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Background: The early prediction of cerebral edema changes in patients with 
spontaneous intracerebral hemorrhage (SICH) may facilitate earlier interventions 
and result in improved outcomes. This study aimed to develop and validate 
machine learning models to predict cerebral edema changes within 72  h, using 
readily available clinical parameters, and to identify relevant influencing factors.

Methods: An observational study was conducted between April 2021 and 
October 2023 at the Quzhou Affiliated Hospital of Wenzhou Medical University. 
After preprocessing the data, the study population was randomly divided into 
training and internal validation cohorts in a 7:3 ratio (training: N  =  150; validation: 
N  =  65). The most relevant variables were selected using Support Vector Machine 
Recursive Feature Elimination (SVM-RFE) and Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithms. The predictive performance of random 
forest (RF), GDBT, linear regression (LR), and XGBoost models was evaluated 
using the area under the receiver operating characteristic curve (AUROC), 
precision–recall curve (AUPRC), accuracy, F1-score, precision, recall, sensitivity, 
and specificity. Feature importance was calculated, and the SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations 
(LIME) methods were employed to explain the top-performing model.

Results: A total of 84 (39.1%) patients developed cerebral edema changes. In the 
validation cohort, GDBT outperformed LR and RF, achieving an AUC of 0.654 
(95% CI: 0.611–0.699) compared to LR of 0.578 (95% CI, 0.535–0.623, DeLong: 
p  =  0.197) and RF of 0.624 (95% CI, 0.588–0.687, DeLong: p  =  0.236). XGBoost 
also demonstrated similar performance with an AUC of 0.660 (95% CI, 0.611–
0.711, DeLong: p  =  0.963). However, in the training set, GDBT still outperformed 
XGBoost, with an AUC of 0.603  ±  0.100 compared to XGBoost of 0.575  ±  0.096. 
SHAP analysis revealed that serum sodium, HDL, subarachnoid hemorrhage 
volume, sex, and left basal ganglia hemorrhage volume were the top five most 
important features for predicting cerebral edema changes in the GDBT model.

Conclusion: The GDBT model demonstrated the best performance in predicting 
72-h changes in cerebral edema. It has the potential to assist clinicians in 
identifying high-risk patients and guiding clinical decision-making.

KEYWORDS

SICH, cerebral edema, random forest, GDBT, XGBoost

OPEN ACCESS

EDITED BY

Alejandro Rabinstein,  
Mayo Clinic, United States

REVIEWED BY

Ping Hu,  
Second Affiliated Hospital of Nanchang 
University, China
Muhannad Seyam,  
University of Vermont, United States

*CORRESPONDENCE

Xinjiang Yan  
 1582344125@qq.com

RECEIVED 10 June 2024
ACCEPTED 18 September 2024
PUBLISHED 03 October 2024

CITATION

Xu J, Yuan C, Yu G, Li H, Dong Q, 
Mao D, Zhan C and Yan X (2024) Predicting 
cerebral edema in patients with spontaneous 
intracerebral hemorrhage using machine 
learning.
Front. Neurol. 15:1419608.
doi: 10.3389/fneur.2024.1419608

COPYRIGHT

© 2024 Xu, Yuan, Yu, Li, Dong, Mao, Zhan and 
Yan. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 03 October 2024
DOI 10.3389/fneur.2024.1419608

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1419608&domain=pdf&date_stamp=2024-10-03
https://www.frontiersin.org/articles/10.3389/fneur.2024.1419608/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1419608/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1419608/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1419608/full
mailto:1582344125@qq.com
https://doi.org/10.3389/fneur.2024.1419608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1419608


Xu et al. 10.3389/fneur.2024.1419608

Frontiers in Neurology 02 frontiersin.org

Introduction

Spontaneous intracerebral hemorrhage (SICH) is a prevalent 
subtype of stroke, with a mortality rate significantly higher than 
ischemic stroke. Approximately 20–30% of SICH patients die 
within 3 months (1–3). The high incidence and mortality rates pose 
a significant threat to public health (4, 5). Cerebral edema, a 
common complication of SICH, involves the accumulation of 
excess water in the brain tissues adjacent to the hemorrhage. This 
can lead to severe consequences, including compromised blood 
flow, intracranial pressure shifts, and neuronal damage (6, 7). 
Timely identification of edema development and its influencing 
factors is crucial for optimizing patient care, allocating resources 
effectively, and reducing healthcare costs. Cerebral edema typically 
appears within 24–72 h after bleeding, peaks 2–7 days later, and can 
persist for up to 2 weeks. To monitor edema progression, patients 
with SICH undergo head CT scans at admission, 24 and 72 h post-
admission. Subsequent scans may be  ordered based on clinical 
changes. This study aimed to develop and validate machine 
learning models capable of predicting changes in cerebral edema 
within the first 72 h following SICH (8).

