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Objective: Several studies have explored the relationship between intracranial 
aneurysms and psychiatric disorders; nevertheless, the causal connection 
remains ambiguous. This study aimed to evaluate the causal link between 
intracranial aneurysms and specific psychiatric disorders.

Methods: A two-sample Mendelian randomization (MR) analysis was 
conducted utilizing aggregated genome-wide association study (GWAS) data 
from the International Stroke Genetics Association for Intracranial Aneurysms 
(IAs), unruptured Intracranial Aneurysm (uIA), and aneurysmal Subarachnoid 
Hemorrhage (aSAH). Psychiatric disorder data, encompassing Schizophrenia 
(SCZ), Bipolar Disorder (BD), and Panic Disorder (PD), were sourced from the 
Psychiatric Genomics Consortium (PGC), while Cognitive Impairment (CI) data, 
comprising Cognitive Function (CF) and Cognitive Performance (CP), were 
obtained from IEU OpenGWAS publications. Causal effects were evaluated using 
inverse variance weighted (IVW), MR-Egger, and weighted median methods, 
with the robustness of findings assessed via sensitivity analyses employing 
diverse methodological approaches.

Results: Our MR analysis indicated no discernible causal link between intracranial 
aneurysm (IA) and an elevated susceptibility to psychiatric disorders. However, 
among individuals with genetically predisposed unruptured intracranial 
aneurysms (uIA), there was a modest reduction in the risk of SCZ (IVW odds 
ratio [OR]  =  0.95, 95% confidence interval [CI] 0.92–0.98, p  =  0.0002). Similarly, 
IAs also exhibited a moderate reduction in SCZ risk (OR  =  0.92, 95% CI 0.86–
0.99, p  =  0.02). Nevertheless, limited evidence was found to support a causal 
association between intracranial aneurysms and the risk of the other three 
psychiatric disorders.

Conclusion: Our findings furnish compelling evidence suggesting a causal 
influence of intracranial aneurysms on psychiatric disorders, specifically, both 
IAs and uIA exhibit a negative causal association with SCZ.
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Introduction

Intracranial aneurysm is characterized by an abnormal protrusion 
of the artery wall within the cranial cavity. The global incidence is 
approximately 3.2% (1), with subarachnoid hemorrhage (SAH) from 
aneurysmal rupture accounting for about 80% of cases (2). Aneurysm 
rupture ranks as the second leading cause of cerebrovascular accidents, 
following cerebral thrombosis and hypertensive cerebral hemorrhage. 
Cerebral aneurysm is associated with high rates of mortality and 
disability. Most intracranial aneurysms are asymptomatic before 
rupture, though some patients may experience headaches, transient 
ischemic attacks, cranial neuropathy, or seizures (3). Research shows a 
rising incidence of aneurysmal subarachnoid hemorrhage (aSAH) with 
age, particularly among women aged 55 and older (4). As the population 
ages, intracranial aneurysms may pose an increasing public health issue 
(5). The literature highlights substantial functional impairment following 
aSAH (6), resulting in significant societal and familial burdens (7).

Psychiatric disorders include various complex cognitive and 
psychological syndromes, such as cognitive impairment (CI), major 
depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder 
(BD), and panic disorder (PD). These conditions are characterized by 
cognitive, emotional, and behavioral changes, often accompanied by 
distress and functional impairment. With high morbidity and mortality 
rates, psychiatric disorders present a significant public health challenge, 
imposing substantial burdens on individuals, society, and the economy 
(8). Numerous studies have demonstrated a bidirectional causal 
relationship between intracranial aneurysms (IAs) and MDD, 
indicating that IA patients have an elevated risk of developing MDD 
(9, 10). MR analysis of correlations has further validated this causal 
association (11). Additionally, some studies have observed the first 
occurrence of intracranial aneurysms presenting as SCZ or BD (12), 
and cognitive impairment has been identified as a lasting consequence 
in individuals who have experienced aneurysmal subarachnoid 
hemorrhage (aSAH) (13). Observational studies may be biased due to 
various confounding factors, complicating the establishment of a causal 
relationship between intracranial aneurysms and psychiatric disorders.

