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Whole-body vibration (WBV) therapy is a way of passive exercise in which 
subjects are exposed to mild and well-controlled mechanical vibrations through 
a vibrating platform. For a long time, studies have focused on the effects and 
applications of WBV to enhance musculoskeletal performance in athletes and 
patients suffering from musculoskeletal disorders. Recent evidence points 
toward the positive effect of WBV on the brain and its therapeutic potential 
in brain disorders. Research being done in the field gradually reveals cellular 
and molecular mechanisms underlying WBV affecting the body and brain. 
Particularly, the influence of WBV on immune and brain function is a growing 
field that warrants an up-to-date and integrated review. Immune function is 
closely intertwined with brain functioning and plays a significant role in various 
brain disorders. Dysregulation of the immune response is linked to conditions 
such as neuroinflammation, neurodegenerative diseases, and mood disorders, 
highlighting the crucial connection between the immune system and the brain. 
This review aims to explore the impact of WBV on the cellular and molecular 
pathways involved in immune and brain functions. Understanding the effects 
of WBV at a cellular and molecular level will aid in optimizing WBV protocols to 
improve its therapeutic potential for brain disorders.
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1 Introduction

WBV therapy involves exposing individuals to mechanical vibrations through a 
specialized platform (1). WBV exploits an organism’s vibrational sense, a widespread 
phenomenon in the animal kingdom (2–4). This innate capacity to detect vibrations is 
believed to have evolutionary significance, enhancing an organism’s connection with its 
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environment (5, 6). Humans are susceptible to mechanical 
stimulations (often encountered in an oscillatory form), ranging in 
frequency from ~1 Hz up to at least 100 kHz (7).

Mechanoreceptors in human skin process these vibrations, 
relaying signals to the brain through the spinal cord. In addition to 
those in the skin, Piezo1 and Piezo2 proteins are mechanosensitive 
ion channels located in the internal tissues of mammals. These 
channels trigger mechanotransduction, leading to the production of 
various hormonal and non-hormonal signaling molecules that affect 
cellular and metabolic physiology (8). This relaying influences 
physiological processes across the whole body.

While high-frequency (>100 Hz) and high-intensity (>10 mm) 
vibrations can lead to musculoskeletal impairment, and increase the 
risk of developing hand-arm vibration syndrome (9, 10), 
low-frequency (10–50 Hz) and low-amplitude (<10 mm) vibrations 
have demonstrated positive effects, particularly in therapeutic 
applications (3).

WBV can be viewed as a form of passive exercise. In a nutshell: an 
active form of exercise is where a person exerts force and puts in the 
effort to complete a move, whereas, in passive exercise, minimal 
movement is required by the individual. Either someone else moves 
the body for them or some machines induce exercise-like effects 
which is what happens in the case of WBV using vibrating platforms 
(3). WBV, to a level, helps to achieve the beneficial effects of 
conventional exercises. In older adults, WBV may improve muscle 
strength, power, and balance compared to untrained individuals (11–
13). In many cases, WBV is used as an additional regime to the basic 
exercising routines as it has been shown to augment the effects of 
resistance training and other forms of physical exercises. It has been 
demonstrated that WBV exerts a positive effect on upper-limb 
performance in combination with exercise (14). Evidence also suggests 
that WBV may be a good alternative to stretching as a warm-up as it 
boosts strength exercises in the older population and also seems to 
enhance cyclist performance (15, 16). Furthermore, WBV may be a 
useful co-adjuvant in conventional rehabilitation therapy to improve 
postural stability and achieve better physical, functional, and 
emotional outcomes in individuals undergoing vestibular 
rehabilitation (17). This is further strengthened by the fact that WBV 
stands out as a convenient and highly accessible exercise option. WBV 
requires less effort, is time efficient, cost-effective, and suitable for 
various settings and, therefore, adaptable for home or clinical use. 
Particularly for individuals facing physical limitations or lacking 
motivation due to factors like frailty, depression, or other mental 
health challenges, WBV emerges as an accessible and effective means 
to initiate and enhance physical activity (18, 19).

While the primary focus of studies has traditionally been on 
elucidating the effects and applications of WBV to enhance 
musculoskeletal performance in athletes and individuals with 
musculoskeletal disorders, recent evidence highlights a noteworthy 
positive impact of WBV at the neurological level and brain functioning. 
This underscores its potential utility in addressing conditions related to 
brain diseases. Studies have been conducted to observe the effects of 
WBV on nervous system-related conditions like spinal cord injury, 
traumatic brain injury, stroke, anxiety, and major depressive disorder 
(20–23). Reviews on neurodegenerative disorders (discussed in Section 
5) point toward a lack of optimized protocol. To start identifying 
optimized protocols for brain disorders, we believe that comprehending 
the molecular and cellular impacts of WBV is crucial.

One of the key players in brain disorders is the immune system; it 
is known to be close-knit with the nervous system (24). Both these 
systems have a series of communication pathways to and from each 
other which play a role in maintaining the overall health of the body. 
On the one hand, the brain sends signals to the periphery via 
neurotransmitters, to get the immune system fired up, and on the 
other hand, the immune system sends signals back to modulate brain 
activity. This affects, among others, body temperature, sleep, and 
feeding behavior. In neurodegenerative disorders like Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral 
sclerosis, the immune system also plays a pivotal role, being both 
affected by and contributing to the regulation of disease progression. 
Cytokines such as in interleukins (IL)-IL-1B and IL6, tumor necrosis 
factor (TNFα), transforming growth factor (TGF)-TGFb1 and TGFα, 
along with immune-related factors like toll-like receptor (TLR)-TLR2 
and TLR4, play key roles in this interplay. Proinflammatory and anti-
inflammatory responses mediated by the immune system, along with 
oxidative stress, influence the delicate balance in neurodegenerative 
contexts (25, 26). Investigating how WBV impacts these immune 
responses holds promise for its therapeutic potential in immune-
related conditions and its broader implications for neurodegenerative 
disorders. This review therefore aims to contribute to the effort to 
elucidate the intricate pathways influenced by WBV intervention, with 
a specific focus on molecular and cellular aspects linked to immune 
and brain functioning. We summarize what is currently known about 
the impact of WBV on the (brain) immune system and brain 
functioning, how peripheral effects influence the brain, and finally 
what is known about the impact on brain disorders. The literature 
selection criteria can be found in Supplementary Files (Methods). The 
molecular pathways affected by WBV are summarized in Figure 1, and 
Supplementary Tables 1, 2 have the molecular and cellular pathways 
in preclinical and clinical studies, respectively. We conclude with a 
brief discussion including suggesting aspects to consider while 
optimizing protocols based on underlying cellular and 
molecular mechanisms.

2 Immune system

The human immune system is not only responsible for combating 
infection by pathogens, exposure to environmental toxins and 
allergens, and cellular damage but also plays a pivotal role in 
maintaining homeostasis of the body (27). The immune system 
comprises a varied population of immune cells present throughout the 
body instead of being localized in an organ. Below, we will discuss the 
literature available reporting the effects of WBV on immune 
functioning. First, pre-clinical data will be  discussed followed by 
studies that combine clinical and preclinical experiments, and finally, 
the clinical studies will be addressed.

2.1 Preclinical studies

Similar to exercise, WBV helps to decrease the inflammatory 
response as well as reverse symptoms of type II diabetes mellitus (T2DM) 
(28). Yu et al., have studied the effect of WBV on omental macrophages 
and the fecal microbiome that were isolated from mice that were 
subjected to 20 min of WBV per day for 4 weeks, with a frequency of 
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30 Hz and an amplitude of 3 mm (28). The analysis of macrophages from 
the abdominal adipose tissues revealed that WBV treatment resulted in 
a significant increase in M2 macrophage (counter-inflammatory 
function) count and it restored the IL-10 level in diabetic mice to the 
resting level in control mice. Since the differentiation of immune cells is 
often connected to the microbiota, the group of Yu and co-workers also 
performed an analysis of the microbiota of these mice in the presence 
and absence of WBV. The results showed that WBV remodels the alpha 
and beta diversity of the microbiome of the alimentary canal. Overall, 
these findings support the notion that WBV potentially alters the 
microbiota which prompts innate and mucosal immunity. This further 
produces anti-inflammatory responses and reverses the adverse 
consequences by down-regulating the hyper-inflammatory state.

