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Introduction: The relationship between carotid artery stenosis (CAS) and 
ipsilateral silent brain ischemia (SBI) remains unclear, with uncertain therapeutic 
implications. The present study, part of the TAXINOMISIS project (nr. 755,320), 
aimed to investigate SBIs in patients with asymptomatic CAS, correlating them 
with clinical, carotid ultrasonographic data, and CFD analyses.

Methods: The TAXINOMISIS clinical trial study (nr. NCT03495830) involved six 
vascular surgery centers across Europe, enrolling patients with asymptomatic 
and symptomatic CAS ranging from 50 to 99%. Patients underwent carotid 
ultrasound and magnetic resonance imaging (MRI), including brain diffusion-
weighted, T2-weighted/FLAIR, and T1-weighted sequences. Brain MRI scans 
were analyzed for the presence of SBI according to established definitions. 
Ultrasound assessments included Doppler and CFD analysis. Only asymptomatic 
patients were included in this substudy.

Results: Among 195 asymptomatic patients, the mean stenosis (NASCET) was 
64.1%. Of these, a total of 33 patients (16.9%) had at least one SBI detected on 
a brain MRI scan. Specifically, 19 out of 33 patients (57.6%) had cortical infarcts, 
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4 out of 33 patients (12.1%) had ipsilateral lacunar infarcts, 6 out of 33 patients 
had (18.2%) subcortical infarcts, 1 out of 33 patients (3.0%) had both cortical and 
lacunar infarcts, and 3 out of 33 patients (9.1%) both cortical and subcortical 
infarcts. Patients with SBIs exhibited significantly higher risk factors, including a 
higher body mass index (28.52  ±  9.38 vs. 26.39  ±  3.35, p  =  0.02), diastolic blood 
pressure (80.87  ±  15.73  mmHg vs. 80.06  ±  8.49  mmHg, p  =  0.02), creatinine levels 
(93.66  ±  34.61  μmol/L vs. 84.69  ±  23.67  μmol/L, p  =  0.02), and blood triglycerides 
(1.8  ±  1.06  mmol/L vs. 1.48  ±  0.78  mmol/L, p  =  0.03). They also had a higher 
prevalence of cardiovascular interventions (29.6% vs. 13.8%, p  =  0.04), greater 
usage of third/fourth-line antihypertensive treatment (50%vs16%, p  =  0.03), and 
anticoagulant medications (60% vs. 16%, p  =  0.01). Additionally, the number of 
contralateral cerebral infarcts was higher in patients with SBIs (35.5% vs. 13.4%, 
p  <  0.01). Moreover, carotid ultrasound revealed higher Saint Mary’s ratios 
(15.33  ±  12.45 vs. 12.96  ±  7.99, p  =  0.02), and CFD analysis demonstrated larger 
areas of low wall shear stress (WSS) (0.0004  ±  0.0004  m2 vs. 0.0002  ±  0.0002  m2, 
p  <  0.01).

Conclusion: The TAXINOMISIS clinical trial provides valuable insights into the 
prevalence and risk factors associated with SBIs in patients with moderate 
asymptomatic carotid stenosis. The findings suggest that specific hemodynamic 
and arterial wall characteristics may contribute to the development of silent 
brain infarcts.
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1 Introduction

Carotid artery stenosis (CAS) is a primary cause of ischemic 
cerebrovascular events, responsible for approximately 150,000 deaths 
annually in Europe and approximately 130,000 in the United States 
due to stroke, contributing significantly to health consequences and 
long-term disability (1). The socioeconomic impact of these outcomes 
is substantial.

European Stroke Organization (ESO) guidelines recommend 
statin therapy as a standard treatment for CAS. However, the 2023 
European Society for Vascular Surgery (ESVS) (2) guidelines suggest 
considering carotid endarterectomy (CEA) for asymptomatic CAS 
patients who show signs of silent brain ischemia (SBI) on imaging (3).

While the association between CAS and symptomatic stroke has 
been extensively studied, the relationship between CAS and clinically 
asymptomatic ischemic events, commonly defined as SBI, 
remains unclear.