Mendelian randomization (MR) is an epidemiological approach 
that uses genetic variants closely associated with exposure as 
instrumental variables (IVs) to assess causal relationships between risk 
factors and specific diseases (14). By utilizing genetic variants as IVs 
and taking advantage of their consistent, random, and independent 
distribution during meiosis, this method effectively avoids 
confounding and reverse causality issues (15). This technique increases 
the reliability of causal inference, addresses common limitations of 
observational studies, and is widely used to validate their results (16). 
In this study, MR analysis was used to investigate the potential causal 
links between intracranial aneurysms (IAs), unruptured intracranial 
aneurysms (uIA), aneurysmal subarachnoid hemorrhage (aSAH), and 
psychiatric disorders such as schizophrenia (SCZ), bipolar disorder 
(BD), panic disorder (PD), and cognitive impairment (CI).

Methods

Study design

Four psychiatric disorders were chosen as outcome variables, while 
single nucleotide polymorphisms (SNPs) strongly associated with IAs, 

uIA, and SAH were selected as instrumental variables. MR analysis was 
employed to investigate causal relationships between exposure factors 
and outcome variables. To ensure result reliability, heterogeneity tests 
and pleiotropy analyses were conducted to mitigate potential biases. To 
ensure the reliability of MR (17), three key assumptions were employed: 
(1) the association hypothesis, wherein IVs are highly correlated with 
exposure factors; (2) the independence hypothesis, where IVs remain 
independent of any confounding factors associated with exposure and 
outcome variables; and (3) the exclusion hypothesis, positing that IVs 
solely influence outcomes via exposure factors. The research design is 
depicted in Figure 1.

Date source

The data for IAs, UIA, and aSAH were acquired from the 
International Society for Stroke Genetics.1 The study performed cross-
ethnic genome-wide association studies (GWAS) involving 10,754 
cases and 306,882 controls of European and East Asian descent. To 
maintain ethnic consistency, only European samples were utilized for 
Mendelian randomization (MR) analysis (18).

The study included data from the Psychiatric Genomics 
Consortium (PGC), encompassing 130,644 patients with SCZ 
(comprising 53,386 cases and 77,258 controls), 413,466 patients with 
BD (comprising 41,917 cases and 371,549 controls), and 10,240 
patients with PD (comprising 2,248 cases and 7,992 controls), as 
derived from partial GWAS statistics.2 Furthermore, two datasets from 
the IEU OpenGWAS database were utilized.3 The first dataset 
comprised aggregated data from 22,593 samples assessing cognitive 
function (ieu-b-4838), provided by the Within Family GWAS 
Consortium. This dataset employs cognitive function scores as a 
measure, where higher scores indicate better cognitive function and 
vice versa. The second dataset, Cognitive Performance (ebi-a-
GCST006572), pooled data from 257,841 samples, all of 
European ancestry.

The specifics of the genetic instrumental variables utilized in the 
study are presented in Table 1.

Instrument variables selection

To fulfill the primary MR hypothesis asserting a robust 
association between single nucleotide polymorphisms (SNPs) and 
intracranial aneurysms (IAs), unruptured intracranial aneurysms 
(uIA), and aneurysmal subarachnoid hemorrhage (aSAH), we faced 
a scarcity of SNP-IA associations meeting the stringent 
genome-wide association threshold (p < 5.00E−8) within the 
aggregated GWAS dataset. Consequently, we resorted to utilizing 
significance levels (p < 5 × 10–6) for the identification of IVs. 
Subsequently, we established the linkage disequilibrium coefficient 
at r2 < 0.001 and confined the region width to 10,000 kb to minimize 
potential pleiotropic effects on the outcomes. Additionally, 

1 https://figshare.com/articles/dataset/Intracranial_aneurysm_genome- 

wide_association_study_summary_statistics_2020/11303372

2 https://pgc.unc.edu/

3 https://gwas.mrcieu.ac.uk/
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palindrome SNPs were manually removed from consideration. The 
SNPs that persisted after these procedures were then designated as 
instrumental variables. To mitigate any potential weak instrumental 
bias, we  employed the F statistic (F = β2/se2) to evaluate the 
statistical power of the SNPs (19). Notably, an F value exceeding 10 
signifies the absence of weak instrumental bias for the chosen 
instrumental variable.

