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Objectives: Wilson disease (WD) is a rare autosomal recessive disorder caused

by a mutation in the ATP7B gene. Neurological symptoms are one of the

most common symptoms of WD. This study aims to construct a model that

can predict the occurrence of neurological symptoms by combining clinical

multidimensional indicators with machine learning methods.

Methods: The study population consisted of WD patients who received

treatment at the First A�liated Hospital of Anhui University of Traditional Chinese

Medicine from July 2021 to September 2023 and had a Leipzig score ≥ 4

points. Indicators such as general clinical information, imaging, blood and

urine tests, and clinical scale measurements were collected from patients, and

machine learning methods were employed to construct a prediction model

for neurological symptoms. Additionally, the SHAP method was utilized to

analyze clinical information to determine which indicators are associated with

neurological symptoms.

Results: In this study, 185 patients with WD (of whom 163 had neurological

symptoms) were analyzed. It was found that using the eXtreme Gradient

Boosting (XGB) to predict achieved good performance, with an MCC value

of 0.556, ACC value of 0.929, AUROC value of 0.835, and AUPRC value of

0.975. Brainstem damage, blood creatinine (Cr), age, indirect bilirubin (IBIL),

and ceruloplasmin (CP) were the top five important predictors. Meanwhile, the

presence of brainstem damage and the higher the values of Cr, Age, and IBIL, the

more likely neurological symptoms were to occur, while the lower the CP value,

the more likely neurological symptoms were to occur.

Conclusions: To sum up, the prediction model constructed using machine

learningmethods to predict WD cirrhosis has high accuracy. Themost important

indicators in the prediction model were brainstem damage, Cr, age, IBIL, and CP.

It provides assistance for clinical decision-making.
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Introduction

Wilson disease (WD), alsoknown as hepatolenticular

degeneration (HLD), was described by Wilson in 1912 and is a rare

autosomal recessive inherited disorder (1, 2). The disease is caused

by homozygous or compound heterozygous mutations in ATP7B,

which encodes the transmembrane copper-transporting ATPase 2

(commonly referred to as ATP7B). Abnormal function of ATP7B

can lead to impaired copper homeostasis and copper overload in

the brain, liver and other organs (3). Neurological symptoms are

one of the most common types of symptoms associated with this

disease. According to research reports, 18–68% of WD patients

experience neurological symptoms for the first time, with an

average age of 20–30 years (4, 5). However, most patients exhibit

liver symptoms in the early stages, followed by severe neurological

symptoms (1). Although UWDRS, GAS and other scales can assess

the neurological symptoms of patients, the treatment effect is

often poor when patients experience neurological symptoms (6–8).

Therefore, predicting and intervening in advance on the relevant

influencing factors that cause neurological symptoms in patients is

crucial for their prognosis.

Machine learning is a research field dedicated to understanding

how computers acquire knowledge from data (9). Machine learning

technology involves computer-based statistical methods that are

trained to identify common patterns and hidden correlations in

large datasets. In clinical practice, machine learning methods can

help clinicians classify patients with multiple diseases according

to several variables (10–12). In recent years, multiple studies have

been reported on the application of machine learning methods in

predicting Parkinson’s disease and Alzheimer’s disease (13, 14). In

addition, research on machine learning-based prediction of liver

cirrhosis in WD has also achieved great success (15). However, so

far, no model was used to predict the development of neurological

symptoms in WD.

Therefore, this study combines machine learning with clinical

multidimensional indicators, such as general clinical information,

imaging examinations, blood and urine tests, and clinical scale

measurements, to determine the most important indicators related

toWDneurological symptoms and construct a predictivemodel for

the occurrence of neurological symptoms inWD patients. Intended

to provide clinical decision-making tools for clinicians, it is hoped

that through early intervention of these important factors, patients

can delay or even avoid the occurrence of neurological symptoms.

The flowchart of this study was shown in Figure 1.

Materials and methods

Study design and population

The study population included 185 WD patients enrolled

between July 2021 and October 2023. All patients were inpatients

of the Brain Disease Center of the First Affiliated Hospital of

Anhui University of Traditional Chinese Medicine and conformed

to the EASL clinical practice guidelines for WD (16). The

inclusion criteria were as follows: age 12–60 years old (Patients

<12 years old may not be able to cooperate in completing

MRI and other examination, while patients >60 years old may

exhibit symptoms that are confused with the symptoms of this

disease due to age); routine copper depletion treatment at a

stable dosage in the previous 4 weeks. The exclusion criteria

were as follows: age <12 years old or >60 years old; unable to

cooperate in completing the scale assessment; combined with other

neurological, orthopedic, or cardiovascular/respiratory diseases;

combined with severe mental symptoms.