Nowak et al., subjected 10 adult male Wistar rats to WBV on a 
vibrating platform, which generated vertical vibrations at the frequency 
of 50 Hz and amplitude of 2.5 mm for 5 weeks to determine the effects 
of WBV on hormonal and immunological parameters (29). Every 
session included four bouts lasting 30 s, separated by 1 min rest 
intervals. Following the training period, red and white blood cells, 
lymphocytes, monocytes, hemoglobin, granulocytes, and hematocrit, 
as well as IL-1b, IL-10, IL-6, and vascular endothelial growth factor 

levels were determined. The results showed a significant decrease in 
concentrations of IL-10 and a possible increase in IL-1b and IL6 in the 
blood serum, which are cytokines responsible for pro-inflammatory 
actions. However, a subsequent study done by the same group and the 
same WBV program showed no statistically significant changes in the 
complete blood cell counts or inflammatory cytokines (30). 
Interestingly, the only difference between the two studies was the period 
of WBV application. The later study showed the effect of WBV after 
three and 7 months of application, whereas the initial study presented 
the results for 5 weeks of WBV application. The disparity in the two 
studies shows that the total duration of WBV may be an important 
factor to take into consideration while studying the effects of WBV.

2.2 Combined preclinical and clinical 
studies

The study of Song et al., further strengthens the notion of WBV 
affecting the immune system through the change in the microbiota 
of the alimentary canal (31). The experimental setup of this study 
consisted of both mice and human volunteers who were subjected 

FIGURE 1

Schematic representation of the molecular pathways by which the periphery (factors in blue) influences the brain (factors in green) upon stimulation by 
WBV. More direct influences of WBV on the brain are due to only partly deciphered mechanisms. The factors secreted in the periphery (outside CNS) 
help regulate neuroprotection and neuroinflammation, and via stimulation of neurotransmitter system neurotransmission within neuronal networks. It 
shows the important role of the immune system in regulating brain functioning. The image was generated using Biorender. ASC, apoptosis-associated 
speck-like protein containing C-terminal caspase recruitment domain; AMPK, adenosine monophosphate-activated protein kinase; BDNF, brain 
derived neurotrophic factor; ChAT, choline acetyltransferase; DA, dopamine; ERK, extracellular signal-regulated kinase; FNDC5, fibronectin type III 
domain-containing protein 5; GFAP, glial fibrillary acidic protein; 5-HT, serotonin; IL, interleukin; IGF, insulin-like growth factor; Iba, ionized calcium-
binding adapter molecule; MAP2, microtubule-associated protein 2; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; NT-3, 
neurotrophin 3; NE, nor adrenaline; TLR, toll like receptor; TNF, tumor necrosis factor.
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to 30 min of vibration every day for 30 days. Analysis of 
immunological markers revealed a significant increase of CD-4 and 
CD25 positive lymphocytes and CD4 and CD25 positive Treg cells 
in the spleen of the WBV-subjected mice. These immunological 
results suggest that WBV alters regulatory T-cell differentiation in 
mice. Furthermore, Song et al., also showed that WBV affects the 
intestinal microbiome of both humans and mice. WBV significantly 
reduced the alpha diversity in mice and increased the beta diversity 
of both mice and human fecal microbiota. Moreover, correlation 
analysis revealed significant changes in bacteria variation that are 
linked to regulatory T-cell differentiation in mice and physical 
characteristics in humans. This study thus also suggests that WBV 
has potential interventional effects on microbiota and immune-
related diseases. The malleability of T cells in response to the gut 
microbiome can be used as a tool for editing immune response by 
utilizing microbiota-mediated pathways (32). Therefore, 
WBV-induced changes in microbiota, immune state, and 
inflammation of the body are research areas with clear potential and 
hence warrant further investigation.

2.3 Clinical studies

WBV has been tested as a treatment approach for osteoarthritis 
(OA) in several clinical studies. Systematic reviews have indicated the 
beneficial effects of WBV on pain, knee extensor muscle strength, and 
physical function in individuals with knee OA (33, 34). Even though 
OA has been considered to be a form of joint inflammation, there are 
now studies that indicate the implication of a systemic inflammatory 
response presented by T cells and the presence of inflammatory 
markers in peripheral blood, including inflammatory cytokines and 
antibodies (35, 36).

Since the immune system plays a causative and consequential role 
in OA, Tossige-Gomes et al., studied the effect of WBV, in addition to 
squat training, on the T-cell proliferative response of elderly subjects 
with knee OA (37). The patients were subjected to vertical 
synchronous vibration with a frequency ranging from 35 to 40 Hz, an 
amplitude of 4 mm, and an acceleration ranging from 2.78 to 3.26 g. 
The results showed that WBV decreases the proliferation of TCD4+ 
cells in patients with OA of the knee, suggesting that the addition of 
WBV to training might modulate T-cell-mediated immunity in this 
population, thereby minimizing the disease progression in elderly 
OA patients.

Chronic inflammation, a hallmark of aging, contributes to 
various age-related diseases. A recent study investigated how 
WBV impacts the inflammatory status in older subjects, focusing 
on TLRs 2 and 4 (38). The study included older individuals 
(average age 70 years) without significant health conditions. 
Participants underwent WBV sessions (30 Hz, 2 mm amplitude) 
for 12 weeks followed by blood sample collection before and after 
the intervention. TLR2 and TLR4 expression levels were measured, 
along with inflammatory marker IL-10, and physical performance 
(e.g., gait speed) was assessed. WBV led to a significant reduction 
in IL-10 levels, indicating an anti-inflammatory effect. TLR2 and 
TLR4 expression decreased after WBV, suggesting modulation of 
immune responses. These changes correlated with improved 
physical performance, emphasizing the holistic impact of 
WBV. Mechanistically, WBV likely influences TLR signaling 

pathways, and downregulation of TLR2 and TLR4 may contribute 
to the observed anti-inflammatory effects. The enhanced physical 
function may result from reduced inflammation. Lower TLR2 and 
TLR4 cell surface expression is frequently associated with the 
anti-inflammatory situation induced by a physically active 
lifestyle (39).

Also, the impact of WBV on circulating stem/progenitor cells 
(CPC) and cytokine levels has been studied. Healthy male 
participants engaged in three activities randomly: standing platform 
vibration, repetitive leg squat exercise, or a combination of both 
(40). The vibrations were subjected at 35 Hz with an amplitude of 
4 mm. Blood samples taken before and after each activity revealed 
significant increases in CPC levels with exercise alone and vibration 
alone, particularly in younger subjects. Combined activity notably 
boosted angiogenic CPCs in younger participants. Vibration alone 
increased non-angiogenic CPCs in younger subjects, while exercise 
alone showed similar effects in older individuals. Additionally, 
WBV led to a significant increase in anti-inflammatory cytokine 
IL-10 and a decrease in inflammatory IL-6 levels. Notably TNFα 
and vascular endothelial growth factor levels increased with 
vibration alone, suggesting pro-angiogenic effects. The findings 
suggest WBV’s potential positive effects on vascular health 
and inflammation.

In contrast to a relatively large number of studies that showed 
the positive effect of WBV on the immune system, a few studies did 
not observe an effect of WBV on the immune response. For 
example, in one of these studies, the effect of WBV in combination 
with resistance exercise on salivary cortisol and salivary IgA was 
determined (18, 41). Nine adults were subjected to two bouts of 
resistance exercise with and without WBV of 30 Hz for 
approximately 18 min, spaced at a 7-day interval. No significant 
increase in salivary cortisol and IgA levels was found. However, 
further studies are required in this area with a higher sample size 
and focusing on the chronic effect of WBV rather than an acute 
effect. Another reason why WBV did not show a strong effect on 
the IgA secretion in this study, could be because of the use of a 
WBV platform that oscillates in the vertical direction only. It was 
reported that at frequencies of 25 and 30 Hz, the side-alternating 
platform produces twice the vertical acceleration in comparison to 
the vertical oscillation platform (42).

Taken together, WBV seems to play a role in modulating the 
immune response. By altering the gut microbiome in both humans 
and mice, WBV alters T-cell differentiation and induces a shift in M2 
macrophages. Apart from regulation through the gut microbiome, 
WBV also alters proinflammatory markers. Next, we will discuss the 
impact of WBV on brain functioning.