Mendelian randomization analysis

In this study, we employed the inverse-variance weighted (IVW), 
MR-Egger, and Weighted median (WM) methods to investigate the 
presence of a causal relationship between the exposure and outcome 
variables (20). The IVW method integrates Wald estimates of genetic 
causality for each SNP to evaluate the influence of exposure on 
outcomes, presupposing the validity of all chosen SNPs as instrumental 
variables. This method offers the most precise estimate and serves as 
the principal statistical approach for evaluating causal effects (21). 
Moreover, the weighted median method is capable of providing a 
dependable estimate of the causal effect, even when as much as 50% 
of the data utilized in the analysis stems from genetic variants that 
might not qualify as valid instrumental variables (22). MR-Egger 
permits genetic instrumental variables to exhibit pleiotropic effects 
but mandates that these effects remain independent of the associations 
between variations and exposures (23). The MR-Egger and weighted 

median methods were supplemented to provide a more robust and 
extensive assessment.

Sensitive analysis

To ensure the reliability of the study outcomes, a comprehensive 
set of sensitivity analyses and quality controls were executed. The 
heterogeneity among genetic variants employed as instrumental 
variables was evaluated employing Cochran’s Q test. Significant 
outcomes from the Q test (p < 0.05) denote heterogeneity among IVs 
(24), with the results being visually presented through funnel plots. 
Pleiotropy was investigated through MR-Egger regression, which 
estimated the intercept term, referred to as the pleiotropic intercept, 
encapsulating the average pleiotropic impact of all genetic variations. 
A p value for the intercept exceeding 0.05 disregards the presence of 
pleiotropy (25).

Statistical analysis

Statistical analysis was conducted using “TwoSampleMR,” 
“MR-PRESSO” and “forestplot” (26) in R version 4.3.1. Results were 
presented as odds ratios (ORs) along with their corresponding 95% 
confidence intervals (CIs). A significance level of p < 0.05 denoted a 
statistically significant difference between the two groups.

FIGURE 1

The flowchart of Mendelian randomization study design in this study. IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; aSAH, 
aneurysmal subarachnoid hemorrhage; SCZ, schizophrenia; BD, bipolar disorder; PD, panic disorder; CF, cognitive function; CP, cognitive 
performance.

TABLE 1 The GWAS data source details.

Phenotype Data source Consortium Sample size Ancestry PMID

IAs ISGC Bakker et al. 79,429 European 33,199,917

uIA ISGC Bakker et al. 74,004 European 33,199,918

aSAH ISGC Bakker et al. 77,074 European 33,199,919

Schizophrenia PGC Trubetskoy et al. 130,644 European 35,396,580

Bipolar disorder PGC Mullins et al. 413,466 European 34,002,096

Panic disorder PGC Forstner et al. 10,240 European 31,712,720

Cognitive performance IEU OpenGWAS SSGAC 257,841 European 30,038,396

Cognitive function IEU OpenGWAS Within family GWAS consortium 22,593 European 35,534,559

IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; aSAH, aneurysmal subarachnoid hemorrhage; ISGC, International Stroke Genetics Consortium; PGC, Psychiatric 
Genomics Consortium.
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Results

Selection of IVs

Following meticulous screening, the number of SNPs utilized for 
each exposure and outcome risk varied from 9 to 23. The F statistics 
associated with the SNPs encompassed in the study all exceeded 10, 
affirming the absence of weak bias in the study results and thereby 
validating their reliability. The findings are illustrated in the 
Supplementary Tables S1–S3.

Causal association of uIA with SCZ

MR analysis revealed that in the inverse-variance weighted (IVW) 
model, unruptured intracranial aneurysm (uIA) exhibited a causal 
association with schizophrenia (SCZ) (OR = 0.95, 95% CI 0.92–0.98, 
p = 0.0002), indicating a negative association between uIA and SCZ 
(Figure  2). The weighted median method yielded similar causal 
estimations (OR = 0.95, 95% CI 0.91–0.98, p = 0.005) (Figure  2). 
Despite providing consistent estimates, the MR-Egger methods did 
not attain statistical significance. To ensure the stability of the above 
findings, sensitivity analysis was conducted on the included single 
nucleotide polymorphisms (SNPs). Cochran’s Q test revealed no 
evidence of heterogeneity (p = 0.705), while the MR-Egger intercept 
(p = 0.448) indicated no significant pleiotropy (Table  2; 
Supplementary Figure S1A). Funnel plots displayed general symmetry 
across all SNPs, indicating that causal associations are less likely to 
be affected by potential bias (Supplementary Figure S1B). No SNPs of 
significance were identified to exert a notable impact on the causal 
association estimate following exclusion via the leave-one-out method 
(Supplementary Figure S1C).