SBIs typically occur without noticeable symptoms, posing a 
diagnostic challenge for general practitioners. These findings, often 
seen in brain MRI reports, are frequently considered incidental and of 
uncertain clinical significance, leading to minimal changes in patient 
management (4).

The prevalence of SBIs in patients with CAS is estimated to 
be approximately 10–20% (5). Although some studies have suggested 
a correlation between internal carotid artery intima-media thickness 
and stenosis with the occurrence of SBI (6), the exact mechanism by 
which atherothrombotic emboli lead to SBI remains unclear.

Recent advances in computational fluid dynamics (CFD) have 
improved our understanding of atherosclerosis, demonstrating 

that areas of low wall shear stress (WSS) are associated with 
increased accumulation of LDL particles within the arterial walls, 
which may contribute to the formation of atherosclerotic 
plaques (7).

The TAXINOMISIS project aims to classify carotid artery disease 
by leveraging current patient data and conducting prospective clinical 
trials. This involves characterizing plaque lesions, identifying risk 
factors, and analyzing disease phenotypes. The second phase includes 
a prospective clinical study to collect data on carotid stenosis and 
brain tissue.

The current study aims to describe the presence of SBIs in the 
TAXINOMISIS cohort and to correlate these findings with clinical 
and ultrasonographic characteristics, including advanced CFD 
analysis of the carotid plaque.

2 Materials and methods

Asymptomatic patients from the TAXINOMISIS core study 
cohort were included in this substudy. The TAXINOMISIS study was 
a prospective, observational, multicenter trial that enrolled individuals 
with moderate to severe extracranial CAS ranging from 50 to 99%. 
The study included both asymptomatic and symptomatic patients and 
was conducted at six European vascular centers: Athens-NKUA, 
Barcelona-FCRB, Belgrade-UBEO, Genoa-USMI, Munich-TUM, and 
Utrecht-UMC. The enrollment period extended from March 30, 2018, 
to December 31, 2019, with a total of 345 patients. The trial is 
registered on ClinicalTrials.gov under the identifier NCT03495830, 
and a detailed protocol has been published by Timmerman et al. (8).
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2.1 Demographic and clinical data 
collection

Demographic, clinical, and blood analysis data were collected 
from all patients. The treating physician determined whether the 
patient was symptomatic or asymptomatic based on the presence of 
clinical signs or a history of previous stroke or transient ischemic 
attack (TIA).

2.2 Ultrasonographic examination

All patients underwent an ultrasonographic examination, which 
included the assessment of carotid stenosis (using NASCET criteria), 
plaque morphology, and peak systolic velocity (PSV) in both the 
internal carotid artery (ICA) and common carotid artery (CCA). 
Additionally, St. Mary’s ratio—calculated as the ratio of PSV in the 
ICA to the end-diastolic velocity (EDV) in the CCA—was measured.

2.3 MRI examination

All patients underwent a baseline MRI examination on a 3 T 
scanner. The scan protocol included at least one axial diffusion-weighted 
imaging (DWI) scan and a time-of-flight (ToF) image. In contrast, an 
axial fluid-attenuated inversion recovery (FLAIR) T2-weighted image 
and a T1-weighted image were optional. Data in Digital Imaging and 
Communications in Medicine (DICOM) format from each center were 
anonymized, collected, and sent to an external core lab at the 
Neuroimaging Laboratory at the University of Bologna (IRCCS Istituto 
delle Scienze Neurologiche di Bologna), which conducted the analysis. 
Images deemed non-diagnostic (i.e., lacking sequences, noisy, or 

containing motion/distortion artifacts) were excluded. A flow chart 
regarding the inclusion process is displayed in Figure 1.

Two expert neuroradiologists, with 2 and 15 years of experience, 
respectively, reviewed the images and assessed the presence of 
ipsilateral brain infarcts in the anterior circulation vascular territory 
by consensus; they were also blinded to the clinical data. Infarcts were 
divided into three categories based on their location: cortical, 
subcortical, and lacunar, according to the previous definition of SBI 
(5, 9). A lesion was considered cortical if it presented as a FLAIR/
T2-weighted hyperintensity affecting the cerebral cortex, regardless of 
its shape or size.