3 Effects of WBV on the brain

Even though the initial focus of WBV treatment was to enhance 
muscular functioning, as the WBV applications advanced, its potential 
effects on the brain have become clear from various studies. The 
effects of WBV on brain functioning have been studied in healthy as 
well as patients and rodents including models for different 
neurological disorders or aspects of such disorders. First, the 
preclinical studies done with primarily mice and rats will 
be summarized, followed by clinical studies.
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3.1 Brain functioning

3.1.1 Preclinical
Multiple studies have shown that WBV also exerts effects on brain 

functioning. For example, exposure to WBV (30 Hz, 5 or 30 min per 
day for 5 weeks) has a positive effect on novel object recognition and 
motor performance in a motor test (balance beam performance) in 
CD1 mice (43). In another study, positron emission tomography in 
C57Bl6 mice revealed that glucose uptake was not changed as a 
consequence of the 5-week WBV intervention with 30 Hz for 10 min 
per day, 5 days a week (44), however, the arousal-induced home cage 
activity was reduced. These results suggest that WBV intervention 
improves motor performance and affects brain functioning in mice. 
Moreover, it can be  suggested that WBV is a safe intervention to 
improve brain functioning, although the somewhat subtle effects 
suggest that the protocol is as yet suboptimal.

Aging can affect a person adversely, not only physically but also 
mentally. Physical exercise has been shown to have positive effects on 
mental well-being and the cognitive abilities of the elderly. Due to old 
age, people are often not able to exercise enough to get positive effects 
on functions such as neurological memory, anxiety, and motor 
performance (45). In such cases where physical exercise is not 
possible, WBV can be used as a form of passive exercise to achieve 
similar results as physical exercise.

In rodents, aging is associated with impaired memory functions 
(spatial and object) (46, 47), anxiety (48, 49), depression (48), and 
motor performance (50). Recent preclinical studies revealed that 
WBV for 5 weeks can affect the cognitive abilities of 18 and 
30-month-old Wistar rats (20, 21). The rats were divided into two 
groups, vibration and pseudo-vibration groups. The vibration group 
was subjected to 5 weeks of mechanical vibrations at a frequency of 
30 Hz and amplitude of 0.05–0.2 mm. The study with 18 months old 
rats used an intervention session of 10 min whereas the study with 
30 months old rats used 5 min. Evidence from both these studies 
indicates that WBV can curtail anxiety, significantly improve the 
rearing behavior, and spatial memory of the rats, and also increase 
their motor performance. It is important to note that even brief daily 
sessions, lasting less than 10 min, could be  enough to enhance 
memory functions and reduce anxiety-like behavior in advanced aging.

Another study, further discussed in Section 3.3.1, concluded that 
20 min of stimulation results in a decrease in anxiety and an increase 
in spatial memory awareness. Five minutes of stimulation resulted in 
increased motor performance. Overall, it was shown that WBV can 
help improve both motor and cognitive functioning in 18-month-old 
Wistar rats. In contrast, from what has been found in old rats, anxiety-
like behavior was reduced when 5 or 10 min sessions were used, but 
not when 20 min was used in 12-month-old female Wistar rats (51). 
Taken together, the data suggest that the sensitivity of the brain to 
WBV is age-dependent in rats.

3.1.2 Clinical
In a recent clinical study exploring the effects of WBV, 133 young 

and healthy individuals (including 112 females and 21 males) with an 
average age of 20.5 ± 2.2 years underwent WBV treatment (52). The 
treatment involved exposure to mechanical vibrations at 30 Hz with 
an amplitude of approximately 0.5 mm for 2 min, repeated six times. 
The data revealed an enhancement in stroop color-word interference 
test scores, suggesting a positive short-term impact on executive 

functions, particularly on attention and inhibition, in young adults. 
Fuermaier et al., studied the effects of WBV on attention in 83 healthy 
individuals and 17 adults diagnosed with attention deficit hyperactivity 
disorder (ADHD) (53). Both healthy and adults with ADHD subjected 
to 30 Hz, 4 mm vibrations for 2 min showed small to medium effects 
on attention. Their results show that WBV may have potential as an 
alternative form of intervention to help with cognition in humans. An 
additional study investigated the impact of 3 min of WBV training at 
30 Hz with an amplitude ranging from 0.44 to 0.6 mm on inhibitory 
function in healthy children (54). Their data showed a therapeutic 
effect associated with intelligence and age, though they did not 
specifically address ADHD. In healthy young adults, three bouts of 
two-minute side-alternating WBV (frequency 27 Hz) and three 
control conditions showed positive effects on cognition (55). The 
participants underwent two different sessions. In one session a sitting 
posture was used and in the other session a standing (semi-squat) 
posture. Their results showed that WBV significantly improved 
selective attention and inhibition in the sitting posture, but not in the 
standing posture. While significant, the effects were small.

A separate investigation examined the effects of WBV exercise on 
12 healthy subjects using a frequency of 30 Hz and a 4-mm amplitude, 
administered for 2 min each over five sessions (56). Initially, the group 
had hypothesized that exposure to vibrations would decrease 
cognition. However, contrary to their hypothesis, they found that 
vertical vibrations increased motor processing speed. The outcomes 
indicated that WBV training, coupled with squats with a knee flexion 
at a 45° angle, did not significantly impact visual or verbal memory, 
reaction time, or impulse control, as assessed by the Immediate Post-
concussion Assessment and Cognitive Test (ImPACT). However, there 
was a potential increase in motor processing speed following 
vertical vibration.

As mentioned earlier (Section 3.2.1), aging affects cognitive 
function and WBV can be a useful strategy to help keep an individual 
active. A study was conducted on elderly individuals where 17 people 
were randomly assigned to either an intervention group (n = 9) or a 
sham operation group (n = 8) (57). The intervention group underwent 
4 weeks of WBV training for 1 min each, five times, 3 days per week. 
From weeks 5–8, a passive trampoline program of 5 min was 
introduced after the vibration sessions. The findings of this study 
showed that the eight-week program, combining stochastic resonance 
WBV and exergame-dance training, induced benefits in both physical 
and cognitive performance among older adults residing in care homes. 
Another study, which has been discussed above in the preclinical 
Section 3.1.1 also studied the effects of WBV on humans (44). Their 
protocol changed from mice to humans, in terms of the duration. 
Humans were treated with 30 Hz of vibration for 4 min per day for 
4 days a week, for 5 weeks. They observed a positive effect in the older 
population in the stroop test, indicating improvements in selective 
attention and inhibition.

Since cognition is linked to the falls experienced in aging, Rosado 
et al., studied the effects of WBV in combination with a psychomotor 
intervention for 24 weeks (58). The vibration amplitude was always 
3 mm and the frequency increased from 12.6 to 15 Hz. They tested the 
effects on reaction time, mobility, and dual-task performance in older 
adults at risk of falling. Their results showed improvements in reaction 
time, mobility, and dual-task performance in the group that had 
undergone psychomotor and WBV treatment. Notably, the influence 
of the interventions on reaction time, mobility, and dual-task 
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performance was no longer apparent during the 12-week follow-up 
period without any additional intervention. Contrary to this, another 
study did not observe any improvements in fall risk, life satisfaction, 
and cognitive status in elderly women (59). The study consisted of 
8 months of WBV intervention at 20 Hz with a 2-mm amplitude 
(30–35 min each, twice per week).

Two systematic reviews of 18 studies (including the ones 
mentioned above) revealed mixed results: some studies reported 
positive effects of WBV on cognition, while others found no significant 
impact (60, 61). Participants included both individuals with cognitive 
impairment and healthy subjects. The reviews concluded that WBV 
improved motor skills (56), reaction time (62), inhibitory function 
(54), processing speed, and executive functions in healthy individuals 
(52). The positive effects extended to patients with cognitive 
impairments as well. Studies showed improved attention, memory, 
and divergent thinking in ADHD patients (53, 63), and improved 
cognitive abilities in multiple sclerosis (64), dementia, and stroke 
patients (65, 66). The positive effects of dementia and stroke are both 
related to the activation of the cerebral cortex. Contrary to this, there 
were studies showing no change in WBV subjection in healthy and 
diseased subjects such as mild dementia (67). The majority of the 
studies indicated that WBV training enhances cognitive performance, 
with only a minority concluding otherwise. The disparities in results 
may be attributed to variations in the cognitive tests utilized, patients’ 
disease stages, and the protocols employed for vibration.

