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Background: The rate of disease progression varies widely among patients with 
amyotrophic lateral sclerosis (ALS). Prognostic assessment using biomarkers 
is highly anticipated to improve clinical trial design. We aimed to explore the 
cerebrospinal fluid (CSF) for prognostic biomarkers to predict future functional 
decline in patients with ALS.

Methods: We collected CSF samples from 64 patients with ALS and 25 
disease controls. The prospective progression rate was calculated using the 
Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) at 
CSF collection and in 6  months. The ALS patients were classified into slow, 
intermediate, and fast progression groups. We  performed comprehensive 
proteomic analyses of the CSF samples. Factors with significant changes 
between slow and fast progression groups were investigated via receiver 
operating characteristic curve analyses. Moreover, the correlation of the CSF 
factors with progression rate was evaluated by multiple regression analyses.

Results: In total, 26 proteins changed significantly (p  <  0.05 and q  <  0.10), with 
levels varying within a large dynamic range (fold change of >1.5 or  <  0.5). A 
receiver operating characteristic curve analyses showed that the following 
proteins showed high discrimination power between slow and fast progression 
groups: glycoprotein non-metastatic melanoma protein B (GPNMB; area 
under the curve [AUC], 0.88), glial fibrillary acidic protein (AUC, 0.81), 
glypican-1 (GPC1; AUC, 0.79), alpha-1,6-mannosyl-glycoprotein 2-beta-N-
acetylglucosaminyltransferase (AUC, 0.74), and chitinase-3-like protein 2 
(CHI3L2; AUC, 0.73). Of these, GPNMB, GPC1, and CHI3L2 were significantly 
correlated to prognostic progression rate.

Conclusion: This study demonstrated that CSF levels of neuroinflammation and 
glycosylation-related proteins were significantly correlated with prospective 
progression rates in patients with ALS. These proteins could be useful prognostic 
biomarkers for ALS.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is characterized by motor 
neuron dysfunction and loss that leads to progressive muscular 
weakness and subsequent death due to respiratory failure, with a 
median survival of 3 years after onset (1). However, the rate of disease 
progression varies between patients; the disease durations are <1 year 
in some patients and 5–10 years in approximately 20% of patients (1). 
Hence, factors influencing the rate of progression can be targets of ALS 
drug development (1, 2). Although a few drugs have been approved by 
the US Food and Drug Administration (3–6), more effective medicines 
are needed to slow or, more desirably, halt the disease progression of ALS.

Challenges to the development of ALS drugs are partly posed by the 
widely varying disease progression rate (1, 2). Patients have been 
stratified based on the disease progression rate during the run-in periods 
of several months in many clinical trials (4, 5, 7, 8). However, the process 
inevitably delays the intervention, which advances the disease and likely 
reduces the potential efficacy of the investigational drug (7). Therefore, 
predicting future disease course at an early stage is critical.

The progression of ALS has been associated with multiple 
markers, including electrophysiological, neuroimaging, and biofluid 
measures (9–13). Of biofluids, cerebrospinal fluid (CSF) is directly in 
contact with central nervous tissues and can significantly reflect 
disease status (14). Patients with ALS have high CSF levels of 
neurofilament light chain (15–18) and chitinases, for example, 
chitotriosidase-1 (CHIT1), chitinase-3-like protein 1 (CHI3L1), and 
chitinase-3-like protein 2 (CHI3L2), which are cellular markers of 
macrophages and microglia (19–22). Each marker has been correlated 
with the disease progression rate and survival (15–17, 19–22). In most 
observational studies, the progression rate is calculated retrospectively 
using the Revised Amyotrophic Lateral Sclerosis Functional Rating 
Scale (ALSFRS-R) at one time point. It is reported, however, that the 
ALSFRS-R change from onset to baseline is not useful for stratifying 
subsequent progression (23). Therefore, it remains unclear whether 
the markers associated with the past progression rates can be used to 
predict the future progression rates. To address these issues, 
we  explored CSF markers that are correlated with prospective 
functional decline in ALS using comprehensive proteomic analyses.