Causal association of other models

Moreover, IAs were causally linked with SCZ (OR = 0.92, 95% CI 
0.86–0.99, p = 0.028), with IAs exhibiting a negative association with 
SCZ (Figure  2). However, no significant disparity was observed 
between MR-Egger and weighted median methods. Although 
Cochran’s Q test indicated heterogeneity, the MR-Egger intercept 
(p = 0.849) demonstrated no significant pleiotropic effect (Table 2; 
Supplementary Figure S2).

Additionally, no noteworthy distinction was noted between other 
models (p > 0.05). Comprehensive results for other models, 
encompassing outcomes from the three causal estimation methods, 
pleiotropy tests, and heterogeneity assessments, are presented in 
Table 2 and Supplementary Figures S1–S15.

Discussion

We used Mendelian randomization to systematically assess the 
causal relationship between genetic susceptibility to intracranial 
aneurysms and the risk of four psychiatric disorders. Gene prediction 
results indicated that uIA and IAs were linked to a reduced risk of 
SCZ, a finding further supported by sensitivity analysis. However, 
genetically predicted uIA, aSAH, and IAs showed no connection to 

the risk of BD, PD, and cognitive impairment (CI). These results 
improve the understanding of the etiological basis of these four 
psychiatric disorders.

Epidemiological studies have shown that the prevalence of 
unruptured aneurysms is uncertain, with approximately one in four 
individuals experiencing ruptures in their lifetime, leading to severe 
consequences (27). The potential susceptibility of individuals with 
intracranial aneurysms to psychiatric disorders has been a topic of 
ongoing debate. MR analysis has demonstrated a positive causal link 
between intracranial aneurysms and major depressive disorder (MDD) 
(9). However, our MR analysis aligned with previous studies and did 
not identify a positive causal association between patients with 
intracranial aneurysms and SCZ or BD (28). Interestingly, our findings 
suggest that IA acts as a protective factor against schizophrenia SCZ.

Regarding the negative causal relationship between IA and SCZ, 
we propose the following possibilities. Firstly, existing research has 
highlighted the significant involvement of the renin-angiotensin-
aldosterone system (RAAS) in both SCZ pathogenesis and IA 
development. Specifically, a strong correlation has been established 
between angiotensin-converting enzyme (ACE) expression and SCZ 
(29). Continuous administration of angiotensin receptor blockers 
(ARBs) has shown effectiveness in reducing SCZ symptoms (30), a 
finding supported by animal model studies (31). The involvement of 
the RAAS in IA pathogenesis remains debated. Studies suggest that 
downregulation of local RAAS activity may influence vascular 
remodeling, potentially contributing to brain aneurysm formation and 
rupture (32). Conversely, research using mouse models of IA has 
demonstrated high expression of angiotensin II and angiotensin type 
1 receptors within these aneurysms, with inhibition of local RAAS 
activity showing promise in preventing aneurysm rupture (33). 
Additionally, among hypertensive patients with IA, the use of RAAS 
inhibitors has been linked with a significant reduction in rupture risk 
(34). Consequently, further research is needed to determine whether 
RAAS plays a role in the protective effect of IA against SCZ. Moreover, 
studies have highlighted the correlation between SCZ severity and 
distinct patterns of cerebral hemodynamics (35, 36). Prefrontal blood 
volume decreases in SCZ but not in MDD, suggesting that a positive 
causal relationship between IA and MDD may be related to prefrontal 
blood volume changes (37). A systematic review and meta-analysis 
revealed that negative symptoms of SCZ are linked with cortical 
frontolimbic hypoperfusion, while positive symptoms are associated 
with hyperperfusion. Furthermore, male individuals with 
schizophrenia exhibit increased blood-oxygen-level-dependent 
(BOLD) activation in the cerebellum, temporal gyrus, and right 
precuneus cortex. Notably, there is an increased incidence of 
low-frequency fluctuation in cerebral blood flow within the frontal and 
parietal lobes, as well as the insular cortex among male patients, and in 
the hippocampus, parahippocampus, and lentiform nucleus among 
female patients (38). Hemodynamic alterations also play a crucial role 
in the initiation, progression, and rupture of IA (39). In patients with 
UIA, a significant decrease in the local gyrations index (LGI) has been 
observed in brain regions including the posterior cingulate gyrus, 
retrospenial cortex, cuneiform gyrus, and lingual gyrus of the right 
hemisphere (40), areas overlapping with those implicated in 
SCZ. Additionally, variations in local biosignatures of IA, leading to 
changes in the local microenvironment (41, 42), may serve as potential 
contributing factors, necessitating further investigations to validate 
this hypothesis.
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Cognitive impairment is often considered a long-term outcome of 
aneurysmal subarachnoid hemorrhage (aSAH) (13). However, the 
effect of unruptured intracranial aneurysms (uIA) on cognitive 
function has been debated in previous studies. Some research suggests 
that treatment of uIA may impact cognitive function (43), with post-
treatment cognitive impairment observed in uIA patients without a 