Over the past few years, advances in imaging omics have refined 
the use of CT scans for evaluating brain edema (9). In addition, 
machine learning algorithms have demonstrated significant promise 
in predicting medical outcomes and complications, aiding clinicians 
in making informed decisions and enhancing patient care (10–13). 
These advancements inform the development of accurate and reliable 
prognostic models to identify patients at risk of severe cerebral edema, 
enabling healthcare providers to implement targeted preventive 
strategies and interventions.

This study sought to develop and validate a machine learning-
based prognostic model that could evaluate the progression patterns 
and influencing factors of cerebral edema, considering various patient 
attributes and clinical determinants. We  aimed to compare the 
predictive accuracy and clinical utility of different machine learning 
algorithms. Ultimately, our goal was to provide clinicians with 
valuable tools for the early identification of patients at risk of severe 
cerebral edema, enabling the implementation of targeted preventive 
strategies to reduce its prevalence.

Methods

This study adhered to the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) 
reporting guidelines.

Data source

This observational study was conducted between April 2021 
and October 2023 at the Quzhou Affiliated Hospital of Wenzhou 
Medical University. The study protocol was approved by the 
hospital’s ethical board (reference number: LW2023-163) and 
adhered to the principles of the Declaration of Helsinki. All patients 
provided informed consent through their relatives, and no patient 
data were used in a way that could pose a risk to them. Patients with 
SICH were included if they met the following criteria: (1) admission 

within 72 h after first-ever stroke; (2) SICH confirmed by head 
computerized tomography (CT) scan; (3) hospitalization within 
24 h after the onset of stroke symptom; and (4) age of 18 years or 
greater. Exclusion criteria encompassed the following:(1) secondary 
brain bleeding as a result of congenital or acquired coagulation 
abnormalities, hemorrhagic transformation of cerebral infarction, 
moyamoya disease, cerebral aneurysm, and arteriovenous 
malformation or tumor; (2) primary intraventricular bleeding; (3) 
presence of previous neurological diseases, such as brain tumors 
and severe head trauma; and (4) coexistence with severe systemic 
diseases, for example, malignancies, immune deficiency syndromes, 
and severe heart, liver, lung, or kidney dysfunction.

A total of 215 patients presented to the emergency department 
with suspected SICH, which was confirmed by head CT scans. All 
CT scans were conducted following the radiology department’s 
protocol by radiologists blinded to clinical information. To ensure 
data relevance, we  collected 51 basic patient characteristics at 
admission (detailed in Supporting Material 1). In addition, 
we gathered 38 imaging characteristics, including clinical review 
times at 6, 24, 72 h, and subsequent hours until the absence of 
hematoma and edema was confirmed by two senior doctors 
(Supporting Material 1).

The cerebral edema volume was calculated using two methods: (1) 
Image-based analysis: The boundaries of hematoma and edema were 
delineated on CT scans using image browser measurement software. 
The hematoma volume was calculated by summing the areas of each 
layer, while the edema volume was determined by subtracting the 
hematoma volume from the combined volume of hematoma and 
surrounding brain edema. (2) Formula-based analysis (verification): 
The hematoma length and width in the maximum plane were 
measured as A and B, respectively, and the thickness (number of 
layers, C) was calculated. The hematoma volume was calculated as 1/2 
ABC, with layers categorized as 75% (layer 1), 75–25% (1/2 layer), 
and < 25% (excluded). The edema volume was determined as the 
difference between the combined volume of blood and edema and the 
hematoma volume. Absolute hematoma and edema volumes were 
assessed at each time point. The primary outcome measure was 
defined as an increase in cerebral edema volume between baseline and 
repeat imaging of more than 6 mL or a relative increase of >33% 
within 72 h (14–17). To optimize statistical power and minimize bias, 
multiple imputation using random forests was employed to 
supplement missing values. The imputed data were then randomly 
stratified into training (N = 150) and validation cohorts (N = 65) in a 
7:3 ratio.

Feature selection

To prevent variable misselection, we  employed a rigorous 
variable selection approach using a training cohort to identify the 
most relevant predictors for constructing a predictive model. 
Initially, pairwise Pearson’s correlation matrices were used to assess 
the collinearity of clinical variables. Collinearity occurs when two 
or more predictors exhibit a strong correlation (r > 0.8), 
complicating the evaluation of each variable’s unique contribution 
to the outcome. Therefore, we have chosen to remove the more 
readily available variables from the collinear variables. Subsequently, 
we used the Minimum Absolute Shrinkage and Selection Operator 
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(LASSO) and the SVM-RFE algorithm in a two-step process. 
LASSO is a regularization technique that performs variable 
selection and coefficient estimation by applying constraints to the 
sum of the absolute values of the model parameters. This process 
causes some of the coefficients to be  narrowed down to zero, 
effectively excluding them from the final model. Then, the 
SVM-RFE algorithm was used for further variable selection. The 
SVM-RFE algorithm enables the machine learning algorithm to 
continuously reduce the number of features, verify the performance 
of the model, and finally achieve the optimal number of features for 
screening. By using the SVM-RFE algorithm, we obtain another 
important set of predictors. Finally, the intersection of predictors 
determined by the LASSO and SVM-RFE algorithms is employed 
to ensure that only the most relevant and robust variables are 
included in the development of our predictive models. This 
combined approach aims to improve the accuracy and 
generalizability of the model while reducing the risk of overfitting 
or including irrelevant predictors.