This study was conducted following the 1964 Declaration of

Helsinki and approved by the Ethics Committee of the First

Affiliated Hospital of Anhui University of Traditional Chinese

Medicine (Approval No.: 2021AH-66). All subjects received written

informed consent.

Data processing

In this study, we included data from 185 patients for

prediction (please refer to Supplementary material for details).

Before conducting data prediction, outliers were discarded, and for

the discarded outliers and missing values, we used a imputation

method. If the discarded outliers and missing values are of discrete

type, we use mode imputation. If the discarded outliers andmissing

values are of continuous type, we use mean to randomly select

imputation within the variance range. To validate the reliability of

the imputed data, we compared the means, medians, and standard

deviations before and after imputation, with errors within 3%.

Subsequently, we conducted machine learning cross-validation,

further confirming the reliability of the imputed data. Meanwhile,

the R code was implemented in Empower Stats. Based on previous

research results, eligible WD patients were randomly divided into

a training group and a testing group at a ratio of 9:1 (17, 18).

For some discrete-valued features such as the presence of cirrhosis

and ascites, the plurality complement was used, and for some

continuous-valued features, the mean complement method was

used. Modeling was performed on the training set, followed by

validation on an independent test set. The data is presented in

Table 1.

Neuropsychiatric assessment and clinical
objective indicators

All subjects were assessed for neuropsychiatric symptoms using

the Unified Wilson Disease Rating Scale (UWDRS) (8). The full

UWDRS includes three subscales: the neurological subscale, the

liver subscale, and the psychiatric subscale. Since this experiment

was mainly to evaluate the neurological symptoms of patients,

the subjects were classified into those with neurological symptoms

(WD-N, n = 163) and those without neurological symptoms

(no-WD-N, n = 22) according to whether the score on the

neurological subscale was zero or not. Additionally, through

the electronic medical record system, this study collected the

following information as predictive factors: gender, age, blood

routine examination, liver function, kidney function, liver fibrosis,

blood clotting function, 24 h urinary copper, ceruloplasmin, cranial

magnetic resonance lesion sites, abnormal liver ultrasound findings

and the presence of K-F rings, as well as cirrhosis and ascites.
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FIGURE 1

The flowchart of this study.

TABLE 1 Number of data set.

Training
set

Independent test
set

Total

Positive 149 14 163

Negative 16 6 22

Statistical analysis

IBM SPSS 25.0 statistical software was utilized to compare

the characteristics of demographics, clinical objective indicators,

and scale measures of WD patients with and without neurological

symptoms. Continuous variable data were expressed as mean ±
SD, and differences between groups were analyzed using t-test.

Meanwhile, categorical variable data were expressed as numbers

and percentages, and the difference between groups was analyzed

using the Chi-squared test or Fisher’s exact test. Specifically, P

> >0.05 indicates that the statistical results have no statistically

significant difference, P < 0.05 indicates a statistically significant

difference, P < 0.01 indicates a highly statistically significant

difference, and P < 0.001 indicates an extremely statistically

significant difference.

Machine learning methods

Five common machine learning methods, namely Random

Forest (RF), Support Vector Machine (SVM), eXtreme Gradient

Boosting (XGB), Logistic regression (LR), and Back propagation

(BP) neural network were used to model the data in this study (19–

23).

RF: Random forest (19) is a machine learning method based

on integrated learning of decision trees. It adopts the concepts

of bootstrap sampling and feature randomization to construct

multiple decision trees for prediction. Then, it aggregates the results

of multiple decision trees through voting to improve prediction

accuracy and robustness.

SVM: SVM can be used for classification tasks, serving as

a supervised learning algorithm (21). For binary classification

problems, the objective of SVM is to find a hyperplane that

maximizes the margins between different classes.

XGB: XGB (20) is a machine learning algorithm implemented

in the gradient boosting framework. It is an improved algorithm

based on gradient boosting machines with the incorporation of a

regularization term to effectively prevent the overfitting problem.

It has been widely used in the field of machine learning owing to its

high prediction accuracy and computational efficiency.