history of aSAH (44). On the other hand, other studies indicate that 
uIA treatment does not significantly affect overall neuropsychological 
function (45, 46). A prior study reported declines in word fluency, 
verbal recall, and executive function among individuals with both 
ruptured and unruptured aneurysms (47). Nevertheless, our study did 
not find direct evidence supporting a causal link between uIA, IAs, 

FIGURE 2

Mendelian randomized forest plot of causal effects between intracranial aneurysms, unruptured intracranial aneurysm and aneurysmal subarachnoid 
hemorrhage. *p  <  0.05; **p  <  0.01; ***p  <  0.001.
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aSAH, and cognitive impairment (CI). Consequently, cognitive 
impairment following treatment in patients with intracranial 
aneurysms may result from indirect effects of other factors. Research 
has shown that cognitive and functional impairments in patients with 
aSAH could be related to diffuse brain injury and specific complications 
like vasospasm and increased intracranial pressure (48, 49). Moreover, 
the choice of various anesthetics might influence post-surgery cognitive 
function (50). The underlying mechanism could be associated with 
inflammation in the central nervous system following aSAH (51, 52). 
There is a general consensus that inflammation plays a role in the 
formation, progression, and rupture of intracranial aneurysms (53). A 
recent study reveals that CNS-associated macrophages are believed to 
significantly contribute to aneurysm progression, yet their influence on 
cognitive function in patients after aSAH requires further exploration 
(54). Therefore, we speculate that the impact of intracranial aneurysms 
on cognitive function may stem from multiple factors, including 
underlying disease, aneurysm location, anesthetic drugs, and surgical 
techniques, rather than being solely attributed to the aneurysm itself. 
Further investigation is necessary to validate these specific reasons.

This study presents several notable strengths. Firstly, it employs a 
two-sample MR analysis, using genotype randomization to determine 
the causal relationship between IA and select psychiatric disorders. 
Secondly, this design reduces potential biases from reverse causality 
and confounding factors present in conventional studies, thus 
facilitating causal inference. Thirdly, the F-statistic for each exposure 
exceeds 10, indicating the absence of weak instrument bias. 
Additionally, we  conducted comprehensive sensitivity analyses to 
evaluate the robustness of the MR model hypotheses.

However, there are some limitations to consider. Firstly, our 
findings are derived solely from populations of European descent, thus 
caution must be  exercised when generalizing these results to 
non-European populations, as contextual factors and ethnicity may 
influence outcomes. Secondly, larger and more comprehensive 
datasets may be necessary for studying intracranial aneurysms, as well 

as for addressing data limitations, such as those encountered in reverse 
Mendelian randomization analysis due to excessive SNP losses. While 
we  employed methods to detect and adjust for pleiotropy, some 
unmeasured confounding may still influence our results. Additional 
sensitivity analyses, including methods to account for horizontal 
pleiotropy, would strengthen causal inference. In addition, Our MR 
analysis may not capture the full genetic architecture and multifactorial 
etiology of psychiatric disorders. Future research should consider 
polygenic risk scores and integrate multi-omic data to better 
understand the genetic underpinnings of these conditions. Finally, our 
analysis does not account for the dynamic progression of psychiatric 
disorders. Longitudinal studies and repeated measures MR approaches 
are needed to explore how genetic predispositions influence disease 
trajectories over time. MR studies primarily focus on genetic variants 
and do not account for environmental and epigenetic factors that play 
significant roles in psychiatric disorders. Future studies should 
integrate environmental exposures and epigenetic modifications to 
provide a more comprehensive understanding of disease etiology.