3.2 Neurotransmission

3.2.1 Preclinical studies
Initial studies addressing the effect of WBV on the brain were 

mainly focused on determining the adverse effects of WBV on 
monoamines. Monoamine neurotransmitters like serotonin (5-HT), 
norepinephrine (NE), noradrenaline (NA), and dopamine (DA) play a 
pivotal role in the brain to further assist and regulate cognitive functions 
(68). They also play an important role in regulating systems other than 
the brain, like the cardiovascular system, respiratory system, and 
gastrointestinal system. Several studies have shown that an acute WBV 
exposure for 240 min stimulated the synthesis and release of several 
neurotransmitters and monoamines such as 5-HT (69, 70), NA (71, 72), 
corticosterone (70, 73), DA (69, 72), NE (72) and 5-hydroxy indole 
acetic acid (5-HIAA) (70). Although this thus suggests that monoamines 
are affected by WBV, it is important to note that all these studies were 
done with an extreme 4-h-long acute WBV session. The experimental 
design of these studies is inept as their vibration setup restricted the 
movement of the animal, the vibration protocols were very long and 
the results are unreproducible due to a lack of enough information like 
the age of the animals. Therefore, to get a better insight into the effects 
of WBV on these monoamines, and WBV’s effect in terms of 
therapeutics, it is essential to perform further studies that do not have 
such extreme durations, but rather use a few bouts of shorter periods 
and a reduced maximal acceleration with a properly designed setup.

Another study by Dmitriev et al., compared the effect of an acute 
WBV session to the effects of a 52–54 days long chronic WBV 
intervention with a frequency of 10 Hz, amplitude of 1 mm, and 
15-min daily session duration (74). This vibration protocol enhanced 
the accumulation of 5-HT in different regions of the rat brain, 
especially in the hippocampus (acute) and the parietal complex 

(long-term). This study tried to explore the involvement of regional 
alterations in 5-HT metabolism and the responsiveness of 
serotoninergic structures in the development of somatosensory 
disorders linked to vibration exposure. These early studies together 
showed that WBV may help attenuate the levels of monoamines in the 
brain. To further test this hypothesis it would be interesting to study 
the effect of WBV in diseases where disbalance in these monoamines 
causes pathogenesis, for example in PD, AD, anxiety, seizure disorders, 
and mania. Notably, a recent study demonstrated that exposing rats to 
80 Hz of WBV leads to the intracellular relocation of δ-opioid receptors 
from the cytosol to the membrane within rat cholinergic interneurons 
in the nucleus accumbens (75). This study primarily concentrated on 
the influence of WBV in mitigating dopamine-related mechanisms 
associated with morphine addiction. However, their findings also show 
the need for further investigation into the potential effects of WBV on 
dopaminergic neurons. Research could also hold considerable 
significance in the treatment of neurological conditions like PD.

As described previously, there is accumulating evidence that 
points toward a positive impact of WBV in rats and mice, on memory. 
However, the exact underlying mechanism by which WBV improves 
cognition and brain functioning remains largely unknown. To 
understand how WBV can affect the brain, it is important to consider 
its effect at a cellular and molecular level, for example by studying 
neurotransmitters and monoamines. It has been shown that the 
cholinergic forebrain plays a pivotal role in learning and memory 
performance (76). Five weeks of WBV stimulation in mice resulted in 
a significant increase in choline acyltransferase (ChAT), the rate-
limiting enzyme for the production of acetylcholine. Since increased 
ChAT is strongly linked to increased cholinergic activity, this suggests 
that WBV treatment positively affects attention and memory through 
increased activity of the cholinergic system of the brain (77).

To recapitulate, studies indicate toward involvement of WBV in 
the attenuation of neurotransmitters like ChAT, NE, 5-HT, and DA 
(Figure 1). Although it is important to note that some of these studies 
have used extreme intervention protocols, therefore more research is 
needed in this field with better intervention protocols aimed at 
promoting health.

In a study led by Cariati and colleagues, they proposed that the 
impact of vibration training on cognitive processes might 
be age-dependent, and closely linked to synaptic plasticity (78). The 
study utilized mice of two different age groups, 4 months and 
24 months. Synaptic plasticity, assessed through electrophysiological 
measures in the hippocampus, was investigated after exposing the 
mice to vibrations at 45 Hz for three series of 2 min and 30 s, with an 
equivalent recovery period in between, over 12 weeks. The outcomes 
showed a difference in response to the vibration in old mice compared 
to the young mice. Both age groups affected synaptic plasticity. 
Importantly, it is noteworthy to consider that the specific parameters 
of WBV, such as frequency and duration, might interact differently 
based on the age and possibly sex of the mice. This provides preclinical 
evidence and a good base point to continue these studies in aging 
humans who cannot perform physical exercise.

3.3 Neuroinflammation

While studying brain functioning, it is important to address 
neuroinflammation. Neuroinflammation is defined as an inflammatory 
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response within the brain or spinal cord that is mediated by the 
production of cytokines, reactive oxygen species (ROS), chemokines, and 
secondary messengers (79). It essentially is a response of the central 
nervous system to disturbed homeostasis. Neuroinflammatory responses 
may be  helpful or harmful, as mechanisms associated with 
neuroinflammation are involved in normal brain development, as well as 
in neuropathological processes. There are complex and interacting 
immune, biochemical, physiological, and psychological consequences of 
neuroinflammatory responses (79, 80). As neuroinflammation is 
increasingly recognized as being involved in nearly all brain disorders (81, 
82), it is of critical importance to decipher the impact of WBV 
on neuroinflammation.

3.3.1 Preclinical studies
Microglia, are the resident immune cells of the central nervous 

system that respond to insults and injuries in the CNS (83). Activation 
of microglia prompts the release of pro-inflammatory factors, 
contributing to neuroinflammation (84), in conditions like AD and 
PD. In SCI, microglia are a double-edged sword, aiding healing but 
potentially causing harm through the release of cytotoxic elements 
(85). In a recent study, rats with spinal cord injury (SCI) underwent 
WBV with an amplitude of 1.5 mm and frequencies of 15 Hz and 
30 Hz (86). The therapy started on day 7, day 14, or day 28 post-injury, 
each with 10 rats. WBV sessions occurred 5 days a week, featuring five 
trials, with a one-minute rest between each. A control group had 10 
rats with SCI but no additional therapy. Assessing functional recovery 
and immunohistochemical markers ionized calcium-binding adapter 
molecule 1 (Iba1) and neurotrophin-3 (NT-3) revealed that WBV 
initiated at day 14 led to the most significant overall recovery, with a 
moderate increase in Iba1 and the highest increase in NT-3. Moreover, 
in the case of traumatic brain injury (TBI), WBV has the potential to 
manage neuroinflammation by suppressing the activation of microglia 
(see also Section 3.5) (22, 87). Furthermore, Oroszi et al., (discussed 
in detail in 3.3.1) demonstrate that WBV results in a significant 
decrease in microglial activation in the Cornu Ammonis 1 (CA1) and 
dentate gyrus subregions in aged male rats (88). Taken together, these 
studies indicate that WBV attenuates microglial activation which 
probably helps in mitigating neuroinflammation.

Neuroinflammation is also one of the prevalent pathological 
occurrences in ischemic stroke (89). Studies have suggested microglial 
polarization modification as a prospective treatment strategy for 
ischemic stroke (90, 91). An animal study investigated the efficacy of 
WBV in reducing frailty and brain damage post-ischemic stroke in 
reproductively senescent female rats (92). The animals underwent 
30 days of WBV (Frequency of 40 Hz; Amplitude not reported) 
treatment performed twice daily for 15 min each session, 5 days each 
week. The data revealed a significant depletion of inflammatory 
markers and infarct volume with significant increases in BDNF and 
tyrosine kinase receptor subtype B (Trk-B). Following post-ischemic 
WBV, protein levels of caspase-1, ASC, and IL-1β in the peri-infarct 
area decreased by 88% (p < 0.05), 57% (p < 0.05), and 148% (p < 0.05), 
respectively, compared to the control condition. Caspase-1 activates 
pro-inflammatory cytokines like IL-1β, contributing to 
neuroinflammation (93). ASC facilitates inflammasome assembly, 
further promoting inflammation in neurodegenerative diseases (94). 
They also observed an improvement in functional activity after 
inducing stroke via transient middle cerebral artery occlusion 
(tMCAO). This was done in middle-aged female rats that were treated 

with WBV as compared to the no-WBV group. These results suggest 
that WBV intervention may be a potential therapy to reduce post-
ischemic frailty in old women after a stroke (92). Furthermore, the 
same research group also showed that in rat stroke models, WBV can 
protect against cognitive decline after undergoing a tMCAO (95) 
(more details in Section 4).