Subcortical infarcts were defined as round or ovoid lesions that 
were hyperintense on T2-weighted/FLAIR images with a central fluid-
filled cavity (i.e., with signal intensity similar to cerebrospinal fluid 
(CSF), measuring between 3 mm and 15 mm in diameter, located in 
the vascular territory of superficial perforating arteries). Lacunar 
infarcts shared the same characteristics as subcortical infarcts but were 
located in the territory of the deep perforating arteries. Figure  2 
illustrates a representative example of each infarct type. Infarcts were 
classified as acute/subacute if they exhibited significant diffusion 
restriction on a DWI scan (i.e., a hyperintense signal on a DWI scan 
corresponding to a low signal on the ADC map) and as chronic if no 
changes were observed on DWI scans or ADC maps.

2.4 CFD analysis

A 3D reconstruction of the arterial lumen was conducted using a 
custom-developed algorithm to calculate the necessary hemodynamic 
parameters. Briefly, the ToF sequence from the MRI scan was used to 
generate a 3D volume of the arterial lumen (10). Subsequently, finite 
element method (FEM) analysis was conducted using ANSYS 16.2®. 

FIGURE 1

Flowchart describing the inclusion process of patients in the study. Adequate: at least T1 and T2/FLAIR images performed.
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The Navier–Stokes and continuity equations were used to model the 
blood flow.

Blood was modeled as a Newtonian fluid with a density of 
1,050 kg/m3 and a dynamic viscosity of 0.0035 Pa·s. Transient blood 
flow simulations were conducted for all cases. More specifically, the 
3D models were discretized into tetrahedral finite elements with a 
maximum face size of 0.16 mm, which was determined using mesh 
sensitivity analysis. Ultrasound scans provided flow velocity data 
for the CCA and external carotid artery (ECA), which were used to 
generate mass flow rate profiles, serving as boundary conditions for 
the FEM blood flow simulations.

A zero-pressure boundary condition was used at the ICA outlet, 
with the arterial wall assumed to be rigid and impermeable. Patient-
specific mass flow rate values were used for a complete cardiac cycle, 
from which key hemodynamic parameters were derived. These 
included time-averaged wall shear stress (TAWSS), oscillatory shear 
index (OSI), pressure ratios (PICA/PCCA and PECA/PCCA), along 
with the areas of low TAWSS and high OSI, both normalized by the 
total vessel area. These parameters were calculated for all 195 arterial 
models (11).

2.5 Statistical analysis

Statistical analysis was conducted using IBM SPSS version 23.0 
(Statistical Package for the Social Sciences, version 23.0 for Windows, 
2015). The normal distribution of continuous variables was assessed 
using the Kolmogorov–Smirnov and Shapiro–Wilk tests. Descriptive 
statistics were presented as mean (SD) for continuous variables and 
number (%) for categorical variables.

All analyses were conducted at the patient level, incorporating 
echographic data from the stenosed carotid artery for which the 
patient was included, data from the ipsilateral cerebral hemisphere, 
and clinical information. Clinical histories were meticulously reviewed 
to ascertain the presence of symptoms related to each affected carotid 
artery. Patients with neurological symptoms from both carotid arteries 
were excluded. If a patient had a contralateral silent brain infarct, this 
parameter was recorded as “contralateral brain infarct.” For 
asymptomatic patients, we compared echographic characteristics and 
clinical data between those with at least one sign of silent brain infarct 
and those without.

Continuous variables between Class 1 (presence of SBIs) and control 
Class 0 (absence of SBIs) were analyzed using an independent-sample 
t-test, while categorical data were compared using the Chi-square test 
and odds ratio (OR) analysis. p-values of < 0.05 were considered to 
be statistically significant. Additionally, multiple regression analysis was 
also conducted to verify the independence of the utilized features.

The above-mentioned analysis was repeated for each type of brain 
infarct (cortical, small subcortical, and lacunar).