Model development and validation

We employed four machine learning classifiers—extreme 
gradient boosting (XGBoost), random forest (RF), linear regression 
(LR), and gradient-boosted decision trees (GDBT) (18–21)—to 
develop predictive models for the risk of 72-h brain edema growth. 
All models incorporated the same input variables. Grid and random 
hyperparameter searches were conducted on the training data to 
identify optimal hyperparameters for each model, with performance 
evaluated using the area under the receiver operating characteristic 
curve (AUROC), precision–recall curve (AUPRC), F1 score, 
precision, recall, sensitivity, and specificity. To interpret the best-
performing model, Shapley Additive exPlanations (SHAP) (22) and 

Local Interpretable Model-Agnostic Explanations (LIME) (23) were 
applied to provide consistent and locally accurate variable 
importance values, enhancing our understanding of the model’s 
predictive capabilities.

Dataset selection

Given the limited sample size in this study, which can introduce 
bias, a 5-fold cross-validation was employed to ensure objectivity 
and minimize sampling bias. To select the dataset with the greatest 
statistical significance, a Wilcoxon rank-sum test was performed. 
The dataset with the largest p-value was chosen as illustrated in 
Figure 1.

Tuning of hyperparameters

XGBoost
XGBoost, a widely used and powerful ensemble technique, is 

based on the gradient boosting framework. It combines the predictions 
of multiple weak learners, primarily decision trees, to create a more 
accurate and robust model. XGBoost implements machine learning 
algorithms within the Gradient Boosting framework. The optimal 
parameters were determined using the “xgboost” package and 5-fold 
cross-validation, as illustrated in Figure 2.

Random forest
Random forest algorithms utilize tree-based models, combining 

multiple decision trees through bootstrapping to improve predictive 
accuracy (19). The optimal number of trees was determined using 
5-fold cross-validation with the “randomForest” package, as illustrated 
in Figure 2.

FIGURE 1

Dataset selection plots.
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Linear regression
Linear regression is a widely used statistical method for modeling 

binary outcomes. The most common approach is least squares, which 
aims to minimize the average squared error between predicted and 
observed values. To select optimal variables and construct an LR 
model, we  employed backward stepwise regression based on the 
Akaike information criterion. The “MASS” package in R software was 
utilized to fit the model (24).

Gradient-boosted decision tree (GBDT)

The GBDT model iteratively calculates residuals at each step and 
establishes the model by moving in the negative gradient direction of 
these residuals. GBDT’s powerful, flexible, efficient, and accurate 
predictive capabilities have made it a popular machine-learning 
algorithm for analyzing and processing abstract data. Optimal 
parameters for the GBDT model were determined using the “GBDT” 
package and 5-fold cross-validation, as illustrated in Figure 2.

Statistical analysis

Prior to formal analysis, the Kolmogorov–Smirnov test was used 
to assess data distribution. Continuous variables were analyzed using 
either the independent t-test (for normally distributed data) or the 
Mann–Whitney U-test (for non-normally distributed data) and were 
presented as mean ± standard deviation (SD) or median with 
interquartile range (IQR), respectively. Categorical variables were 
analyzed using the chi-square test for large samples or Fisher’s exact 
test for small samples and are expressed as frequencies (percentages). 
To compare the area under the curve (AUC) of the different models 
statistically, the DeLong test was used. All statistical tests were 
two-tailed, and a p < 0.05 was considered statistically significant. In 
addition, the study adhered to the rule of thumb of having at least 10 
events per variable for robust analysis. Statistical analyses were 
performed using R (version 4.2.2; R Foundation for Statistical 
Computing) and Python (version 3.9.0; Python Software Foundation).

Results

Patient characteristics

The dataset comprised information on 215 patients with 
SICH, including 949 imaging CT scans. The total number of CT 
scans was determined at specific time frames: 6, 24, 72 h, and 
subsequent hours until the absence of hematoma and edema was 
confirmed by two senior doctors. Of these patients, 86 (40%) 
exhibited cerebral edema expansion (edema volume increased by 
more than 6 mL or by >33% relative to the last measurement) 
within 72 h. The cohort included 143 male (66.5%) and 72 female 
(33.5%) patients, with 60 male (69.8%) and 26 female (30.2%) 
patients experiencing dilated cerebral edema. No significant 
differences were observed in baseline characteristics between the 
training and validation groups. Tables 1, 2 provide detailed 
baseline patient characteristics.