One example of a psychological disorder caused due to 
neuroinflammation is major depressive disorder (MDD) (96). 
Multiple studies in the context of MDD have indicated that exercise 
can deploy neuroprotection by enhancing synaptic plasticity, 
inhibiting apoptosis of neurons, ameliorating inflammation, and 
boosting the secretion of neurotrophic factors (97–99). Since lack of 
motivation to exercise and psychosomatic lethargy are intrinsic 
symptoms of MDD, establishing an exercise routine becomes 
challenging for the patients. In these cases, WBV can be used as a 
passive form of exercise that takes little time per day, especially since 
it also has been shown to beneficially alter depressive status in 
adolescents with depression (100). A preclinical study on the effects 
of 8 weeks of WBV intervention on neuronal loss, synaptic protein 
expression, and neurotrophic factors level in a rat model of chronic 
restraint stress-induced depression demonstrated that WBV 
significantly enhanced neuroprotection and recovery of degenerated 
neurons (101). The rat model was subjected to a vibration frequency 
of 30 Hz with an amplitude of 4.5 mm, 30 min per day, 6 days a week 
for 8 weeks, and behavioral and biochemical tests were performed. The 
authors hypothesized that the mechanism underlying the 
neuroprotection involves inhibiting the degeneration of neurons; 
inhibiting reactive microgliosis and astrocyte atrophy; protecting 
synapses, strengthening neural connections, as well as restoring 
impaired memory; reducing dendritic and axonal damage via 
microtubule-associated protein 2 (MAP2) and protecting damaged 
neurons from further damage; and enhancing the expression of 
trophic factors.

Oroszi et al., examined the dose-dependent effect of a 5-week-
long chronic WBV intervention on anxiety-related behavior, memory, 
and motor functions, as well as a marker of (neuro)inflammation (88). 
Eighteen-month-old Wistar rats were stimulated by WBV for 5 or 
20 min per day along with a control group with pseudo-WBV. After 
5 weeks of WBV intervention, the anxiety-like behavior and motor 
performance were tested, which was then followed by brain analyses 
via immunohistological assays to determine hippocampal 
neuroinflammation. Both 5 and 20 min resulted in a significant 
decrease in microglial activation in the CA1 and dentate 
gyrus subregions.

In mice with myocardial infarction (MI), increased oxidative 
stress and inflammation can lead to harmful changes in the brain, 
causing nerve damage and neurodegenerative diseases (102). Sestrin 
2 (SESN2) has been shown to alleviate oxidative stress and improve 
cognitive and cardiovascular health in aging and disease contexts 
(103). Overexpression of SESN2 activates the AMPK and PGC-1α 
pathway, enhancing cardiac function in aged mice and reducing 
cerebral ischemia/reperfusion injury in rats (104, 105). Feng et al., 
studied the effects of WBV on prefrontal lobe injury and dysfunction 
in mice with myocardial infarction (106). They focussed specifically 
on the SESN2/AMPK/PGC-1α signaling pathway. They revealed that 
WBV shows promising outcomes in alleviating prefrontal lobe injury 
and dysfunction. Specifically, the activation of the SESN2/AMPK/
PGC-1α signaling pathway which mitigates oxidative stress and 
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inflammation was identified as a key mechanism underlying this 
therapeutic effect.

In PD models, SESN2 upregulation triggers a reduction in 
neurotoxicity (107) and an autophagic response, preventing 
α-synuclein expression, apoptotic caspase-3 activation, and 
cytotoxicity in dopaminergic cells (108). In AD models, SESN2 
induction counters amyloid beta (Aβ)-induced toxicity by promoting 
autophagy. These findings suggest that SESN2 may serve as a 
prognostic marker and therapeutic target in neurodegenerative 
diseases (109). Hence, exploring the impact of whole-body vibration 
(WBV) on SESN2 in the context of PD and AD could be intriguing.

In summary, WBV shows promise in alleviating 
neuroinflammation by reducing microglial activation in SCI and 
ischemic stroke models. It holds therapeutic potential for managing 
conditions such as MDD and anxiety. Additionally, it attenuates 
oxidative stress and neuroinflammation through the SESN2/AMPK/
PGC-1α signaling pathway. The molecular pathways involved in 
neuroinflammation are summarized in Figure 1. However, despite 
promising preclinical evidence, the lack of clinical studies on 
neuroinflammation in human brain tissues limits our understanding 
of WBV’s efficacy in the clinics.

3.4 Neuroprotection

Neurotrophins or neurotrophic factors (NF) are proteins that are 
responsible for the survival, development, and function of neurons in 
both the central and peripheral nervous systems (110). Given their 
extensive influences on neurons, NFs are a good candidate for treating 
neurodegenerative and other neurological disorders (111). Some of 
these neurotrophins have been studied in the context of the effects of 
WBV, which will be discussed in this section.

3.4.1 Preclinical studies
Insulin-like growth factor-1 (IGF-1) is a growth factor that is also 

classified as an NF. IGF-1 can cross the blood–brain barrier and 
stimulate protein synthesis in neurons, glia, oligodendrocytes, and 
Schwann cells, and favor neuronal survival while inhibiting apoptosis 
(112). Wu et al. found that WBV slows atherosclerosis progression in 
mice by regulating IGF1 (113). Mice underwent 12 weeks of WBV at 
15 Hz for 30 min. It was shown that WBV significantly reduced 
atherosclerotic plaque area and exhibited decreased serum IGF-1 and 
lower expressions of IL-6, IGF-1R, and p-IGF-1R protein in the aorta. 
Interestingly, serum IGF-1 peaked 30 min post-WBV for durations 
of 10, 30, 60, and 120 min. This suggests that appropriately timed 
WBV may impede atherosclerosis progression, associated with acute 
serum IGF-1 elevation and sustained lower aortic IGF-1 and IL-6 
levels. Furthermore, Li et al., showed that in mice WBV also shows 
promise in promoting hypertrophy through mechanisms involving 
signaling pathways related to muscle growth such as IGF-1/IGF-1R–
PI3K/Akt signaling (114). Moreover, the study by Peng et  al., 
discussed above (Section 3.3.1) showed significantly increased levels 
of BDNF and IGF-1 in the hippocampus upon WBV training (101). 
This was not only associated with a protective effect on nerves and 
synapses but also resulted in an improvement in depression-like 
behavior in rats. Together, it can be  concluded that WBV might 
be affecting the brain functioning via IGF. However, it has to be noted 
that only one of these studies analyzed whether the WBV-induced 

increase of IGF affects neural cells and/or brain functioning. Further 
investigating the neuronal effects of WBV-induced IGF might help to 
understand the role of WBV in neuroprotection, plasticity, 
and regeneration.

A study compared the effects of active exercise (treadmill running) 
and passive exercise (WBV) post-surgery (115). Rats underwent 
abdominal surgery, followed by active or passive exercise for 14 days. 
WBV protocol consisted of 30 Hz, 0.05–0.2 mm. The duration of WBV 
was 10 min on the first-day post-surgery and twice a day for 10 min 
from the second day onwards. The two vibration treatments were 6 h 
apart. Both active and passive exercise improved cognitive flexibility 
and memory was not affected by either treatment. Muscle strength 
increased upon active exercise but was unchanged by WBV. After the 
sacrifice, neuroinflammation was studied by observing microglial 
activation and neurogenesis by doublecortin (DCX) staining. Results 
showed no impact on surgery-induced inflammation but the 
treatment induced neurogenesis in the hippocampal region after both 
kinds of exercises. It is noteworthy that the expression of BDNF and 
IGF induces neurogenesis via DCX (116, 117). The results from this 
study may suggest that exploring these three factors may give better 
insight into the neurogenesis effects of WBV by studying.

The major NF brain-derived neurotrophic factor (BDNF) plays 
various important roles in the functioning of the brain. It is essential 
for brain development due to its involvement in differentiation, 
migration, and neuronal survival, and it exerts a role in dendritic 
development and in regulating synapse genesis and plasticity (118–
121). Consequently, BDNF is fundamental for hippocampal 
functioning and learning (120–123).