2 Materials and methods

2.1 Study population

The diagnosis of ALS was based on the updated Awaji criteria and 
divided into four categories: definite, probable, probable-laboratory-
supported, and possible (24). The current study included 64 patients 
with ALS and 25 with other neurological diseases (control group; 13 
with Alzheimer’s disease, 6 with progressive supranuclear palsy, 2 with 
spastic paraplegia, and 4 with frontotemporal lobar degeneration). The 
sample size was determined by referring to studies of unbiased CSF 

proteomic analyses to explore biomarker candidates including novel 
ones in patients with ALS (25). Disease onset was defined as the first 
occurrence of weakness reported by the patient (13). Based on the 
ALSFRS-R, the decline rate (ΔALSFRS-R) was calculated using the 
following formula: (ALSFRS-R score at the initial clinical visit − the 
ALSFRS-R score nearly 6 months after the initial clinical visit)/disease 
duration between the two time points in months. The 6-month 
assessment period was set based on the period often adopted for the 
evaluation of intervention in recent ALS clinical trials. The ALS samples 
were divided into three progression rate groups: slow progression rate 
(ALS-slow; ΔALSFRS-R score, <0.5), intermediate progression rate 
(ALS-intermediate; ΔALSFRS-R score, 0.5–1.0), and fast progression 
rate (ALS-fast; ΔALSFRS-R score, >1.0) (15). Written informed 
consent was obtained from each patient. Clinical data and CSF samples 
were collected at Tokushima University Hospital. This study was 
approved by the ethics committees of Tokushima University Hospital; 
Takeda Pharmaceutical Co., Ltd.; and Daiichi Sankyo Co., Ltd. This 
study was conducted in accordance with the Declaration of Helsinki.

2.2 CSF collection

We used the methodology applied in a previous study (26). In brief, 
CSF samples were collected via lumbar puncture within 3 months after 
the initial clinical visit and immediately stored at −80°C until analysis.

2.3 Proteomic analysis

Proteomic analysis was conducted at Caprion Biosciences, Inc. All 
samples were subjected to immunoaffinity depletion to remove highly 
abundant proteins using MARS-14 resin (Agilent Technologies, Santa 
Clara, CA). Immunodepleted samples were digested with trypsin 
(Promega, Madison, WI). After desalting, the sample was reconstituted 
with buffer containing 4% (v/v) acetonitrile and 0.2% formic acid. 
Analysis was performed using the nanoACQUITY UPLC System 
(Waters, Millford, MA) coupled online to a Q Exactive mass spectrometer 
(Thermo Fisher Scientific, Waltham, MA). Samples were loaded onto a 
BEH C18 300 Å column (150 μm × 100 mm, 1.7 μm; Waters) and 
separated using a gradient with (A) water +0.2% formic acid and (B) 95/5 
(v/v) acetonitrile/dimethyl sulfoxide +0.2% formic acid. Eluted peptides 
were ionized using electrospray ionization in the positive ion mode. 
Precursor ion spectra were acquired in the range of 400–1,800 m/z with 
70,000 full-width-at-half-maximum (FWHM) resolution at 200 m/z. 
Product ion scans were conducted in the mass range of 200–2,000 m/z 
with 17,500 FWHM resolution. The processing of mass spectrometry 
data was performed using the Rosetta Elucidator informatics platform 
(version 3.3.0.1; Rosetta Biosoftware). From the precursor ion spectra, 
the peak intensities for each detected isotope group were extracted across 
all samples. The product ion spectra were subjected to database search 
using the Mascot search engine (Matrix Science, version 2.5.1) and 
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UniProt Human protein database (January 2017). The following search 
parameters were used: enzyme, trypsin; search type, tryptic; allowed 
missed cleavages, 2; peptide tolerance, 20 ppm; MS/MS tolerance, 
0.05 Da; and variable modifications = deamidation (N), oxidation (M). 
The false discovery rate (FDR) was 5%, which was assessed using a decoy 
database of reverse sequences and was set to filter peptide identifications.