LR: LR (22) is a statistical model used for binary classification

tasks, where the goal is to predict the probability that an

instance belongs to a particular class. Unlike linear regression,

which predicts a continuous value, logistic regression predicts the

probability of the instance belonging to the default class (class 1 in

binary classification) using a logistic function (specific algorithms

and parameters can be found in the Supplementary material).

BP: BP neural network (23), often simply referred to as

neural networks, are a type of artificial neural network that is

widely used for supervised learning tasks, including classification

and regression. They are composed of multiple layers of

interconnected nodes, or neurons, organized in a hierarchical

manner (specific algorithms and parameters can be found in the

Supplementary material).
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Shapley Additive Explanations: The Shapley Additive

Explanations (SHAP) algorithm (24) is a unified framework for

explaining predictions of black-box models. It assigns importance

scores to each feature to determine the contribution of each feature

to the final model prediction. Different from the XGB model which

only computes feature importance, the SHAP feature selection

method evaluates the impact of each feature not only by calculating

its SHAP value but also by explaining the specific behavior of the

feature that affects the prediction results. The SHAP algorithm has

been increasingly used as a model interpretation method in fields

such as biomedical research. The calculation of SHAP values is

given below:

φi =
∑

S⊆{1,2,...,p}r{i}

|S|!
(

p− |S| − 1
)

!

p!

[

f (S ∪ {i}) − f (S)
]

where φi represents the SHAP value for feature i, p denotes the

number of features, S denotes a subset composed of features other

than feature i, |S| denotes the size of the set S, and f (S) denotes the

model prediction output for input feature set S. If the SHAP value

φi is greater than zero, it is considered that the feature positively

contributes to the model prediction. Conversely, if the SHAP value

is less than zero, it indicates that the feature negatively affects the

model prediction.

The experimental environment utilized Python 3.8.12, with RF

and SVM constructed using the sklearn 1.2.1 package. The XGB

package version employed was 1.5.0, and the shap package version

used was 0.39.0.

Model evaluation metrics

To evaluate the performance of the model and facilitate a

more intuitive comparison with other methods, this study took the

area under the receiver operating characteristic (AUROC) curve

and the area under the precision-recall curve (AUPRC) as the

primary evaluation metrics. The receiver operating characteristic

(ROC) curve is a vital measure of the model’s robustness. Given

the imbalanced nature of the independent test datasets used in

this study, the area under the precision-recall curve (AUPRC)

was also used for model evaluation. Additionally, specificity

(SP), sensitivity (SN), accuracy (ACC), and Matthew’s correlation

coefficient (MCC) were chosen as additional evaluation parameters,

and their definitions are as follows:

Sn = TP
TP + FN

Sp = TN
TN + FP

ACC = TP + TN
TP + TN + FP + FN

MCC = TP×TN − FP×FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN represent true positives, true negatives,

false positives, and false negatives, respectively.

Results

Comparison of characteristics of patients
with WD

There was no statistically significant difference between the

WD-N group and the no-WD-N group in terms of gender, presence

or absence of cirrhosis, ascites, cerebral cortex damage, liver capsule

smoothing, enhanced internal echo in the liver, homogeneous

echogenicity in the liver, and clear internal blood vessels in the liver

(P > 0.05). Meanwhile, there was no statistical difference between

the WD-N group and the no-WD-N group in terms of WBC, RBC,

Hb, PLT, PT, INR, APTT, FBG, TT, ALT, AST, TBA, TBIL, DBIL,

IBIL, TP, ALB, GGT, ALP, BUN, and 24-h urine copper (P > 0.05).

Additionally, there was a statistically significant difference between

the WD-N group and the no-WD-N group in terms of K-F ring,

lenticular nucleus damage, thalamus damage, brainstem damage,

cerebral ventricular system dilation, deepening of the sulci and

fissures of the brain (P < 0.001), cerebral peduncle damage, and

other brainstem damage (P < 0.05). Furthermore, the age (P <

0.001), Cr, psychiatric symptom scores, and liver symptom scores

(P < 0.01) of the WD-N group were significantly higher than those

of the no-WD-N group, while CP (P< 0.05) was significantly lower

than that of the no-WD-N group. The detailed information and the

units of all the variables are listed in Table 2.