Conclusion

In conclusion, our findings suggest that both uIA and IAs 
might serve as protective factors against SCZ. However, 
comprehensive validation studies are warranted to substantiate 
these findings and elucidate the underlying molecular 
mechanisms comprehensively.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

TABLE 2 Heterogeneity and pleiotropy tests for the associations between IA and psychiatric disorders.

Exposure Outcome SNP (n) Heterogeneity test Pleiotropy test

Q Q-pval MR-Egger intercept Se p

uIA SCZ 10 6.345 0.705 0.014 0.018 0.448

BD 10 17.267 0.045 0.030 0.028 0.305

PD 10 3.127 0.959 −0.056 0.072 0.458

CF 9 9.726 0.285 −0.008 0.036 0.826

CP 10 9.899 0.359 −0.001 0.007 0.878

aSAH SCZ 23 149.857 <0.001 −0.007 0.019 0.729

BD 23 36.688 0.026 −0.001 0.010 0.908

PD 22 37.321 0.015 −0.065 0.042 0.130

CF 20 25.938 0.132 0.003 0.010 0.785

CP 20 23.127 0.337 0.003 0.002 0.176

IAs SCZ 23 130.743 <0.001 0.004 0.022 0.849

BD 23 35.382 0.035 0.001 0.013 0.944

PD 23 37.100 0.023 −0.056 0.051 0.287

CF 21 24.809 0.209 0.006 0.012 0.619

CP 22 28.233 0.134 0.007 0.003 0.038

IAs, intracranial aneurysms; uIA, unruptured intracranial aneurysm; aSAH, aneurysmal subarachnoid hemorrhage; SCZ, schizophrenia; BD, bipolar disorder; PD, panic disorder; CF, 
cognitive function; CP, cognitive performance.
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SUPPLEMENTARY FIGURE S1

Supplementary figures for uIA on SCZ. uIA, unruptured intracranial aneurysm; 
SCZ, schizophrenia; MR, Mendelian randomization; IV, instrumental variable; 
SE, standard error. (A) Scatter plot for uIA on SCZ; (B) funnel plot for uIA on 
SCZ; (C) leave-one-out graph for uIA on SCZ; (D) forest plot for uIA on SCZ.

SUPPLEMENTARY FIGURE S2

Supplementary figures for uIA on BD. uIA, unruptured intracranial aneurysm; 
BD, bipolar disorder; MR, Mendelian randomization; IV, instrumental variable; 
SE, standard error. (A) Scatter plot for uIA on BD; (B) funnel plot for uIA on 
BD; (C) leave-one-out graph for uIA on BD; (D) forest plot for uIA on BD.

SUPPLEMENTARY FIGURE S3

Supplementary figures for uIA on PD. uIA, unruptured intracranial aneurysm; 
PD, panic disorder; MR, Mendelian randomization; IV, instrumental variable; 
SE, standard error. (A) Scatter plot for uIA on PD; (B) funnel plot for uIA on 
PD; (C) leave-one-out graph for uIA on PD; (D) forest plot for uIA on PD.

SUPPLEMENTARY FIGURE S4

Supplementary figures for uIA on CF. uIA, unruptured intracranial aneurysm; 
CF, cognitive function; MR, Mendelian randomization; IV, instrumental 
variable; SE, standard error. (A) Scatter plot for uIA on CF; (B) Funnel plot for 
uIA on CF; (C) Leave-one-out graph for uIA on CF; 
(D) Forest plot for uIA on CF.

SUPPLEMENTARY FIGURE S5

Supplementary figures for uIA on CP. uIA, unruptured intracranial aneurysm; 
CP, cognitive performance; MR, Mendelian randomization; IV, instrumental 
variable; SE, standard error. (A) Scatter plot for uIA on CP; (B) funnel plot for 
uIA on CP; (C) leave-one-out graph for uIA on CP; 
(D) forest plot for uIA on CP.