Feature selection

As shown in Figure  3, no pairwise Pearson’s correlations 
between continuous variables exceeded 0.8, indicating the absence 
of collinearity. Consequently, all variables were included in the 
subsequent feature selection process. SVM-RFE identified 31 
important predictors (Supporting Material 1), while the LASSO 
regression algorithm selected 26 (Supporting Material 1). 
Ultimately, 20 factors emerged as significant predictors of the 
outcome (Figure 4), including sex, diabetes history, hypertension 
history, alcohol history, ventricular drainage, hemostatic treatment, 
decompressive craniectomy, antihypertensive treatment, antiemesis 
and antacid, HDL, cholesterol, alanine aminotransferase, serum 
magnesium, serum sodium, CRP, admission Barthel ADL Index, 
cerebral subarachnoid hemorrhage volume, subdural hemorrhage 
volume, and hemorrhage in the left cerebellum, left basal ganglia, 
or left parietal lobe. These selected features were integrated into 
four machine learning classifiers—GDBT, LR, RF, and XGBoost—to 
develop the predictive model.

FIGURE 2

Hyperparameter selection plots.
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Tuning of hyperparameters

As shown in Table 3 and Figure 2, the optimal hyperparameters 
for the GDBT models were as follows: n_estimators (10–250), min_
samples_split (2–25), max_features (0.1–0.999), max_depth (3–15), 
min_samples_leaf (1–25), and learning_rate (0.001–0.3). For the 
extreme gradient boosting (XGBoost) models, the optimal 
hyperparameters were as follows: n_estimators (10–250), min_
samples_split (1–25), max_depth (3–15), subsample (0.001–1), 
colsample_bytree (0.01–1), and learning_rate (0.001–0.3). Finally, the 
optimal hyperparameters for the RF models were as follows: n_
estimators (10–250), max_depth (3–15), min_samples_split (2–25), 
min_samples_leaf (1–25), and max_features (0.1–0.999).

Development and validation of prediction 
models

When evaluating model performance on the validation cohort, 
our results demonstrated that the GDBT model, with an AUC value 
of 0.654 (95% CI: 0.611–0.699), outperformed the LR and RF models, 
which yielded AUC values of 0.578 (95% CI: 0.535–0.623, DeLong: 
p = 0.197) and 0.624 (95% CI: 0.588–0.687, DeLong: p = 0.236), 
respectively. Similarly, GDBT outperformed XGBoost, with an AUC 
of 0.660 (95% CI: 0.611–0.711, DeLong: p = 0.963). However, in the 
training set, GDBT (AUC = 0.603 ± 0.100) outperformed XGBoost 
(AUC = 0.575 ± 0.096). To mitigate the effects of random sampling, 
we repeated this process 50 times. Over-validation revealed that the 
LR model exhibited overfitting, performing poorly on the independent 
dataset despite good performance on the training set. In contrast, the 
GDBT model demonstrated greater stability and superior 
performance in both the training and validation sets compared to 

XGBoost. Based on these results, we selected the GDBT model for 
subsequent experiments, as summarized in Table  4. Receiver 
operating curves and precision–recall curves for the models are 
depicted in Figure 5.

Model explainability

The SHAP summary plot (Figure  6) illustrates the relative 
importance of the 20 predictors in the GDBT model. We discovered 
that serum sodium, HDL cholesterol, subarachnoid hemorrhage 
volume, sex, and left basal ganglia hemorrhage volume were the five 
most significant features for predicting cerebral edema changes in the 
SHAP (GDBT) model.

The LIME interpreter was applied to data generated by the GDBT 
model to examine classification outcomes. Each case’s feature weights 
are depicted in Figure 7, with green indicating factors favoring the 
outcome and red representing those opposing it. In case 1, the 100% 
predicted increase in edema was likely attributed to sex (male), cerebral 
subarachnoid hemorrhage volume within the range of 0.02–0.15 mL, 
alcohol use history, HDL levels between 1.2 and 1.44 mmol/L, serum 
sodium between 141.55 and 143.45 mmol/L, absence of subdural 
hemorrhage, alanine aminotransferase levels within 13.4–19.4 U/L, 
and left parietal lobe volume between 0.13 mL and 0.67 mL (favoring 
variables). However, no drinking history and no cerebral ventricular 
drainage were the opposite variables. Conversely, in case 2, the 99.8% 
prediction of no edema increase was likely due to serum sodium levels 
exceeding 143.45 mmol/L, left parietal bleeding volume within the 
0.13–0.67 mL range, alanine aminotransferase levels between 19.04 U/L 
and 27.92 U/L, and CRP levels within 1.58–3.61 mg/L (favoring 
variables). Sex (male), HDL levels exceeding 1.44 mmol/L, and a 
subdural hemorrhage volume >0.1 mL were the opposite variables.