2.4 Metabolomic and lipidomic analyses

Metabolomic and lipidomic analyses were performed by 
Metabolon Inc., as previously described (27). In the metabolomic 
analysis, the samples were extracted with methanol and analyzed 
using the following methods: acidic reverse-phase chromatography 
optimized for hydrophilic or hydrophobic compounds in positive 
ionization mode, basic reverse-phase chromatography in negative 
ionization mode, and hydrophilic interaction chromatography in 
negative ionization mode. All methods used the ACQUITY UPLC 
(Waters) and Q Exactive mass spectrometers. Metabolites were 
identified by comparing purified standards and quantified via peak 
area integration. In the lipidomic analysis, lipids were extracted using 
the butanol–methanol method and analyzed using Sciex Selexion-
5500 QTRAP (AB Sciex, Framingham, MA) with multiple reaction 
monitoring modes. Lipid species were quantified by taking the ratio 
of the signal intensity of each target to that of the internal standard.

2.5 Statistical analysis

To identify factors that were correlated with the decline rate 
(ΔALSFRS-R), the different disease progression subgroups were 

compared. Proteomic, metabolomic, and lipidomic data were analyzed 
using Welch’s t-test. A p-value of <0.05 was considered statistically 
significant. Multiple comparisons of datasets were adjusted by the FDR 
method, and each FDR was estimated using q-values, where a low value 
(<0.10) indicated high confidence. A multivariate linear mixed model 
analysis for proteomic data was conducted using Caprion’s Platform. 
Analysis of the area under the receiver operating characteristic (ROC) 
curve (AUC) was performed to assess the discrimination power. 
Categorical variables were compared using the chi-square test and 
continuous variables with the Tukey or Steel–Dwass test after the 
Bartlett test. Data analyses were performed using GraphPad Prism 9 
(GraphPad Software, San Diego, CA) and SAS 9.3 (SAS Institute, Cary, 
NC). Multivariate regression analyses and linear mixed model 
predictions were calculated using EZR (Saitama Medical Center, Jichi 
Medical University, Saitama, Japan), which is a graphical user interface 
for R (The R Foundation for Statistical Computing, Vienna, Austria) (28).

3 Results

3.1 Clinical features

We collected CSF samples from 64 patients with ALS at the initial 
clinical visit. The samples within 6 years after collection were used for 
analysis. The patients were divided into three groups based on the 
functional decline rate (ΔALSFRS-R): ALS-slow (n = 24), 
ALS-intermediate (n = 14), and ALS-fast (n = 26). The clinical features 
of the patients are summarized in Table 1. No significant differences 
were noted in the clinical features of patients with ALS, except for age 
at disease onset (p < 0.01, ALS-slow vs. ALS-fast) and ALSFRS-R 
scores at the initial clinical visit (p < 0.05, ALS-slow vs. ALS-fast).

TABLE 1 Characteristics of the participants.

ALS Control

Slow Intermediate Fast

(n =  26) (n =  14) (n =  24) (n =  25)

Mean  ±  SD or percentage

ΔALSFRS-R 0.1 ± 0.3 0.7 ± 0.2 2.8 ± 1.9

Body mass index 21.9 ± 3.1 21.8 ± 2.4 21.9 ± 2.4

Male (%) 65 50 50 56

Age at onset (years) 61.8 ± 10.7 68.1 ± 9.3 70.7 ± 8.0** 62.6 ± 8.5#

Duration from onset to sample collection (months) 17.4 ± 12.8 13.4 ± 9.9 10.8 ± 7.4

Duration from the initial clinical visit to CSF collection (months) 0.2 ± 0.6 0.4 ± 0.9 0.1 ± 0.3