3 Results

The descriptions of both the continuous and discrete utilized 
features are shown in Table 1.

3.1 Baseline study

A total of 195 asymptomatic patients were included in the study. 
Of these, 33 patients (16.9%) had 36 asymptomatic ipsilateral brain 
infarcts. Specifically, 19 of the 33 patients (57.6%) had cortical infarcts, 
4 patients (12.1%) had ipsilateral lacunar infarcts, 6 patients (18.2%) 
had subcortical infarcts, 1 patient (3.0%) had both a cortical and a 
lacunar infarct, and 3 patients (9.1%) had both cortical and 
subcortical infarcts.

A detailed breakdown of the MRI findings for each clinical center 
can be found in Supplementary material, Part 1.

3.2 Association between SBIs and clinical 
and US data

The results of the overall cohort (patient-level analysis) are 
reported in Tables  2, 3. Geographical, computational and clinical 
factors associated with the presence of SBIs include higher mean 
values of St Mary’s ratio (15.33 ± 12.45 vs. 12.96 ± 7.99, p = 0.02), area 
of low TAWSS (0.0004 ± 0.0004 m2 vs. 0.0002 ± 0.0002 m2, p < 0.01), 
BMI (28.52 ± 9.38 vs. 26.39 ± 3.35, p = 0.02), diastolic blood pressure 
(80.87 ± 15.73 mmHg vs. 80.06 ± 8.49 mmHg, p = 0.02), creatinine 
(93.66 ± 34.61 μmol/L vs. 84.69 ± 23.67 μmol/L, p = 0.02), and blood 
triglycerides (1.8 ± 1.06 mmol/L vs. 1.48 ± 0.78 mmol/L, p = 0.03).

FIGURE 2

FLAIR/T2-weighted images displaying representative examples of the three distinct categories of brain infarcts utilized in this study. Each depicted 
infarct is chronic and was identified in asymptomatic patients, classifying them as SBIs.
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Moreover, positive risk factors for the presence of brain 
lesions were the previous CABG/PCI placement (OR: 2.622, CI: 
1.023–6.717, p-value: 0.039), the use of alpha-blockers (OR: 5.233, 
CI: 1.008–27.175, p-value: 0.03), the use of anticoagulants 
(OR: 7.9, CI:1.266–49.311, p-value: 0.01), and the presence 
of contralateral brain lesions (OR: 3.55, CI: 1.49–8.406, 
p-value: 0.003).

The study’s findings regarding the association of each patient’s 
features with the SBI presence are depicted in Tables 2, 3 and visually 
represented in Figure 3.

The respective results regarding the presence of cortical, small 
subcortical, and lacunar infarcts are shown in Supplementary Tables S1, S2.

4 Discussion

In our study, we found that SBIs were associated with a higher 
prevalence of cardiovascular risk factors. Additionally, the association 
with lower WSS provides further insight into the pathophysiology of 
the disease, suggesting that this type of ischemia may be linked to 
more advanced stages of CAS.

The prevalence of SBI in our cohort is in line with existing 
literature (5, 12), which reports rates ranging from 10 to 20% and 
approximately 17–33% in patients with CAS. We did not observe any 
difference in the degree of CAS between patients with and without 
signs of SBI, with values of 63.59 ± 13.81% and 65.86 ± 12.17%, 
respectively. This suggests that carotid stenosis alone, commonly used 
as a stratification criterion, may be insufficient for a comprehensive 
assessment of these patients.

Over the last few years, it has become increasingly evident that 
carotid stenosis severity alone is insufficient to predict carotid plaque 
instability, necessitating the exploration of alternative indicators for 
a more accurate prognostic evaluation of plaque morphology (13). 
In a study conducted by Kakkos et al. (14) involving 821 patients 
with asymptomatic CAS, those with SBIs experienced a twofold 
increase in stroke events over an 8-year follow-up compared to those 
without SBIs. Furthermore, there is an established association 
between asymptomatic CAS and cognitive impairment, which may 
be explained by the presence of SBIs resulting from atheroembolic 
phenomena (9).