TABLE 1 Summary table of categorized data.

Characteristics Totals (n  =  215) Training cohort 
(n  =  150)

Validation cohort 
(n  =  65)

P-value

Sex 143 (0.665) 101 (0.673) 42 (0.646) 0.818

History of stroke 58 (0.270) 40 (0.267) 18 (0.277) 1.000

History of diabetes 29 (0135) 18 (0.120) 11 (0.169) 0.451

History of atrial fibrillation 12 (0.056) 8 (0.053) 4 (0.062) 1.000

History of coronary heart disease 92 (0.428) 71 (0.473) 21 (0.323) 0.058

History of hypertension 183 (0.851) 124 (0.827) 59 (0.908) 0.185

History of smoking 69 (0.321) 53 (0.353) 16 (0.246) 0.165

History of alcohol consumption 73 (0.340) 53 (0.353) 20 (0.308) 0.623

History of hyperlipidemia 4 (0.019) 1 (0.007) 3 (0.046) 0.156

Cranial decompression Hematoma 

removal 67 (0.312) 43 (0.287) 24 (0.369) 0.298

Ventricular drainage 71 (0.330) 44 (0.293) 27 (0.415) 0.112

Hemostatic therapy 200 (0.930) 141 (0.940) 59 (0.908) 0.574

Cranial pressure-lowering therapy 194 (0.902) 138 (0.920) 56 (0.862) 0.282

Antihypertensive treatment 208 (0.967) 146 (0.973) 62 (0.954) 0.748

Antiemetic and antacid 211 (0.981) 148 (0.987) 63 (0.969) 0.749

Lipid-lowering therapy 20 (0.093) 17 (0.113) 3 (0.046) 0.193
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TABLE 2 Summary table of continuous variable data.

Characteristics Totals (n  =  215) Training cohort 
(n  =  150)

Validation cohort 
(n  =  65)

P-value

Age 66.0 (56.0, 75.0) 66.5 (56.0, 76.75) 66.0 (56.0, 73.0) 0.531

Time from onset to first imaging 6.0 (4.0, 10.5) 5.5 (4.0, 10.0) 6.0 (4.0, 12.0) 0.637

Systolic blood pressure 158.0 (142.0, 174.0) 158.5 (142.25, 174.0) 158.0 (142.0, 173.0) 0.723

Diastolic blood pressure 88.0 (78.0, 97.0) 87.0 (77.25, 97.0) 88.0 (78.0, 100.0) 0.647

VTE 6.0 (3.0, 8.0) 7.0 (3.0, 8.0) 6.0 (3.0, 7.0) 0.351

Hemoglobin 133.0 (122.0, 143.0) 133.0 (123.0, 144.0) 133.0 (121.0, 141.0) 0.436

Blood platelet count 176.0 (128.0, 212.5) 177.5 (135.5, 210.75) 169.0 (117.0, 218.0) 0.563

Partial thromboplastin time 33.4 (30.65, 37.3) 33.85 (30.725, 38.15) 32.7 (30.4, 36.0) 0.057

Prothrombin time (blood clotting 

enzyme) 17.1 (16.3, 17.7) 17.1 (16.3, 17.6) 17.1 (16.4, 17.8) 0.604

Prothrombin time 13.2 (12.6, 13.85) 13.2 (12.6, 13.85) 13.2 (12.8, 13.8) 0.845

Triglyceride 0.97 (0.705, 1.45) 0.95 (0.712, 1.438) 1.05 (0.69, 1.49) 0.567

Cholesterol 4.03 (3.42, 4.72) 3.925 (3.43, 4.742) 4.24 (3.41, 4.63) 0.460

High-density lipoprotein (HDL) 

cholesterol 1.22 (0.99, 1.45) 1.2 (0.982, 1.402) 1.26 (1.03, 1.5) 0.280

Glutamic-pyruvic transaminase 18.4 (13.0, 28.55) 18.9 (13.125, 28.575) 17.6 (12.6, 28.3) 0.963

Creatine kinase 106.3 (69.15, 184.05) 107.5 (69.6, 181.825) 103.3 (64.7, 188.7) 0.571

Lactate dehydrogenase 212.2 (184.75, 255.25) 209.2 (186.175, 250.85) 220.7 (183.8, 277.6) 0.271

Creatine kinase isoenzyme 20.8 (15.65, 27.55) 20.95 (16.2, 26.875) 20.1 (15.1, 29.5) 0.652