ALSFRS-R score at the initial clinical visit 42.4 ± 5.2 42.1 ± 4.5 39.0 ± 4.4*

Duration of two-point ALSFRS-R scoring (months) 6.5 ± 3.7 7.4 ± 3.9 4.6 ± 3.1

Site at onset

Brachial amyotrophic diplegia 12% 29% 4%

Bulbar 15% 14% 29%

Upper limb 38% 36% 33%

Lower limb 19% 14% 25%

Others 15% 7% 8%

Contingency tables were analyzed using the Tukey or Steel–Dwass test after the Bartlett test (*p < 0.05; **p < 0.01 vs. ALS-slow; and #p < 0.05 vs. ALS-fast). Categorical variables were compared 
using the chi-square test.
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3.2 CSF proteomics, metabolomics, and 
lipidomics

The proteomic, metabolomic, and lipidomic analyses of CSF 
samples detected 1,012 proteins, 389 metabolites, and 735 lipids 
(Figures  1A–C and Supplementary Tables S1–S3). The proteomic 
analysis revealed that the levels of 14 proteins significantly differed 
between the ALS-slow and ALS-fast groups (p < 0.05, q < 0.1) 
(Supplementary Table S4). However, no significant differences were 
noted between the ALS-slow and ALS-intermediate groups or between 
the ALS-intermediate and ALS-fast groups. Based on the p-values 
alone, 53 metabolites and 7 lipids were differentially detected between 
the ALS-slow and ALS-fast groups (p < 0.05) 
(Supplementary Tables S5, S6). Because the progression group showed 
significant changes in proteins, further analysis focused on proteomic 
data. Considering age and sex, a multivariate linear mixed model 
analysis was conducted to assess proteomic data, and the levels of 259 
proteins significantly changed between the ALS-slow and ALS-fast 
groups (p < 0.05, q < 0.1) (Figure 1D and Supplementary Table S7).

3.3 Proteins differently expressed in the 
slow and fast progression groups

Of the 259 proteins, 26 were found to have a large dynamic range 
of expression, comprising 22 upregulated proteins with a fold change of 
>1.5 and 4 downregulated proteins with a fold change of <0.5 (Table 2). 

To evaluate the discrimination power of the biomarker candidates, the 
AUC of these proteins was calculated. CHI3L2, which is reported to 
be a candidate marker for retrospective disease progression, showed a 
significant AUC (0.73, 95% confidence interval (95% CI), 0.58–0.87; 
p = 0.006) (19–21). Thus, we focused on CHI3L2 and proteins with 
AUC values higher than that of CHI3L2. Then, we found four additional 
proteins: glycoprotein nonmetastatic melanoma protein B (GPNMB; 
AUC, 0.88, 95% CI, 0.78–0.97; p < 0.001), glial fibrillary acidic protein 
(GFAP; AUC, 0.81, 95% CI, 0.70–0.94; p < 0.001), glypican-1 (GPC1; 
AUC, 0.79, 95% CI, 0.66–0.91; p < 0.001), and alpha-1,6-mannosyl-
glycoprotein 2-beta-N-acetylglucosaminyltransferase (MGAT2; AUC, 
0.74, 95% CI, 0.60–0.88; p = 0.003) (Figure 2).

3.4 Correlation between the protein levels 
and prospective progression rates

Correlations between the CSF levels of the five proteins and 
progression rate were analyzed in samples including ALS-intermediate 
by multivariate regression models considering age and ALSFRS-R score 
at the initial clinical visit. The values of GPNMB (adjusted r2 = 0.21, 
p < 0.01), GPC1 (adjusted r2 = 0.09, p < 0.05), and CHI3L2 (adjusted 
r2 = 0.11, p < 0.01) were significantly correlated with the progression rate 
while those of GFAP (adjusted r2 = 0.08, p = 0.08) and MGAT2 (adjusted 
r2 = 0.09, p = 0.12) were not (Figure 3). None were correlated with age; 
the value of MGAT2 was correlated with the initial ALSFRS-R score. 
In comparison with the control by multivariate regression analyses 