In post-ischemic mice, following 4 weeks of vibration therapy, 
increased levels of BDNF were observed (92). MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) lesion mice, a model to study PD 
that were subjected to WBV, showed increased levels of BDNF and 
consequently a protective effect of dopaminergic neurons (124). In 
addition, Peng et al., have also shown that WBV might be protecting 
the neurons via alleviating BDNF levels in the hippocampus of MDD 
rodents (101). Similarly, young mice showed increased BDNF 
expression in their cerebellum and hippocampus after 3 months of 
vibration exposure, 3 days a week (125). Furthermore, they showed 
that WBV also can increase FNDC5 expression, which in turn further 
increases BDNF and thereby results in better musculoskeletal 
functions via myostatin and collagen I. Interestingly, FNDC5 
expression upon exercise is directly linked to the functioning of irisin, 
which will be discussed in detail in Section 4.

3.4.2 Clinical studies
There is inconsistency amongst the limited clinical studies that 

have been done on testing the effect of WBV on IGF. There are clinical 
studies that have seen no significant effects on serum IGF levels in 
human subjects after WBV subjection (126–131), while a study in 
elderly individuals shows that WBV affects the levels of IGF-1 (132). 
Participants experienced two interventions with a minimum 2-week 
gap: vibration and control (no vibration). In both interventions, 
individuals stood on a vibration plate with a slight knee flexion, 
undergoing five 1-min sessions separated by 1-min rest periods. For 
the vibration intervention, the plate vibrated at a frequency of 30 Hz 
with a 4-mm amplitude. This group observed an acute increase in the 
circulating levels of IGF-1 and cortisol in elderly individuals to a 
greater extent than an exercise protocol conducted without vibration.
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Concerning BDNF, it has been shown that a single session of 
vibration with a frequency of 35–40 Hz, amplitude of 4 mm, and 
acceleration gravity ranging from 2.78 to 3.26 g exerts no effects 
of WBV on BDNF levels in women with fibromyalgia (133). In 
contrast, the same researchers reported in 2021 that WBV 
treatment for 6 weeks can increase the expression of BDNF in 
women with fibromyalgia (134). Additionally, it leads to improved 
lower limb muscle strength, aerobic capacity, clinical symptoms, 
and QOL after being subjected to vibration with the same 
vibration settings as the previous study. The only difference 
between the two studies was the duration of WBV intervention. 
The later study showed positive effects on BDNF levels after 
6 weeks of WBV, whereas the 2018 study was based on a single 
exposure to WBV. This indicates that a longer – chronic 
intervention might be  beneficial over a single-acute 
session of WBV.

Studies on elderly women with knee osteoarthritis suggest that the 
observed improved lower limb muscle performance after WBV might 
be mediated by an increase in BDNF levels in the serum (135). Their 
experimental setup consisted of 12 weeks of WBV intervention with a 
frequency of 35–40 Hz, amplitude of 4 mm, and acceleration that 
ranged from 2.78 to 3.26 g. In contrast, other studies have reported no 
apparent effect of WBV on BDNF levels in depression, spinal cord 
injury, and even in young, healthy women (131, 136, 137). Wunram 
et al., used a training program for individuals with depression that 
encompassed six different types of standardized exercises, with each 
exercise lasting 2 min at a frequency of 20 Hz and an amplitude of 
2 cm, conducted over 6 weeks (131). They failed to see an effect of 
WBV on BDNF levels with this WBV protocol. However, as 
acknowledged by the authors, this study has some limitations, 
including a relatively small sample size, the absence of randomized 
controls, and the omission of psychosocial factors from consideration.

In a study that focussed on patients with spinal cord injuries, the 
vibration platform operated at 35 Hz with a 2 mm vertical 
displacement. During the training, participants engaged in fifteen 
1-min bouts of vibration interspersed with 1-min rest intervals (136). 
As all participants had chronic spinal cord injuries, it remains 
uncertain whether a single bout of WBV would induce significant 
acute increases in BDNF in individuals with chronic injuries. 
Additionally, a single exercise session might not have provided an 
adequate stimulus to elicit an acute neurotrophic response. 
Furthermore, even in the case of young and healthy women who 
experienced vibrations with amplitudes of 2 and 4 mm and frequencies 
ranging from 20 to 60 Hz (137). These women participated in 
individually supervised sessions three times a week for 3 months. No 
significant effects were observed as an effect of WBV.

In conclusion, WBV can contribute to neuroprotection through 
neurotrophins like IGF-1, BDNF, and IL-10 (Figure 1). WBV increases 
FNDC5, a precursor protein of irisin which further increases BDNF 
(discussed in more detail in Section 4). Therefore, by investigating 
how WBV impacts neurotrophin expression and function, we may 
uncover novel strategies for enhancing brain health and promoting 
neuroprotection, which could pave the way for personalized 
approaches to maintaining cognitive well-being.

Previously, we have structured our sections into preclinical and 
clinical delineations. However, henceforth, we will refrain from such 
categorization for the forthcoming sections, as they lack relevance 
within these frameworks.

4 Irisin, a possible link between the 
effect of WBV in the periphery to the 
brain?

Irisin is a relatively newly discovered exercise-induced myokine, 
which is involved in the regulation of several bodily processes such as 
glucose homeostasis, reduction of systemic inflammation, and 
modulation of energy metabolism through the browning of white 
adipose tissue (122). It is secreted by muscles in response to exercise 
(138) or WBV in humans (139, 140).

To understand how WBV may affect the brain through irisin 
production, it is important to know how irisin is produced. It is known 
that exercise induces an increase in calcium signaling which activates 
the transcriptional co-activator PPAR-γ co-activator-1 α (PGC1-α), 
which subsequently augments the expression of type 1 membrane 
protein, FNDC5 which is then cleaved to irisin (141). The impact of 
irisin on cognition is to a large extent elicited by the induction of 
BDNF expression. Post-exercise FNDC5 mRNA is upregulated in the 
hippocampus, which coincides with BDNF expression (122).

Since BDNF is essential for various brain functions and is 
implicated in exercise-induced cognitive benefits (142), parallel 
upregulation of FNDC5 and BDNF mRNAs in hippocampal neurons 
following exercise might suggest that irisin has a role in neuronal 
survival, activity, and cognitive functions.

A study in mice demonstrated that by regulation of the Akt and 
ERK1/2 pathway, irisin protects neuronal cells (PC12) from ischemic 
injury, suggesting that irisin may be a factor linking metabolism and 
cardio-cerebrovascular diseases (143). A recent study carried out on 
stroke rat models, showed the potential use of WBV in protecting against 
cognitive decline after going through a transient middle cerebral artery 
occlusion surgery (tMCAO) (95). Treating rats with the frequency of 
40 Hz (amplitude not reported) for 15 min twice a day for 1 month after 
tMCAO significantly reduced the cognitive deficit in rats. It was 
speculated that this protective nature of WBV could be  because of 
increased serum levels of irisin and decreased proinflammatory cytokines.

A recent review discussed the role of exercise-induced irisin in 
improving mental health in type 2 diabetes mellitus (144). Briefly, it 
has been shown that patients with diabetes mellitus experience a 
decline in cognitive function and memory loss (145–147). Wang et al., 
assessed whether irisin has a positive effect on memory and cognitive 
performance in a diabetic mouse model (148). They induced 
streptozotocin to establish a diabetic mouse model in 8-week-old male 
C57Bl/6 mice and assessed cortical and spatial memory through novel 
object recognition tasks and the Y-maze spontaneous alteration task 
(to determine short-term memory of 8 min). Upregulation in the 
levels of glial fibrillary acid protein (GFAP), a biomarker for astrocytes, 
reduction in synaptic protein expression, and an increase in the levels 
of IL-1β and IL-6 was observed. They also observed inhibition in the 
activation of proteins responsive to stress stimuli, like P38, STAT3 
(Signal transducer and activator of transcription 3), and NFkB, in the 
diabetic mice. The reduction of cognitive function and memory which 
was observed in the diabetic mice could be avoided by irisin treatment, 
suggesting that an increase in irisin levels can improve and avoid the 
decline in cognitive function in diabetic mice.