Magnesium 0.81 (0.74, 0.86) 0.805 (0.732, 0.86) 0.82 (0.75, 0.88) 0.232

Sugar 6.39 (5.31, 8.39) 6.375 (5.262, 8.278) 6.94 (5.41, 8.6) 0.356

Calcium 2.19 (2.1, 2.26) 2.19 (2.1, 2.278) 2.18 (2.1, 2.24) 0.629

Sodium 141.0 (139.15, 143.2) 141.1 (138.825, 143.1) 141.0 (139.9, 143.3) 0.310

Albumin 37.7 (34.25, 40.3) 37.95 (34.3, 40.6) 37.0 (34.1, 39.8) 0.387

C-reactive protein 4.26 (1.73, 17.005) 4.175 (1.762, 13.252) 4.35 (1.46, 19.2) 0.737

ADL admission 10.0 (0.0, 35.0) 10.0 (0.0, 35.0) 10.0 (0.0, 35.0) 0.808

ADL discharge 40.0 (0.0, 60.0) 37.5(0.0, 60.0) 50.0(0.0, 70.0) 0.172

Admission mRS score 4.0 (3.0, 5.0) 4.0 (4.0, 5.0) 4.0 (3.0, 5.0) 0.174

Mean_median_offset 0.0 (−0.517, 1.224) 0.0 (−0.375, 1.192) 0.0 (−0.533, 1.214) 0.957

Mean_cerebral subarachnoid 

hemorrhage volume 0.014 (0.0, 0.194) 0.018 (0.0, 0.167) 0.0 (0.0, 0.267) 0.563

Mean_subdural hemorrhage.3. Epidural 

hemorrhage4 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.125) 0.250

Mean_subdural hemorrhage 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.809

Mean_CT5 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.760

Mean_brainstem 0.0 (0.0, 0.4) 0.0 (0.0, 0.333) 0.0 (0.0, 0.5) 0.777

Mean_left_cerebellum 0.0 (0.0, 0.167) 0.0 (0.0, 0.125) 0.0 (0.0, 0.25) 0.413

Mean_left_basal_ganglia 0.25 (0.0, 1.0) 0.225 (0.0, 1.0) 0.25 (0.0, 1.0) 0.793

Mean_left_frontal_lobe 0.0 (0.0, 0.354) 0.0 (0.0, 0.333) 0.0 (0.0, 0.375) 0.861

Mean_left_temporal_lobe 0.2 (0.0, 0.854) 0.167 (0.0, 0.75) 0.25 (0.0, 1.0) 0.463

Mean_left_thalamus 0.0 (0.0, 0.388) 0.0 (0.0, 0.333) 0.0 (0.0, 0.5) 0.677

Mean_left_parietal 0.0(0.0, 0.6) 0.125(0.0, 0.6) 0.0(0.0, 0.75) 0.540

Mean_left_occipital_lobe 0.0 (0.0, 0.062) 0.0 (0.0, 0.0) 0.0 (0.0, 0.143) 0.245

Mean_right_cerebellum 0.0 (0.0, 0.167) 0.0 (0.0, 0.2) 0.0 (0.0, 0.125) 0.701

(Continued)
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Discussion

Hemorrhagic stroke, also known as cerebral hemorrhage, occurs 
when non-traumatic blood vessels in the brain rupture, leading to 
blood accumulation in the brain parenchyma. This condition 
constitutes 10–15% of all stroke cases and is characterized by rapid 
progression, severe neurological dysfunction, and a high mortality 

rate, particularly mortality rate during the acute phase (up to 100%). 
Increased intracranial pressure and cerebral herniation due to cerebral 
edema are major causes of death. Patients may also experience long-
term neurological deficits, impacting their self-care ability and 
imposing substantial economic burdens on society and families. Early 
diagnosis and timely treatment are crucial for reducing mortality 
rates. To predict 72-h brain edema growth, we developed and validated 

TABLE 2 (Continued)

Characteristics Totals (n  =  215) Training cohort 
(n  =  150)

Validation cohort 
(n  =  65)

P-value

Mean_right_basal_ganglia 0.2 (0.0, 1.0) 0.25 (0.0, 1.0) 0.0 (0.0, 1.0) 0.527

Mean_right_frontal_lobe 0.0 (0.0, 0.333) 0.0 (0.0, 0.333) 0.0 (0.0, 0.25) 0.843

Mean_right_temporal_lobe 0.0 (0.0, 0.667) 0.0 (0.0, 0.667) 0.0 (0.0, 0.5) 0.321

Mean_right_thalamus 0.0 (0.0, 0.5) 0.0 (0.0, 0.575) 0.0 (0.0, 0.333) 0.584

Mean_right_parietal 0.0 (0.0, 0.5) 0.0 (0.0, 0.5) 0.0 (0.0, 0.25) 0.208

Mean_right_occipital_lobe 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.514

Mean_fisher 0.5 (0.0, 1.31) 0.586 (0.0, 1.333) 0.429 (0.0, 1.167) 0.463

FIGURE 3

Pearson’s correlation matrix thermodynamic chart.
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machine-learning models using four different algorithms (GDBT, LR, 
RF, and XGBoost). Twenty key predictors were identified, and internal 
and external validation demonstrated the superior performance and 
clinical applicability of the GDBT model (25–28).