FIGURE 1

Proteomic, metabolomic, and lipidomic data. (A–C) Volcano plot showing the p-values (Welch’s t-test) that are correlated with fold changes in the 
slow progression rate (ALS-slow) versus fast progression rate (ALS-fast) groups (a, proteomic; b, metabolomic; c, lipidomic). (D) Multivariate analysis in 
the proteomic data. Volcano plot showing the q-values that are correlated with fold changes in the ALS-slow versus ALS-fast groups. In total, 259 
proteins significantly differ (red and blue plots) (p  <  0.05, q  <  0.1).
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considering the age, the GPNMB level was high in the ALS-fast group 
(p < 0.001) and the CHI3L2 level was high in the ALS-fast and 
ALS-intermediate groups (both p < 0.05) (Supplementary Figure S1).

Additionally, to stratify any progression rate, the disease 
progression rate was estimated using a linear mixed model that 
included the effect of the z-score of each protein level, age, and 
ALSFRS-R score at the initial visit (Supplementary Table S8). Among 
GPNMB, GPC1, and CHI3L2, the CHI3L2 level showed significant 
correlation with progression rate (p < 0.05).

3.5 Comparisons between the slow, 
intermediate, and fast progression groups

Next, the CSF levels of the five proteins were compared between 
the ALS progression groups using multivariate regression analyses 

considering age and ALSFRS-R score at the initial clinical visit 
(Figure 4). The levels of GPNMB (p < 0.01 and p < 0.01) and GFAP 
(p < 0.001 and p < 0.05) were significantly higher in the ALS-fast group 
than in the ALS-slow and ALS-intermediate groups. GPC1 was 
significantly higher in the ALS-fast group than in the ALS-slow 
(p < 0.01). The MGAT2 level was significantly different between the 
ALS-slow and ALS-fast groups (p < 0.05); however, the level was also 
negatively correlated to the ALSFRS-R score. The CHI3L2 level was 
significantly higher in the ALS-intermediate (p < 0.05) and ALS-fast 
(p < 0.001) groups than in the ALS-slow group.

4 Discussion

This study explored CSF prognostic biomarkers for predicting 
future functional decline in ALS using a comprehensive proteomic 

TABLE 2 Proteins with significantly different expression levels between the slow and fast progression groups.