Also, in clinical trials and studies, the effect of acute and chronic 
WBV training on circulating irisin levels has been evaluated (140). 
Young, healthy, untrained females were subjected to a 6-week program 
of WBV training with two sessions per week. The training regime 
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consisted of seven different isometric exercises (different types of 
squats, elbow dips, and triceps exercises) in combination with a 
vibration frequency of 16, 19, and 21 Hz (increased during training) 
and an amplitude of 2.5 mm during the first 4 weeks and 5 mm during 
the last 2 weeks. The duration of each training session was progressively 
increased every 2 weeks from 11 to 18.5 min. Blood was drawn before 
and immediately after an acute bout of exercise at baseline and after 
6 weeks of training. The resting irisin levels were not different at 
baseline and after 6 weeks of training, whereas an acute bout of 
vibration exercise significantly elevated circulating irisin levels by 9.5 
and 18.1%, respectively at both 0 and 6 weeks of training. These 
findings indicate that acute bouts of WBV exercise can increase 
circulating irisin levels.

Moreover, a separate clinical study examined the influence of 
WBV on oxidative stress markers and irisin blood levels in women 
with fibromyalgia (149). WBV was subjected three times per week for 
6 weeks, involving dynamic squats on a synchronized vibrating 
platform. The mechanical stimulation parameters included a vibration 
frequency of 35–40 Hz and an amplitude of 4 mm. The findings 
revealed that WBVT resulted in a reduction of visceral adipose tissue, 
an elevation in blood irisin levels, and a decrease in blood levels of the 
oxidative stress marker thiobarbituric acid.

Apart from its function in improving cognitive function and 
memory loss in diabetes, irisin has also been shown to have a potential 
role in treating AD (150). This study implied that the neuroprotection 
of irisin was mediated by blocking the release of Il-1β and IL-6 from 
cultures of astrocytes instead of its direct action on neurons. Their 
results also suggested the importance of the NFκB signaling pathway 
in the regulation of irisin on astrocytes exposed to Aβ.

Although there are a lot of studies indicating the positive effect of 
the exercise-induced increase in irisin activity on cognitive functions 
and neuroprotection, however, there are very few studies done to 
specifically study the link between WBV and irisin. Further studying 
the effect of WBV on irisin activities might give a better insight into 
standardizing WBV protocols to exploit the beneficial effects of irisin 
upregulation for people who cannot indulge in physical exercise.

5 Brain disorders

Recently, a systematic review revealed the potentially beneficial 
effects of WBV for brain disorders using animal models but also 
stressed that WBV as a form of therapy needs further development 
(151). Therefore, in this segment, studies conducted on animal models 
or patients with various brain-related disorders will be  discussed 
only briefly.

A common problem with aging is increased frailty which increases 
the risk of falls that subsequently can cause TBI (152). TBI can also 
be  caused due to reasons that are independent of age factors like 
assault, motor vehicle accidents, incidents related to sports activities, 
or any other accidents that cause an injury to the brain. A preclinical 
study in mice indicates that WBV treatment can be an ideal treatment 
for patients suffering from TBI (22). In the case of TBI, 30 Hz of WBV 
for 20 days can reduce neuronal damage and improve cognitive and 
functional outcomes after TBI. This study shows that WBV: (1) 
alleviates cortical edema, (2) suppresses microglial activation, (3) 
inhibits GFAP expression that relates to astrocyte activation, (4) 
prevents the increase of IL-1β, TNFα, and IL-6 and promotes the 

increase of IL-10 which is an anti-inflammatory cytokine, (5) 
facilitates neuronal apoptosis, (6) improves exploratory behavior and 
general activity, (7) decrease learning and memory deficit after TBI, 
and (8) augment learning and memory deficit caused by TBI. Another 
preclinical study assessed the effects of WBV on induced brain injury 
(subarachnoid hemorrhage) in mice (87). Mice underwent WBV 
twice daily for 20 days at a frequency of 30 Hz. Their findings indicate 
that WBV decreases apoptosis, and moderates the heightened 
expression of GFAP (astrocyte marker) and Iba-1 (microglia marker). 
Additionally, WBV alleviated the loss of neurons in the hippocampus.

In contrast to the findings in preclinical studies, a clinical study 
done on individuals with stroke or traumatic brain injury showed no 
difference between the control group and the WBV group right after 
training for the first time or even after 2 weeks of rehabilitation therapy 
(153). The reason could be the very low frequency of vibration therapy. 
They used a frequency of 5 Hz for 1 min, which seems to be too little 
for the vibration therapy to have any effects. Therefore, this study 
should be performed again with a higher frequency (around 30 Hz) 
for a longer period than 1 min (ranging from 10 to 30 min).

Strokes are another form of neurological condition that can 
be caused due to an acute vascular injury. The potential application of 
WBV on stroke has been discussed in detail in Section 3.2. Some 
systematic reviews have indicated that based on the available data, no 
significant conclusions about the positive effects of WBV on stroke can 
be made yet (23, 154). However, there is clear evidence that WBV can 
be  beneficial in the rehabilitation programs of patients and animal 
models after stroke by modulating spastic hypertonia, BDNF signaling, 
proinflammatory cytokines, and irisin production (92, 95, 124, 141).

Moreover, recent reviews have also discussed the effects of WBV 
on neurodegenerative disorders like AD (155, 156) and PD (157, 158). 
A review consolidating available evidence on the effects of WBV on 
AD demonstrates the effectiveness of WBV in enhancing 
neuromuscular function, functional mobility, and quality of life 
metrics in individuals with AD (156). It has also been shown that 
WBV as an intervention is feasible in fragile AD patients (155). 
Moreover, WBV ameliorates disrupted brain networks and various 
cognitive functions, including orientation, memory, and linguistic 
skills in AD patients. However, according to this review, the evidence 
for the effects of WBV on AD pathology seems inconclusive. Similarly, 
in a review previously conducted by our group, we found that the 
impact of WBV on the cognitive and brain function of individuals 
with PD is presently inconclusive (157). Nevertheless, to improve 
motor function of PD patients promising outcomes are evident in 
WBV protocols lasting at least 3 weeks, with a frequency of at least 
three sessions per week and vibration frequencies equal to or 
exceeding 20 Hz (157). These protocols show potential benefits, 
especially in enhancing motor function. Another recent review for PD 
has demonstrated that there are potential advantages of using WBV 
over conventional therapy but these need to be studied more (158). 
Overall, in the context of neurodegenerative disorders, most reviews 
are at a consensus regarding the need for an optimized protocol. AD 
and PD are the most prevalent neurodegenerative diseases. In 2022, 
we published a systematic review discussing the potential of WBV in 
PD (157). Through a thorough meta-analysis, we concluded that WBV 
has a significant but minor effect on motor and non-motor outcomes 
in PD. The promising results of studies demonstrating the ability of 
WBV to reduce neuroinflammation and oxidative stress in PD patients 
underscore the need for further research into the potential therapeutic 
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effects of WBV. Coming to AD, we also published pre-clinical data 
which indicates that WBV may have beneficial effects on the early 
progression of brain pathology, particularly in restoring the 
morphology of GFAP-positive astrocytes to levels resembling those 
observed in non-pathological or “healthy” conditions (159). Another 
recent study in mice has demonstrated that daily treatment with 40 Hz 
WBV stimulation over multiple weeks led to a decrease in 
phosphorylated tau accumulation and neuronal loss (160).

6 Discussion

WBV has gained increasing attention in recent years due to its 
potential benefits in a wide range of health-related conditions. WBV 
possesses effects on the nervous system, ranging from improving 
balance, motor coordination, and neuromuscular function to 
cognitive functions, making it beneficial for those with neurological 
conditions. Here, we have summarized the effects of WBV on the 
cellular and molecular pathways involved in the immune system and 
brain functioning. As the effectiveness of WBV as a therapeutic 
intervention for the brain is still a matter of debate, these insights 
could aid in identifying more optimized WBV protocols.