This study demonstrated that patients with SBIs exhibited a 
significantly higher Saint Mary’s ratio compared to those without SBIs. 

TABLE 1 Summary of patients’ demographics, clinical information, and findings from the carotid ultrasound examinations.

Overall cohort (N  =  195)

ICA stenosis, mean (SD) 64.13 (13.6) Sex (male), n (%) 121 (62.05%)

PSV, mean (SD) 177.57 (97.51) Alcohol abuse, n (%) 19 (9.74%)

PSV ICA / PSV CCA, mean (SD) 3.81 (5.79) Diabetes, n (%) 57 (29.23%)

St Mary’s ratio, mean (SD) 13.43 (8.98) Hypertension, n (%) 166 (85.13%)

PICA/PCCA, mean (SD) 0.93 (0.15) Coronary disease, n (%) 45 (23.08%)

PECA/PCCA, mean (SD) 0.9 (0.28) Previous MI, n (%) 17 (8.72%)

Vessel average TAWSS, mean (SD) 10.84 (15.86) Previous CABG/PCI, n (%) 27 (13.85%)

Area of low TAWSS (m2), mean (SD) 0.0002 (0.0002) Atherosclerosis of aortoiliac segment or femoropoplitealcrural, n (%) 48 (24.62%)

Area of low TAWSS/Total vessel area (%), mean (SD) 25.23 (18.73) Alpha-blockers (no), n (%) 6 (3.08%)

Area of high OSI/Total vessel area (%), mean (SD) 26.08 (18.13) Beta-blockers, n (%) 105 (53.85%)

Height, mean (SD) 168.63 (15.69) Diuretics, n (%) 58 (29.74%)

Weight, mean (SD) 76.8 (14.56) Calcium channel blockers, n (%) 48 (24.62%)

BMI, mean (SD) 26.75 (4.99) ACE inhibitors, n (%) 87 (44.62%)

SBP, mean (SD) 131.06 (18.21) Angiotensin receptor antagonist, n (%) 38 (19.49%)

DBP, mean (SD) 80.17 (10.01) Other antihypertensive drugs, n (%) 15 (7.69%)

Pulse rate, mean (SD) 70.67 (7.35) Coronary drugs, n (%) 10 (5.13%)

Age, mean (SD) 70.09 (7.6) Anticoagulants, n (%) 5 (2.56%)

Hb, mean (SD) 11.99 (2.86) Acetylsalicylic acid, n (%) 171 (87.69%)

Hct, mean (SD) 40.58 (4.68) Clopidogrel, n (%) 27 (13.85%)

Creatinine, mean (SD) 86.07 (25.73) Statin, n (%) 174 (89.23%)

Cholesterol, mean (SD) 4.59 (1.12) Lipid-lowering drugs, n (%) 22 (11.28%)

LDL, mean (SD) 2.54 (1.002) Contralateral, n (%) 31 (15.9%)

HDL, mean (SD) 1.5 (0.56) Ever operated on contralateral carotid, n (%) 32 (16.41%)

Triglycerides, mean (SD) 1.53 (0.83) Cortical or small subcortical or lacunar, n (%) 33 (16.92%)

Glucose, mean (SD) 6.41 (2.32)

CRP, mean (SD) 3.33 (3.69)

HbA1c, mean (SD) 6.04 (0.9)
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This ratio is considered a robust indicator of carotid disease severity in 
Doppler ultrasound assessments (15), as it reflects the hemodynamic 
changes caused by plaque. It is calculated by dividing the peak systolic 
velocity (PSV) in the internal carotid artery (ICA), which increases with 
the degree of stenosis, by the end-diastolic velocity (EDV) in the distal 
CCA, which decreases as ICA resistance rises with advancing stenosis.

Typically, a value greater than 14 predicts stenosis exceeding 70%, 
and a ratio above 11 indicates stenosis greater than 60% (15). In our 
study, the mean value across the entire cohort was only under 14, but 
it increased to 15 among patients with silent ischemia, despite no 
significant increase in stenosis, suggesting that the rise in values was 
attributed to a reduction in the numerator (i.e., EDV in the distal 
CCA) resulting from decreased vessel compliance, which is primarily 
caused by atherosclerosis (16).