Our importance analysis identified serum sodium levels as the 
most significant predictor of 72-h brain edema growth risk, aligning 
with previous research (29–33). These findings support the role of 
serum sodium as a valuable prognostic indicator in brain edema. 
Previous studies suggest that edema around hematoma is 
predominantly vasogenic in the early stages, transitioning to cytotoxic 
edema later. Distal and contralateral edema is attributed to osmotic 
effects caused by the diffusion of edematous fluid and the accumulation 
of permeable substances within the bleeding area. Vasogenic cerebral 
edema results from blood–brain barrier impairment and increased 
permeability, leading to the leakage of plasma components, including 
sodium (Na+) and potassium (K+) ions. Cytotoxic edema arises from 
cytotoxic substances disrupting cell energy metabolism, leading to 

abnormal extracellular ion concentration gradients. Increased 
extracellular potassium ions are primarily removed through the blood–
brain barrier via Na+-K+-ATPase-mediated Na+-K+ exchange, resulting 
in a net increase of cations. Our study demonstrated a correlation 
between lower serum sodium levels and increased edema volume. 
Potential explanations include the cytotoxic edema perspective: Despite 
constant serum sodium levels, cytotoxic substances may increase Na+ 
in edema fluid while decreasing it in plasma. Lower serum sodium 
levels may indicate more potent cytotoxic substances, leading to higher 
edema fluid osmotic pressure and increased edema volume.

Our importance analysis further identified high HDL values, 
hypertension history, alcohol history, and sex (male) as additional 
predictors of 72-h brain edema growth risk. Several studies and statistical 
analyses (34, 35) have reported that patients with cerebral hemorrhage 
accompanied by poorly controlled hypertension, alcohol consumption, 
or hyperlipidemia have a significantly higher likelihood of developing 
severe cerebral edema than healthy individuals. Histological studies have 

FIGURE 4

Variable screening diagram.

TABLE 3 Summary table of the model parameters.

GDBT XGBoost RF

n_estimators (10, 250) n_estimators (10, 250) n_estimators (10, 250)

min_samples_split (2, 25) min_child_weight (1, 25) max_depth (3, 15)

max_features (0.1, 0.999) max_depth (3, 15) min_samples_split (2, 25)

max_depth (3, 15) subsample (0.001, 1) min_samples_leaf (1, 25)

min_samples_leaf (1, 25) colsample_bytree (0.01, 1) max_features (0.1, 0.999)

learning_rate (0.001,0.3) learning_rate (0.001,0.3)
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TABLE 4 Model performance evaluation using training and validation cohorts.

Cohort Model AUROC AUPRC F1 Sensitivity Specificity Accuracy

Training 

(Mean ± SD)

GDBT 0.603 ± 0.100 0.501 ± 0.112 0.343 ± 0.146 0.839 ± 0.081 0.463 ± 0.187 0.663 ± 0.066

LR 0.743 ± 0.094 0.630 ± 0.124 0.584 ± 0.106 0.737 ± 0.096 0.546 ± 0.112 0.708 ± 0.076

RF 0.566 ± 0.100 0.450 ± 0.098 0.354 ± 0.126 0.733 ± 0.100 0.382 ± 0.128 0.609 ± 0.073

XGBoost 0.575 ± 0.096 0.444 ± 0.091 0.323 ± 0.128 0.779 ± 0.087 0.388 ± 0.150 0.623 ± 0.069

Validation 

[median (95% 

CI)]

GDBT

0.654 (0.611, 

0.699)

0.548 (0.503, 

0.592)

0.444 (0.389, 

0.502) 0.769 (0.733, 0.807) 0.526 (0.474, 0.578) 0.615 (0.584, 0.645)

LR

0.578 (0.535, 

0.623)

0.466 (0.423, 

0.506)

0.424 (0.374, 

0.477) 0.617 (0.573, 0.660) 0.424 (0.376, 0.465) 0.540 (0.497, 0.573)

RF

0.624 (0.588, 

0.687)

0.526 (0.485 

，0.584)

0.413 (0.365, 

0.464) 0.667 (0.625, 0.735) 0.438 (0.400, 0.508) 0.556 (0.529, 0.605)

XGBoost

0.660 (0.611, 

0.711)

0.558 (0.501, 

0.643)

0.450 (0.391, 

0.515) 0.770 (0.720, 0.830) 0.531 (0.456, 0.630) 0.618 (0.575, 0.672)

FIGURE 5

Receiver operating curves and precision–recall curves of the models.
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FIGURE 6

SHAP summary plot.