WBV appears to influence the immune system by modulating T cell 
differentiation and inducing a shift in M2 macrophages through 
alterations in the gut microbiome. Additionally, it impacts 
proinflammatory markers, collectively suggesting a regulatory role in the 
immune response. The current review has also pointed toward the 
possible beneficial effects of WBV in various neurological disorders 
through cellular pathways such as neuroinflammation, neuroprotection, 
and neurotransmission. At a molecular level, WBV was involved in the 
regulation of inflammatory biomarkers IL-1B, IL-6, IL-10, CRP, TNFα, 
neurotransmitters such as Acetylcholine, NE, dopamine and 5-HT, 
neurotrophic factors like TNFR-1, TNFR-2, IGF-1, and BDNF (Figure 1). 
WBV seems to be regulating neuroinflammation and neuroprotection 
via SESN2/AMPk/PGC1a pathways. Moreover, BDNF regulates 
neuroinflammation, synaptic plasticity, and neuroprotection. Secretion 
of BDNF was found to be linked to the secretion of irisin, a myokine that 
gets secreted in the periphery. The available data warrant the importance 
of studying this molecule further as it shows a potential to be used as a 
key player for WBV studies along with BDNF. Moreover, to fully 
understand the effect of WBV on brain functioning at a molecular level, 
it is important also to study the link between additional factors that get 
produced by the muscles and which regulate the expression of proteins 
involved in brain functions such as attention, motor performance, 
memory, and learning.

Despite the potential benefits of WBV, there are several limitations 
to consider. One of the main challenges is the lack of standardized 
protocols for WBV, with considerable variations in the vibration 
frequency, amplitude, and duration used in different studies. Our review 
shows that most studies use frequencies in the range of 15–30 Hz, while 
only a few studies have used 40 Hz and 90 Hz vibration frequencies. It is 
important to note that the applied frequency is usually transmitted 1:1 to 
the brain (161). Brain entrainment via WBV is one way to achieve 
gamma stimulation (around 40 Hz), an increasingly used technique to 
promote brain health and to be  used in the management of 
neurodegenerative disorders (162). Hence, a frequency of 40 Hz is to 
be  advised from this point of view. Most studies vary in time of 
subjection. It was observed that using a protocol where the vibrations are 

subjected for a given time, followed by a rest period, and then subjecting 
the vibration again for the same amount of time may have the most 
beneficial effect. However, this needs to be confirmed more and for 
different conditions. Moreover, although poorly studied in SCI patients, 
a study shows that there is a window of opportunity, or critical period, 
during which WBV should be started after SCI for its beneficial effects 
(163). This aspect should be taken into consideration to extrapolate more 
beneficial effects of WBV; WBV effects concerning brain disorders may 
highly depend on the state of the disease. Populations studied so far have 
been relatively small and heterogeneous, with differences in age, gender, 
and health status. These limitations make it challenging to draw definitive 
conclusions about the specific molecular mechanisms underlying the 
effects of WBV and the potential applications of this intervention for 
neurological and neurodegenerative disorders. There is still a limited 
understanding of the specific mechanisms by which WBV may affect 
brain functioning. This review is a step forward in summarizing these 
mechanisms, and to stimulate research into that direction. Further 
research is needed to elucidate the mechanisms mentioned in this paper 
in more detail and to develop optimized and standardized protocols that 
can be used across different populations and conditions. Highlighting 
the critical need for methodological standardization in WBV research, it 
is important to note the lack of standardized processes in reporting 
available data within reviews as well. The current way by which literature 
reviews address the various parameters of the used WBV protocols could 
be improved if reporting guidelines for these parameters are followed. 
Based on the reporting guidelines proposed by van Heuvelen et al. (1), 
we have compiled a set of guidelines recommended for use in writing 
reviews (see Table  1). This consolidation aims to standardize the 
reporting of studies and ensure a more systematic and comprehensive 
approach to compare published WBV studies, thereby enhancing the 
chance of identifying the essential components determining the outcome 
of the many different WBV protocols and devices used in the field.

Taken together, to further unravel the intricate cellular and 
molecular mechanisms underlying the effects of WBV, a 
comprehensive approach combining multiple experimental strategies 
can be employed. Initial investigations can begin with cell culture 
studies, which offer a cost-effective and feasible method for subject-
specific cell types to vibrations and analyze molecular changes. 
Utilizing both simple model organisms and disease-specific cell lines 
allows for the examination of WBV effects at a cellular level. Exploring 
WBV through diverse model organisms and examining its 
interconnected effects on various organ systems (e.g., muscles and 
brain) could yield a more comprehensive understanding of its impact 
on human health. Instead of narrowly focusing on individual aspects, 
a holistic system biological approach encompassing different species 
and organ systems could provide valuable insights. So far, the effects 
of WBV have not been studied with multiple systems and a multi-
modal system approach. Studying WBV across various species can 
help elucidate its broader physiological and genetic implications. By 
considering its multifaceted effects, we may uncover new applications 
and therapeutic potentials that extend beyond isolated areas of 
research. Such interdisciplinary investigations could contribute to a 
more effective utilization of WBV for improving human well-being.

Moving toward a more holistic perspective, animal studies 
become instrumental in collecting tissue samples from various organs. 
These samples serve as valuable resources to conduct gene expression 
profiling using microarray analysis or RNA sequencing, proteomics 
employing mass spectrometry and Bio-ID technologies, and 
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metabolomics analysis. These techniques provide insights by 
comparing control and WBV-treated samples, revealing differentially 
expressed genes, altered proteins, and affected metabolic pathways. To 
further validate the findings, molecular alterations can be examined 
using immunohistochemistry with microscopy tools and western 
blotting. By integrating these experimental approaches, a deeper 
understanding of the molecular mechanisms underlying WBV effects 
can be achieved. Once the specific proteins and genes involved in 
WBV effects are identified, these can potentially be used as basic read-
outs in WBV research that may help establish a disease-specific or an 
individual-specific vibration protocol.

While conducting this review, several limitations were encountered 
that warrant discussion. Firstly, a limited amount of data is available on 
the molecular effects of WBV related to brain functions, which constrains 
a comprehensive understanding of its cellular impacts. Additionally, 
comparing conditions across different studies proved challenging because 
many papers lacked clear and detailed descriptions of the parameters 
used, despite existing older and newer reporting guidelines (1, 164). This 
inconsistency in reporting makes drawing reliable conclusions difficult. 
Furthermore, some studies present conflicting data, adding another layer 
of complexity. Although investigating the effects of WBV on other organ 
systems and their links to the brain would have been informative and 
could have enhanced the complexity of this review, the previously 
mentioned limitations such as unclear parameters, and a scarcity of 
studies exploring the crosstalk between different organ systems and the 
brain made it difficult to address this issue. At the moment, excluding the 
other systems does not diminish the value of our review, but in the future, 
when more data is available, it would be interesting to establish whether 
a WBV-sensitive link exists between the brain and the other organ systems.

The current review has many notable strengths. The review aims to 
raise awareness about the importance of carefully selecting protocols 

based on underlying mechanisms, which could help advance the field 
in a meaningful direction. So far no reviews have been published that 
focus on the molecular mechanisms involved in the effects of WBV on 
the brain and immune system together. Since the brain is very closely 
linked to the immune system, highlighting the importance of cross-talk 
between the two systems makes this study crucial and novel. 
Furthermore, the review includes a comprehensive range of studies 
(from cellular, preclinical, to clinical) that distinguishes this review from 
many others that have not covered such a diverse array of research. 
Furthermore, based on the available literature, this review provides 
several recommendations for conducting further research and 
improving data reporting, also for future reviews.

In conclusion, this review has consolidated the available data on 
the cellular and molecular effects of WBV on brain and immune 
functioning. The review emphasizes the importance of studying 
molecular mechanisms to design more optimal protocols.
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TABLE 1 WBV-specific aspects to consider while reporting about WBV 
studies in a review.

Aspect Details to consider to extract from the selected papers and 

to discuss

Device Manufacturer and type, specifications in case of self-built 

device

Type of vibration Spatial and temporal characteristics (e.g., vertical or side-

alternating)

Vibration 

parameters

Settings of the vibration parameters (frequency and 

magnitude) considering used definitions. Whether 

frequency and magnitude were constant or modulated

Verification of 

vibration 

parameters

Whether vibration parameters were manufacturer settings 

or verified, and, in case of verified, the methods used

Administration Posture, position of feet and hands and footwear during 

vibration. Additional tools used. General exercise 

parameters (e.g., number of sessions, number of bouts, bout 

duration, rest intervals)

Control If applicable: control condition or control intervention (e.g., 

sham WBV, no intervention/rest)

Population 

characteristics

Clinical studies: general characteristics and previous 

experience with WBV. Preclinical studies: used strains (e.g., 

the genetic background) and specifics of types of cells

For a detailed overview, see van Heuvelen et al. (1).
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