Selection of machine learning modeling
methods

In this study, five machine learning methods, namely XGB,

RF, SVM, LR, and BP neural network, were used to construct a

prediction model. Firstly, the training set was used for modeling

through 5-fold cross-validation (25) and grid search (26). Then,

the optimal hyperparameters were obtained. Finally, the model

was tested on an independent test set using a selection of this

model. The results indicated that the XGB model achieved the best

prediction performance among the five machine learning models,

and theMCC, ACC, AUC, and AUPRC values of the XGBmodel on

the test set were 0.556, 0.929, 0.835, and 0.975 respectively (details

are provided in Figure 2), and the AUC and AUPRC curves of the

XGBmodel were plotted (the details are provided in Figures 3A, B).

As shown in the Figure 2, compared to XGB, LR, and BP

neural network exhibit significant differences in test results. This is

because the data we used are non-linear and discrete, with relatively

small feature dimensions, making this feature type very suitable for

algorithms developed based on tree models. Similarly, the results

of XGB and RF based on tree models mentioned earlier also differ

from SVM, as described in the text above.

Summary of predictive factors for
neurological symptoms prediction models

Additionally, the SHAP model interpretation package was used

to analyze the features of the XGB classifier and graph all instances

so that the magnitude of the feature’s influence on the prediction
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TABLE 2 Subtype information of WD patients at baseline and follow-up.

WD-N no-WD-N P

N 163 22

Gender (Male/Female) 105/58 12-Oct 0.1028

K-F ring (Yes/No) 158/5 14-Aug <0.001∗∗∗

Cirrhosis (Yes/No) 100/63 12-Oct 0.1708

Ascites (Yes/No) 5/158 21-Jan 0.5374

Lenticular nucleus damage (Yes/No) 144/19 14-Aug <0.001∗∗∗

Thalamus damage (Yes/No) 98/65 19-Mar <0.001∗∗∗

Brainstem damage (Yes/No) 121/42 18-Apr <0.001∗∗∗

Cerebral ventricular system dilation (Yes/No) 122/41 15-Jul <0.001∗∗∗

Deepening of the sulci and fissures of the brain (Yes/No) 121/42 16-Jun <0.001∗∗∗

Cerebral peduncle damage (Yes/No) 73/90 20-Feb 0.0010∗∗

Cerebral cortex damage (Yes/No) 24/139 21-Jan 0.3185

Other brain regions damage (Yes/No) 70/93 18-Apr 0.0354∗

Liver capsule smoothing (Yes/No) 120/43 17/5 0.8015

Enhanced internal echo in the liver (Yes/No) 163/0 21/1 0.1189

Homogeneous echogenicity in the liver (Yes/No) 163/0 21/1 0.1189

Clear internal blood vessels in the liver (Yes/No) 119/44 18/4 0.4481

Age (year) 28.33± 8.53 21.77± 6.52 <0.001∗∗∗

WBC (10∧9/L) 4.78± 1.73 5.53± 1.76 0.0605

RBC (10∧12/L) 4.38± 0.52 4.33± 0.48 0.6772

Hb (g/L) 128.81± 19.33 129.00± 15.28 0.9646

PLT (10∧9/L) 154.94± 76.28 174.91± 84.98 0.2604

PT (s) 11.30± 1.52 11.18± 0.82 0.7117

INR 1.01± 0.10 0.99± 0.08 0.2237

APTT (s) 30.87± 3.29 30.15± 2.98 0.3405

FBG (g/L) 2.42± 0.57 2.15± 0.33 0.4925

TT (s) 17.70± 2.59 17.68± 0.98 0.9613

ALT (U/L) 30.68± 26.15 40.07± 33.15 0.1318

AST (U/L) 28.14± 15.02 27.15± 11.10 0.7663

TBA (µmol/L) 10.34± 12.06 8.26± 9.42 0.4399

TBIL (µmol/L) 16.18± 7.09 15.28± 7.46 0.5845

DBIL (µmol/L) 3.35± 2.24 2.98± 1.27 0.4556

IBIL (µmol/L) 12.84± 5.36 12.30± 6.40 0.6709

TP (g/L) 63.18± 5.95 63.00± 3.90 0.8858

ALB (g/L) 40.55± 15.63 38.34± 2.54 0.5116

GGT (U/L) 41.87± 42.93 38.64± 30.31 0.7347

ALP (U/L) 110.48± 65.74 106.41± 40.80 0.7787

BUN (mmol/L) 5.21± 5.01 4.20± 1.14 0.3514

Cr (µmol/L) 70.02± 16.62 59.49± 11.11 0.0046∗∗

24-h urine copper (µg/24h) 871.50± 758.29 918.95± 591.11 0.7796

CP (g/L) 0.04± 0.03 0.05± 0.05 0.0439

Psychiatric symptom scores 4.76± 4.06 1.77± 2.84 0.0011∗∗

Liver symptom scores 1.78± 1.67 0.77± 0.85 0.0064∗∗

N, number; K-F ring, Kayser-Fleischer ring; WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; PLT, platelet count; PT, prothrombin time; INR, international normalized ratio; APTT,