UniProt ID Gene Protein description Fold change p-value q-value

DDR2_HUMAN DDR2 Discoidin domain-containing receptor 2 9.60 0.045 0.095

ACES_HUMAN ACHE Acetylcholinesterase 4.95 0.025 0.069

FUCO_HUMAN FUCA1 Tissue alpha-L-fucosidase 4.78 0.040 0.090

GPC1_HUMAN GPC1 Glypican-1 3.43 0.001 0.007

CLIC1_HUMAN CLIC1 Chloride intracellular channel protein 1 2.74 0.024 0.069

MGAT2_HUMAN MGAT2 Alpha-1,6-mannosyl-glycoprotein 2-beta-

N-acetylglucosaminyltransferase

2.21 0.035 0.082

CD177_HUMAN CD177 CD177 antigen 2.08 0.023 0.065

CHIT1_HUMAN CHIT1 Chitotriosidase-1 1.84 0.003 0.016

GFAP_HUMAN GFAP Glial fibrillary acidic protein 1.75 0.001 0.006

APOC2_HUMAN APOC2 Apolipoprotein C-II 1.71 0.002 0.011

FUCO2_HUMAN FUCA2 Plasma alpha-L-fucosidase 1.70 0.001 0.005

POSTN_HUMAN POSTN Periostin 1.69 0.032 0.079

G3P_HUMAN GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase

1.64 0.029 0.076

MCFD2_HUMAN MCFD2 Multiple coagulation factor deficiency 

protein 2

1.63 0.000 0.000

APOC1_HUMAN APOC1 Apolipoprotein C-I 1.63 0.021 0.061

GPNMB_HUMAN GPNMB Transmembrane glycoprotein NMB 1.62 0.001 0.009

CP089_HUMAN C16orf89 UPF0764 protein C16orf89 1.59 0.004 0.019

CH3L2_HUMAN CHI3L2 Chitinase-3-like protein 2 1.57 0.000 0.000

CHST8_HUMAN CHST8 Carbohydrate sulfotransferase 8 1.55 0.032 0.079

HBB_HUMAN HBB Hemoglobin subunit beta 1.53 0.003 0.014

SORC3_HUMAN SORCS3 VPS10 domain-containing receptor 

SorCS3

1.52 0.002 0.011

LDHB_HUMAN LDHB L-lactate dehydrogenase B chain 1.52 0.000 0.000

NPDC1_HUMAN NPDC1 Neural proliferation differentiation and 

control protein 1

0.45 0.010 0.036

K1C16_HUMAN KRT16 Keratin, type I cytoskeletal 16 0.39 0.021 0.061

CPSF1_HUMAN CPSF1 Cleavage and polyadenylation specificity 

factor subunit 1

0.30 0.035 0.082

EGFR_HUMAN EGFR Epidermal growth factor receptor 0.26 0.010 0.036

The list of 26 proteins with significantly different expression levels (p < 0.05, q < 0.1) and large fold changes in expression (<0.5 or > 1.5).
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analysis. Several clinical studies retrospectively calculate the 
progression rate based on the ALSFRS-R score at the initial clinical 
visit. In contrast, this study prospectively evaluated the progression 
rate based on the ALSFRS-R scores obtained at two time points, that 
is, at CSF collection and at 6 months.

Many of the 26 proteins with significant changes are functionally 
involved in glycan modifications, including carbohydrate 
sulfotransferase 8 (29), tissue alpha-L-fucosidase, plasma alpha-L-
fucosidase (30), and glyceraldehyde-3-phosphate dehydrogenase (31). 

Furthermore, CHI3L2 plays a role in the binding and degradation of 
oligosaccharides and other glycans (32). Recently, N-glycosylation 
pattern changes were reported in CSF glycoproteins (33), CSF 
immunoglobulin G (IgG) (34), and serum IgG (35) in patients with 
ALS. Moreover, ALS-causing mutations were found in the substrate-
binding domain of glycosyltransferase 8 domain-containing protein 1 
(36). Hence, the proteins that were correlated with glycan modification 
may be related to the pathophysiology of ALS progression.

While CHI3L2 has been associated with the retrospective 
progression rate (19–21), it was also related to the prospective 
progression rate in this study. In line with this, higher CSF CHI3L2 
levels were reportedly associated with shorter survival in patients with 
ALS (37). The cellular source of CHI3L2 has not been clarified in ALS; 
however, CSF CHI3L2 was parallelly elevated with CSF CHI3L1, 
which is related to neuroinflammation and expressed in microglia of 
the spinal cord of patients with ALS (19, 20, 22, 37). CHI3L1 and 
CHIT1, members of the chitinase family, were also changed with 
retrospective progression rate in several studies. Although CHIT1 was 
listed in the 26 proteins with significant changes in this study, it was 
excluded from the candidates due to the low discrimination power 
(AUC, 0.54).

In addition, we  showed that GPNMB and GPC1 had higher 
relationships with future fast progression than CHI3L2. Thus, these 
proteins were highlighted as candidate predictive markers of rapid 
progression in ALS.

GPNMB is a type I  transmembrane glycoprotein with a 
neuroprotective effect (38). SOD1-G93A mutation inhibited 
glycosylation of GPNMB, which increased motor neuron 
vulnerability, whereas extracellular fragments of GPNMB secreted 
from activated astrocytes attenuated the neurotoxicity in neural cells 
(38). GPNMB is also involved in pre-mRNA splicing, endoplasmic 
reticulum stress regulation (27), and endo-lysosome function (39, 40). 