From a clinical point of view, our results suggest that SBIs could 
still serve as markers for identifying individuals at elevated 
cardiovascular risk among those with asymptomatic CAS.

Within our study cohort, patients with SBIs showed increased use 
of third- and fourth-line antihypertensive treatments, along with 
elevated diastolic blood pressure and triglyceride levels, suggesting 
the need for optimizing medical therapy and considering prophylactic 

carotid interventions. The European Stroke Organization (ESO) 
guidelines on covert SVD recommend addressing vascular risk 
factors upon SBI detection to prevent major cardiovascular events 
and stress the importance of lifestyle changes. They also propose 
statin therapy even without traditional indications (2). The 2023 
European Society for Vascular Surgery (ESVS) guidelines on carotid 
management suggest considering CEA for patients with SBIs 
identified through CT or MRI, despite asymptomatic CAS and 
optimal medical therapy (3).

Moreover, building on recent insights from CFD into the 
mechanisms of atherosclerosis, particularly in identifying regions 
susceptible to plaque development, we conducted a novel investigation 
to examine distinct CFD analysis parameters in asymptomatic patients 
with CAS for the first time.

We found that patients with SBIs exhibit a significantly larger area 
characterized by low WSS in the carotid artery ipsilateral to the 

TABLE 2 Subjects’ continuous characteristics in the absence or presence 
of SBIs and odds ratio analysis for the association of cardiovascular-
related risk factors and the presence of brain lesions.

Continuous 
features

Absence of 
SBIs 

(N  =  162)

Presence of 
SBIs 

(N  =  33)

p 
value

ICA stenosis 63.59 ± 13.81 65.86 ± 12.17 0.767

PSV 172.06 ± 93.12 190.57 ± 98.02 0.32

PSV ICA / PSV CCA 3.85 ± 6.34 3.76 ± 2.12 0.811

St Mary’s ratio 12.96 ± 7.99 15.33 ± 12.45 0.016

Vessel average TAWSS (Pa) 11.83 ± 17.49 6.86 ± 3.35 0.269

Area of low TAWSS (m2) 0.0002 ± 0.0002 0.0004 ± 0.0004 0.002

Area of low TAWSS/Total 

vessel area (%)
23.001 ± 17.099 35.17 ± 23.45 0.404

Area of high OSI/Total 

vessel area (%)
25.93 ± 19.84 26.95 ± 8.87 0.255

Weight 75.75 ± 11.8 81.8 ± 18.52 0.409

BMI 26.39 ± 3.35 28.52 ± 9.38 0.022

Systolic BP 130.97 ± 16.48 130.73 ± 25.21 0.106

Diastolic BP 80.06 ± 8.49 80.87 ± 15.73 0.025

Pulse rate 70.67 ± 7.52 70.36 ± 6.48 0.702

Age 69.89 ± 7.64 71.48 ± 7.05 0.578

Creatinine 84.69 ± 23.67 93.66 ± 34.61 0.022

Cholesterol 4.67 ± 1.104 4.27 ± 1.15 0.872

LDL 2.6 ± 1.02 2.3 ± 0.85 0.364

HDL 1.52 ± 0.56 1.39 ± 0.58 0.860

Triglycerides 1.48 ± 0.78 1.8 ± 1.06 0.031

Glucose 6.42 ± 2.28 6.39 ± 2.55 0.433

CRP 3.49 ± 3.9 2.68 ± 2.49 0.381

(GHbA1c) 6.02 ± 0.84 6.17 ± 1.24 0.283

Bold font indicates statistical significance.

TABLE 3 Subjects’ categorical characteristics in the presence of SBIs and 
odds ratio analysis for the association of cardiovascular-related risk 
factors and the presence of brain lesions.

