuits that can produce counteracting autonomic

effects (52, 53, 111, 113, 122, 123). It is presumably within such

complex neural interactions that learning takes place so that

evoked symptoms of motion sickness and future susceptibility

diminish even when the provocative situation is unchanged

(4, 70). Motion sickness is said to be most severe when the

orientation and autonomic regulation systems are undergoing

rapid recalibration (4). Whether understanding the neural basis of

velocity storage malleability improves the predictability of motion

sickness susceptibility to specific stimuli or situations remains to

be seen. The physiology of and the circuitries that control and

are controlled by VO neurons likely serve a focal point of future

studies (19, 113), an approach thus far possible chiefly in animal-

based experiments.

Conclusion

Clues from various forms of labyrinthine and central

loss of vestibular function connect spatial perception, motion

sickness, and velocity storage as parallel phenomena. Similar

partially overlapping parallelisms from different perspectives have

previously been suggested (19, 113). A possible pitfall of such

thinking is that these phenomena may be just that—parallel but

unrelated. No matter, the paths to fill the knowledge gaps are

largely unpaved and promise abundant scientific opportunities.

Continuing development in space exploration and technology

behooves us to advance the field.
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