SUPPLEMENTARY FIGURE S6

Supplementary figures for aSAH on SCZ. aSAH, aneurysmal subarachnoid 
hemorrhage; SCZ, schizophrenia; MR, Mendelian randomization; IV, 
instrumental variable; SE, standard error. (A) Scatter plot for SAH on SCZ; 
(B) funnel plot for SAH on SCZ; (C) leave-one-out graph for SAH on SCZ; 
(D) forest plot for SAH on SCZ.

SUPPLEMENTARY FIGURE S7

Supplementary figures for aSAH on BD. aSAH, aneurysmal subarachnoid 
hemorrhage; BD, bipolar disorder; MR, Mendelian randomization; IV, 
instrumental variable; SE, standard error. (A) Scatter plot for SAH on BD; 
(B) funnel plot for uIA on BD; (C) leave-one-out graph for SAH on BD; 
(D) forest plot for SAH on BD.

SUPPLEMENTARY FIGURE S8

Supplementary figures for aSAH on PD. aSAH, aneurysmal subarachnoid 
hemorrhage; PD, panic disorder; MR, Mendelian randomization; IV, 
instrumental variable; SE, standard error. (A) Scatter plot for SAH on PD; 
(B) funnel plot for SAH on PD; (C) leave-one-out graph for SAH on PD; 
(D) forest plot for SAH on PD.

SUPPLEMENTARY FIGURE S9

Supplementary figures for aSAH on CF. aSAH, aneurysmal subarachnoid 
hemorrhage; CF, cognitive function; MR, Mendelian randomization; IV, 
instrumental variable; SE, standard error. (A) Scatter plot for SAH on CF; 
(B) funnel plot for SAH on CF; (C) leave-one-out graph for SAH on CF; 
(D) forest plot for SAH on CF.

SUPPLEMENTARY FIGURE S10

Supplementary figures for aSAH on CP. aSAH, aneurysmal subarachnoid 
hemorrhage; CP, cognitive performance; MR, Mendelian randomization; IV, 
instrumental variable; SE, standard error. (A) Scatter plot for SAH on CP; 
(B) funnel plot for SAH on CP; (C) leave-one-out graph for SAH on CP; 
(D) forest plot for SAH on CP.

SUPPLEMENTARY FIGURE S11

Supplementary figures for IAs on SCZ. IAs, intracranial aneurysms; SCZ, 
schizophrenia; MR, Mendelian randomization; IV, instrumental variable; SE, 
standard error. (A) Scatter plot for IAs on SCZ; (B) funnel plot for IAs on SCZ; 
(C) leave-one-out graph for IAs on SCZ; (D) forest plot for IAs on SCZ.
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SUPPLEMENTARY FIGURE S12

Supplementary figures for IAs on BD. IAs, intracranial aneurysms; BD, bipolar 
disorder; MR, Mendelian randomization; IV, instrumental variable; SE, 
standard error. (A) Scatter plot for IAs on BD; (B) funnel plot for IAs on BD; 
(C) leave-one-out graph for IAs on BD; (D) forest plot for IAs on BD.

SUPPLEMENTARY FIGURE S13

Supplementary figures for IAs on PD. IAs, intracranial aneurysms; PD, panic 
disorder; MR, Mendelian randomization; IV, instrumental variable; SE, 
standard error. (A) Scatter plot for IAs on PD; (B) funnel plot for IAs on PD; 
(C) leave-one-out graph for IAs on PD; (D) forest plot for IAs on PD.

SUPPLEMENTARY FIGURE S14

Supplementary figures for IAs on CF. IAs, intracranial aneurysms; CF, 
cognitive function; MR, Mendelian randomization; IV, instrumental variable; 
SE, standard error. (A) Scatter plot for IAs on CF; (B) funnel plot for IAs on CF; 
(C) leave-one-out graph for IAs on CF; (D) forest plot for IAs on CF.

SUPPLEMENTARY FIGURE S15

Supplementary figures for IAs on CP. IAs, intracranial aneurysms; CP, cognitive 
performance; MR, Mendelian randomization; IV, instrumental variable; SE, 
standard error. (A) Scatter plot for IAs on CP; (B) funnel plot for IAs on CP; 
(C) leave-one-out graph for IAs on CP; (D) forest plot for IAs on CP.
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