Categorical 
features

N. of 
SBIs (%)

Odds ratio—CI p 
value

Men 25 (21%)
0.456 (0.194–1.073) 0.067

Women 8 (10.8%)

Alcohol abuse 3(15.8%) 0.869 (0.238–3.171) 0.831

Diabetes 11(19.3%) 1.239 (0.556–2.76) 0.599

Hypertension 28 (17.1%) 0.947 (0.332–2.704) 0.919

Coronary Disease 10 (22.2%) 1.729 (0.741–4.033) 0.202

Previous MI 4 (23.5%) 1.669 (0.505–5.519) 0.397

Previous Cabg/pci 8 (29.6%) 2.622 (1.023–6.717) 0.039

Aortoiliac atherosclerosis /

femoropoplitealcrural
6 (12.5%) 0.611 (0.234–1.597) 0.312

Aortic aneurysm 2 (25%) 1.714 (0.329–8.933) 0.518

Alpha-Blockers 3 (50%) 5.233 (1.008–27.175) 0.03

Beta-Blockers 20 (19.4%) 1.39 (0.647–2.987) 0.397

Diuretics 8 (13.8%) 0.691(0.291–1.64) 0.4

Ca channel blockers 8 (17%) 0.976 (0.407–2.341) 0.957

ACE inhibitors 11 (12.6%) 0.526 (0.239–1.158) 0.107

Angiotensin II receptor 

antagonist
8 (21.6%) 1.423 (0.583–3.474) 0.436

Other antihypertensive 

drugs
2 (14.3%) 0.785 (0.167–3.685) 0.758

Coronary drugs 3 (30%) 2.157 (0.528–8.819) 0.274

Anticoagulants 3 (60%) 7.9 (1.266–49.311) 0.01

Acetylsalicylic acid 28 (16.5%) 0.631 (0.214–1.863) 0.401

Clopidogrel 6 (23.1%) 1.533 (0.563–4.173) 0.4

Statin 29 (16.9%) 0.76 (0.235–2.458) 0.646

LLD 5 (23.8%) 1.632 (0.551–4.831) 0.373

Contralateral 11 (35.5%) 3.55 (1.49–8.406) 0.003

Ever operated on 

contralateral carotid
4 (12.9%) 0.747 (0.24–2.322) 0.613

Bold font indicates statistical significance.
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infarct, compared to those without SBIs. Recent studies suggest that 
low WSS is a critical factor in the initiation of atherosclerosis (17), 
primarily by stimulating an inflammatory response in endothelial cells 
and upregulating adhesion molecules and chemokines, which are 
critical to atherogenesis (18).

Furthermore, atherosclerotic regions exposed to low WSS, 
particularly those rich in lipids, tend to exhibit accelerated plaque 
progression (19) and increased plaque burden (20). Studies on animal 
models have shown that low WSS is commonly found in plaques with 
high-risk characteristics, such as a large lipid core and a thin fibrous 
cap of smooth muscle cells and collagen (21). Recent studies have 
suggested that low WSS promotes atherosclerosis by inducing the 
formation of neutrophil extracellular traps (NETs) through the 
Piezo1-HDAC2 pathway (22) and triggering endothelial cell 
pyroptosis via the IKKε/STAT1/NLRP3 pathway (23).

Additionally, an in vivo study involving 20 patients with 
non-occlusive coronary artery disease (CAD) demonstrated that low 
WSS regions within plaques were associated with a regression of 
fibrous and fibro-lipidic content and an expansion of the necrotic core, 
further progressing toward a high-risk phenotype (24). However, 
some evidence suggests that high-risk plaque features, particularly 
ulceration and intraplaque hemorrhage (IPH), are associated with 
areas of elevated WSS (25, 26).

Plaques frequently exhibit a distinctive spatial pattern, with high 
WSS regions located upstream and low WSS areas downstream (27). 
This pattern suggests a complex interaction between WSS and plaque 
vulnerability, where plaque development is likely shaped by a 
combination of hemodynamic and biological factors (17).

It is interesting, though unsurprisingly, that all observed SBIs, 
regardless of their type, exhibited characteristics consistent with 
chronic-phase ischemia, with no acute lesions found on DWI scans. 
This is likely due to the older age of our study cohort (average age 
approximately 70 years). Additionally, over the 3-year follow-up, only 
very few new SBIs were identified. Our findings align with the notion 
that SBIs can occur relatively early in the cardiovascular risk trajectory.