activated partial thromboplastin time; FBG, fibrinogen; TT, thrombin time; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBA, total bile acid; TBIL, total bilirubin; DBIL,

direct bilirubin; IBIL, indirect bilirubin; TP, total protein; ALB, albumin; GGT, γ-Glutamyl Transferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; Cr, creatinine; CP, ceruloplasmin;
∗ , P < 0.05; ∗∗ , P < 0.01; ∗∗∗ , P < 0.001.
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FIGURE 2

Performance comparison between SVM, RF, XGB, LR, and BP on test sets. SVM, Support Vector Machine; RF, Random Forest; XGB, eXtreme Gradient

Boosting; LR, logistic regression; BP, back propagation neural network. MCC, Matthews correlation coe�cient; ACC, accuracy; AUC, area under the

receiver operating characteristic curve; AUPRC, area under the precision-recall curve.

FIGURE 3

The ROC and PR curves of the prediction models. (A) The ROC curve of the prediction model; (B) the PR curve of the prediction model.

can be observed. The wider the regional distribution, the greater

its influence (the details are illustrated in Figure 4). Then, to plot a

standard bar graph representing the significance of each feature, the

average absolute values of the SHAP values were calculated for each

feature (the details are illustrated in Figure 5). Based on the Gini

impurity, it was found that the most important predictors in the

prediction model were brainstem damage, Cr, age, IBIL, and CP.

Discussion

As far as we know, this is the first prospective case-control study

to combine machine learning methods with multidimensional

clinical data to predict the onset of neurological symptoms in

WD patients. In this study, the XGB method in machine learning

was employed to construct models to predict the occurrence of

neurological symptoms inWDpatients. TheMCC, ACC, AUC, and

AUPRC values on the test set were 0.556, 0.929, 0.835, and 0.975,

respectively, achieving good results. The results suggested that

brainstem damage (0.794), Cr (0.702), age (0.627), IBIL (0.577), and

CP (0.533) were the top five important predictors of Gini impurity,

and the presence of brainstem damage and the higher the values of

Cr, Age, and IBIL, the more likely neurological symptoms were to

occur, while the lower the CP value, the more likely neurological

symptoms were to occur.

When comparing the demographic and clinical characteristics

of the patients in the WD-N and no-WD-N groups, the latter

were significantly older than the former, which is consistent with
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FIGURE 4

Feature analysis results. The abscissa represents the weight of the influence, instead of the specific value of the feature; the influence of feature value

size on the results is represented by color (red represents a large value, blue represents a small value, and purple is adjacent to the mean). Cr,

creatinine; IBIL, indirect bilirubin; CP, ceruloplasmin; DBIL, direct bilirubin; TT, thrombin time; WBC, white blood cell; BUN, blood urea nitrogen; Hb,

hemoglobin; APTT, activated partial thromboplastin time; PLT, platelet count; GGT, γ-Glutamyl Transferase; PT, prothrombin time.

FIGURE 5

Magnitude of the influence of the indicator on neurological symptoms. Cr, creatinine; IBIL, indirect bilirubin; CP, ceruloplasmin; DBIL, direct bilirubin;

TT, thrombin time; WBC, white blood cell; BUN, blood urea nitrogen; Hb, hemoglobin; APTT, activated partial thromboplastin time; PLT, platelet

count; GGT, γ-Glutamyl Transferase; PT, prothrombin time.

previous findings (27). Meanwhile, serological tests showed that

patients with neurological symptoms had a significantly higher

Cr value and a significantly lower CP value than those without

neurological symptoms, and both were good predictors of the

occurrence of neurological symptoms. Previous studies have found

that Cr may have a certain correlation with neurological symptoms

(28). Additionally, previous studies have found that CP plays an

important role in themetabolism and development of neural tissues
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(29), and the deficiency or functional impairment of ceruloplasmin

is a typical feature of various neurodegenerative diseases (30, 31).