FIGURE 7

GDBT is explained by a locally interpretable model. Features with green bars favor the results, while those with red bars contradict the results. 
The X axle shows how much of each feature is added or subtracted from the patient’s final probability value (i.e., a feature with a weight of 
0.3 is equivalent to a 30% change in the probability of the outcome). Class 1 represents increased edema, and class 0 represents no increased 
edema.
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revealed that long-term hypertension can damage small-vessel wall 
structures. In addition, alcohol consumption, hyperlipidemia, and sex 
(male) are factors that can exacerbate this damage, contributing to 
morphological changes associated with cerebral hemorrhage and edema. 
Therefore, individuals with a history of hyperlipidemia, hypertension, 
alcohol consumption, or those who are male should be closely monitored 
for edema growth and receive timely treatment.

Our importance analysis further revealed that the volume of 
cerebral hematoma was the third most important factor associated with 
increased edema. In addition, cerebral ventricular drainage, hemostatic 
treatment, decompressive craniectomy, and antihypertensive treatment 
effectively reduced edema growth. The hematoma volume is a well-
established marker influencing edema volume (36). Although it ranked 
third in our analysis, we speculate that this might be due to surgical 
interventions affecting hematoma volume, potentially altering the 
correlation between hematoma volume and edema growth. This could 
lead to a less consistent relationship between the two, making 
hematoma volume less consistently predictive of edema growth. 
However, further research is needed to confirm this hypothesis. 
Moreover, the demonstrated effectiveness of ventricle drainage, 
hemostasis, cranial pressure reduction, and antihypertensive treatment 
validates the reliability of our predictive model.

Our importance analysis identified CRP and ALT as factors 
promoting edema growth. Intracerebral hemorrhage is a common 
clinical condition characterized by rapid onset and progression, posing 
a significant threat to patient survival. Even if patients survive, they 
may experience adverse effects on multiple organ functions, leading to 
multiple organ failure syndrome and death. The primary cause is 
intracranial hypertension resulting from cerebral hemorrhage, leading 
to altered consciousness and systemic stress responses. This stimulates 
various humoral regulatory mechanisms, resulting in strong reactions. 
CRP and ALT can reflect the severity of the disease, and their elevation 
suggests a likely deterioration of the patient’s underlying condition, 
increasing the risk of worsening brain edema.

Based on these predictors, the GDBT model developed in this study 
demonstrated robust and consistent identification and calibration across 
the training, internal, and external validation cohorts. The selected 
results were interpretable and could be effectively applied in clinical 
practice. This model can potentially assist clinicians in identifying high-
risk patients and informing clinical decision-making.

Conclusion

The GDBT model consistently demonstrated superior performance 
in predicting 72-h changes in cerebral edema across the training, internal, 
and external validation cohorts. The SHAP and LIME analysis revealed 
that the first three favorable factors associated with increased edema 
(100%) included the following: sex (male), cerebral subarachnoid 
hemorrhage volume within the range of 0.02–0.15 mL, and a history of 
alcohol use. Conversely, the first three favorable factors associated with no 
increase in edema (99.8%) included the following: serum sodium levels 
exceeding 143.45 mmol/L, left parietal bleeding volume within the 0.13–
0.67 mL range, and alanine aminotransferase levels between 19.04 U/L 
and 27.92 U/L. These findings have the potential to assist clinicians in the 
early identification of patients at risk for severe cerebral edema, enabling 
the implementation of targeted preventive measures to reduce 
its prevalence.

Strengths

Our study has several advantages, including the inclusion of variables 
that closely reflect real-world human physiological conditions. The value 
of the volume of cerebral hemorrhage is collected until the hematoma 
disappears, no new hematoma occurs during the follow-up period, and 
the modeling process is a rigorous model development and a validation 
process, using multiple machine learning algorithms to identify the model 
with the best performance. Various evaluation measures and model 
interpretability techniques, such as SHAP and LIME, are used to ensure 
transparency and facilitate the interpretation of the results, and the model 
results can be effectively interpreted.

Limitations

Despite its strengths, our study has several limitations. First, the 
sample size was not validated across multiple centers, and the ROC 
curve AUC of the constructed model was only 66%, potentially due to 
the inclusion of many complex and variable factors. The retrospective 
design of the study and the absence of some data may lead to the 
exclusion of potentially relevant predictors, such as hypoperfusion due 
to hypotension, high intracranial pressure, and ischemia or hypoxia 
due to blood pressure management based on arterial stenosis.
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