This is in line with the results of the PESA study, which examined 
4,184 middle-aged healthy participants and found early signs of 
atherosclerosis: 36% of men and 25% of women aged 45–49 years had 
significant atherosclerotic plaques in the carotid arteries (28).

There is currently no consensus on the diagnostic criteria for SBIs. 
SBIs are usually defined on brain MRI as lesions with CSF-like signals: 
hypointense on T1-weighted and hyperintense on T2-weighted/
FLAIR images, with a diameter of at least 3 mm, excluding dilated 
perivascular spaces and white matter hyperintensities (WMH) (5, 6, 
12). This definition was used in the review conducted by the clinical 
neuroradiologists for this study.

Moreover, through this study, we further analyzed the types of 
brain infarcts in this population, distinguishing between cortical and 
subcortical infarcts (6) and lacunae within the territory of the 
vascularization of the proximal penetrating arteriole.

Regarding cortical SBIs, substantial evidence points to 
atheroembolic processes as the primary cause of cortical ischemia in 
individuals with CAS (4). Similarly, other data indicate that subcortical 
infarcts in the territory of distal perforating arteries are often 
associated with atherosclerosis and stenosis in the major brain-feeding 
arteries (29–31).

FIGURE 3

Association of patient-specific features with the presence of SBIs.
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Lacunes within the territory of proximal penetrating arteriole 
vascularization are frequently correlated with other indicators of small 
vessel disease (32). However, they may also be  associated with 
embolization from the carotid and have previously been recognized 
as signs of SBI (33).

Moreover, our results are in line with previous data (34) involving 
347 patients with brain lesions classified as infarcts on MRI scans, 
both cortical and subcortical. Only 14% had corresponding 
clinical symptoms.

It is well known that the presence of SBIs is associated with greater 
mean carotid intima-media thickness (IMT) (5), as well as with 
stenosis (6) and high-risk plaques (5, 35). Whether carotid stenosis 
solely indicates an overall elevated cardiovascular risk or directly 
contributes, through plaque rupture and subsequent atheroembolism, 
to SBIs remains uncertain.

Our data appear to support both possibilities, as the presence of 
SBIs was associated with cardiovascular risk factors and hemodynamic 
features (such as the St. Mary’s ratio and wall shear stress) that suggest 
hemodynamic perturbations may support the formation 
of atheroembolism.

4.1 Limitations and future directions

This study has several limitations. A possible one is the lack of 
evaluation for microembolic signals via transcranial Doppler, followed 
by IPH detection using carotid MRI or computed tomography. 
Additionally, several brain MRIs had to be excluded due to the lack of 
FLAIR images, which were deemed necessary for visualizing small 
infarctions and SBIs.

The NASCET method, while commonly used, has certain 
limitations in assessing carotid stenosis. Specifically, it is well known 
that it may not fully capture the degree of stenosis in cases involving 
outward plaque remodeling (36, 37). Additionally, the NASCET 
method is known for high interobserver variability (38). Despite these 
drawbacks, it remains one of the most widely used methods in clinical 
practice, making it valuable for translating our findings into 
clinical reasoning.

A comprehensive risk assessment that incorporates these factors, 
along with SBI presence, might be essential for accurately defining 
patient risk profiles and determining optimal therapeutic strategies (3, 
13). Further research on the subject is needed, including the use of 
emerging imaging modalities, such as PET-CT (39) and intravascular 
OCT (40), to better characterize patient risk and refine therapeutic 
management strategies.

5 Conclusion

The TAXINOMISIS clinical trial provides crucial insights 
into the prevalence and risk factors of ipsilateral silent brain 
infarcts (SBIs) in patients with asymptomatic carotid stenosis. 
We found that approximately 17% of these patients exhibit SBIs, 
which may be associated with more advanced carotid stenosis and 
a higher-risk cardiovascular profile. The observed associations 
suggest that certain hemodynamic factors and arterial wall 
characteristics could contribute to the development of 
these infarcts.
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