Therefore, it can be speculated that elevated Cr with diminished

CP may be associated with the development of neurological

symptoms. Moreover, it was found that the WD-N group had

a higher incidence of the K-F ring than the no-WD-N group.

These results are consistent with previous research findings (16,

32–34). Furthermore, the WD-N group had significantly higher

psychiatric symptom scores and liver symptom scores than the no-

WD-N group. This suggests that neurological patients often have

psychiatric symptoms, and they tend to have more pronounced

hepatic symptoms than hepatic patients. Also, it was found that

the WD-N group had a higher incidence of lenticular nucleus

damage, thalamus damage, brainstem damage, cerebral ventricular

system dilation, deepening of the sulci, and fissures of the brain

cerebral peduncle damage and other brain region damage than

the no-WD-N group. This finding is also consistent with clinical

practice. However, some patients have imaging manifestations but

no neurological symptoms in clinical practice, and the accuracy

of determining whether a patient has neurological symptoms by

looking at them for imaging damage is not very high, which has

drawn our attention.

Therefore, this study employed a machine learning approach

to predict the onset of neurological symptoms in WD patients,

in an attempt to find more sensitive predictive indicators. In this

experiment, five machine learning methods, namely RF, SVM,

XGB, logistic regression, and BP neural network, were used to

construct a prediction model, and the results indicated that the

XGB model achieved the best prediction performance among

the five machine learning models. Finally, the SHAP model

interpretation package was utilized to analyze the features of the

XGB classifier. It was found that the most important predictors

in the prediction model were brainstem damage, Cr, age, IBIL,

and CP. The brainstem or truncus cerebri forms the intermediate

part of the vertebrate central nervous system, and it is rostral to

the diencephalon and caudal to the spinal cord (35). Brainstem

damage is correlated with multiple neurological symptoms of

ataxia, dysarthria, gait abnormalities, and muscle spasms (36–38).

Additionally, age is also an important predictor of neurological

symptoms in WD patients. Considering the previous findings

that the average age of N-WD is older than that of no-N-WD

(27), it can be speculated that the likelihood of neurological

symptoms in WD patients increases with age. A study has found

that the bilirubin/albumin ratio is an important risk factor for

the occurrence of hepatic encephalopathy, and reducing free

bilirubin may provide a new approach to the treatment of hepatic

encephalopathy. It can be seen that indirect bilirubin is also

closely related to neurological symptoms (39). Finally, it was

found that CP is an important predictor of WD. Combined

with our finding that CP values in the N-WD group were

lower than those in the no-N-WD group, it can be speculated

that the lower the CP, the more likely patients are to develop

neurological symptoms.

To sum up, the presence of brainstem damage and the higher

the values of Cr, Age, and IBIL, the more likely neurological

symptoms were to occur, while the lower the CP value, the more

likely neurological symptoms were to occur. Therefore, when the

patient is older, it is important to be alert to the occurrence

of neurological symptoms; When patients experience brainstem

damage or low CP values, we should actively intervene to prevent

neurological symptoms from occurring. During daily care, patients

should be advised to reduce their intake of foods that can cause

elevated Cr and IBIL levels, and actively reduce Cr and IBIL when

it is high to prevent the occurrence of neurological symptoms.

However, our study still has some limitations. Firstly, the study

does not include external validation, which increases the risk of

overfitting. Secondly, the number of samples in this study queue

does not match well, so there exists selection bias and recall

bias. Finally, this prediction model can only predict the presence

of neurological symptoms and cannot evaluate the severity of

neurological symptoms. Therefore, our future work aims to address

the issues of data scarcity and imbalance by using methods such as

oversampling or data augmentation.

Conclusions

In conclusion, the prediction model for predicting neurological

symptoms in WD, constructed by using the XGB method in

machine learning, achieved good performance, and furthermore,

we will continue to collect patient data to keep the model

updated. Meanwhile, the SHAPmethod was used to analyze clinical

indicators and their impact on neurological symptoms. The results

revealed that the most important factors in the prediction model

were brainstem damage, Cr, age, IBIL, and CP. And the presence of

brainstem damage and the higher the values of Cr, Age, and IBIL,

the more likely neurological symptoms were to occur, while the

lower the CP value, the more likely neurological symptoms were

to occur. It provides assistance for clinical decision-making.
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