FIGURE 2

Discriminating performance of the five proteins. The area under the 
receiver operating characteristic curves with associated 95% 
confidence intervals.

FIGURE 3

Correlation between the protein levels and progression rates. The lines show linear regression fits. The adjusted r2 and p-value are calculated by 
multivariate regression analysis considering age.
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Although precise localization of GPNMB has still been under 
discussion in patients with ALS (37, 38), the GPNMB level increased 
in the CSF and plasma in ALS (37–39). Moreover, higher CSF 
GPNMB levels were correlated with shorter survival in patients with 
ALS (39–44), which is consistent with our findings of 
faster progression.

GPC1 is a glycosylphosphatidylinositol-anchored protein with a 
high affinity to the slit homolog 2 (SLIT2) protein, which has a 
repulsive guidance effect on growing axons (45). GPC1 and SLIT2 
mRNA were co-expressed in reactive astrocytes in the injured brain 
or spinal cord of adult mice (46). Therefore, GPC1 acting with SLIT2 
may prevent axonal regeneration (46). Whilst, a glypican ortholog in 
Drosophila melanogaster was associated with synaptic bouton growth 
at the neuromuscular junction (47). GPC1 was also reported to 
express in neurons and regulate brain size through fibroblast growth 
factor signaling in mice (48), which indicated GPC1 might directly 
regulate neural function. These findings suggest that an increase of 
GPC1 may have compensatory neuroprotective mechanisms.

If the prognostic biomarker candidates revealed in this study are 
validated, their use in patient stratification would improve clinical 
trials. Currently, several ALS clinical trials have set run-in periods, 
commonly of 12 weeks, to evaluate the rate of functional decline and 
exclude patients with extremely fast- or slow-progressing 
ALS. Although important for appropriate patient enrollment, this 
period delays the administration of investigational drugs, which could 
adversely affect participants in a trial because early intervention may 
be  critical (4, 7). The CSF markers detected in this study could 
improve clinical trials by facilitating the assessment of future 

progression rates at the initial evaluation and by substantially 
shortening the time before allocation.

This study has several limitations. First, the ALS-fast group 
was older and had lower ALSFRS-R scores than the ALS-slow 
group. These features have been previously reported in ALS with 
fast progression (9, 49, 50). Nonetheless, we  performed a 
multivariate linear mixed model analysis and addressed concerns 
related to the differences. Second, the samples in this study were 
collected only from Japanese patients. For generalization of the 
findings, larger sample size and more diverse cohort would 
be encouraged in future studies. Third, the obtained proteomic 
data were not quantified using the calibration curve method. The 
accuracy of the prediction model is limited to estimate the 
progression rate, although the degree of change in the quantitative 
concentrations of our benchmark protein, CHI3L2, was close to 
the change in this study (37). Quantitative studies with an 
independent cohort and larger set of CSF samples, such as studies 
using multiple reaction monitoring assays, would further elucidate 
the prognostic utility in the clinical uses of the nominated proteins. 
Finally, we set the assessment period of 6 months based on the 
typical intervention period in ALS clinical trials. Longer-term 
evaluation and longitudinal data might further reveal the utility of 
these markers.

In conclusion, we  showed that the CSF values of 
neuroinflammation and glycosylation-related proteins were correlated 
with prospective functional decline in patients with ALS. Although 
further quantitative studies in independent cohorts are required, these 
proteins are potentially useful as prognostic biomarkers for ALS.

FIGURE 4

Comparison of the protein levels between the amyotrophic lateral sclerosis progression groups. The violin plot represents the weight distributions of 
variables. The dashed line in each plot represents the median, and the dotted line represents the 25th and 75th percentiles. *p  <  0.05; **p  <  0.01; and 
***p  <  0.0001, using the multivariate regression analyses considering age.
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