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This paper reviews the current research progress in the application of Artificial 
Intelligence (AI) based on ischemic stroke imaging, analyzes the main challenges, 
and explores future research directions. This study emphasizes the application 
of AI in areas such as automatic segmentation of infarct areas, detection of large 
vessel occlusion, prediction of stroke outcomes, assessment of hemorrhagic 
transformation risk, forecasting of recurrent ischemic stroke risk, and automatic 
grading of collateral circulation. The research indicates that Machine Learning 
(ML) and Deep Learning (DL) technologies have tremendous potential for 
improving diagnostic accuracy, accelerating disease identification, and 
predicting disease progression and treatment responses. However, the clinical 
application of these technologies still faces challenges such as limitations in 
data volume, model interpretability, and the need for real-time monitoring 
and updating. Additionally, this paper discusses the prospects of applying large 
language models, such as the transformer architecture, in ischemic stroke 
imaging analysis, emphasizing the importance of establishing large public 
databases and the need for future research to focus on the interpretability of 
algorithms and the comprehensiveness of clinical decision support. Overall, 
AI has significant application value in the management of ischemic stroke; 
however, existing technological and practical challenges must be overcome to 
achieve its widespread application in clinical practice.
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1 Introduction

Ischemic stroke is a prevalent cerebrovascular disease characterized by cerebral ischemia 
and hypoxia due to an obstruction of blood flow in the brain. It is associated with high rates 
of disability and recurrence. Globally, stroke is the second leading cause of death and poses a 
significant threat to human life and health (1). According to the Global Burden of Disease 
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study, the incidence of ischemic stroke worldwide increases every year 
(2). Rapid and accurate diagnosis, as well as treatment plan selection 
by clinicians, are crucial for patients with ischemic stroke. Medical 
imaging is the gold standard for diagnosing ischemic stroke and also 
aids physicians in choosing treatment plans.

By analyzing the hypodense regions on computed tomography 
(CT) images of patients with a first episode of stroke, physicians can 
identify intracerebral hemorrhage and assess for signs of ischemia. CT 
angiography (CTA) is a contrast-enhanced technique specifically for 
detecting and evaluating large vessel occlusions (LVO) in the brain 
and visualizing the status of collateral vessels. CTA involves injecting 
a contrast and rapidly scanning the brain to capture the dynamic 
process of the contrast agent passing through the blood vessels, 
generating time-density curves. These curves record the changes in 
density over time for each voxel (three-dimensional pixel), thereby 
allowing the calculation of several key hemodynamic parameters, such 
as cerebral blood volume (CBV), cerebral blood flow (CBF), and time 
to peak (TTP). These parameters are crucial for distinguishing 
between the ischemic penumbra and the necrotic core (3). Magnetic 
Resonance Imaging (MRI), which mainly employs Diffusion-
Weighted Imaging (DWI) and T2-Weighted Fluid-Attenuated 
Inversion Recovery (FLAIR) sequences, can also help physicians 
determine the presence of stroke and assess the extent of cerebral 
infarction. However, it must be combined with clinical manifestations 
and other examination results to determine the onset and type of 
stroke more accurately (4). Overall, an objective and accurate 
evaluation of patients with ischemic stroke poses a significant 
challenge in current clinical practice. Addressing this challenge is of 
great importance for the early warning, diagnosis, and treatment of 
patients at high risk of ischemic stroke.

The rapid development of medical imaging technology has 
generated a vast amount of highly valuable data with great potential 
for clinical applications. Consequently, artificial intelligence (AI) 
technologies, particularly machine learning (ML) and large language 
models (LLMs), have attracted widespread attention. Their powerful 
image analysis and information processing capabilities have significant 
application in various aspects of stroke management, including early 
diagnosis, prognosis prediction, and automatic segmentation and 
identification of lesions (5).

The major types of ML are supervised and unsupervised. 
Supervised learning is currently the most widely used type at the 
intersection of AI and stroke research. Common supervised learning 
algorithms include linear regression, logistic regression (LR), random 
forest (RF), support vector machines (SVM), decision trees, and 
neural networks. These algorithms train models using known input 
and output data to predict and classify new data. Traditional ML 
methods, such as SVM and decision trees, rely on feature engineering, 
which entails manual extraction, selection, and data-cleaning 
processes. However, these methods still face challenges in optimizing 
image features and addressing multimodal image interference (6). In 
contrast, deep learning (DL) has brought about revolutionary changes 
in medical image analysis. DL mimics the structure and function of 
neural networks in the human brain and automatically learns and 
extracts data features through multilayer neural networks, thereby 
effectively solving complex problems (7). Compared to classical ML 
algorithms, DL has more parameters and thus possesses stronger 
feature representation capabilities. DL has developed multiple 
technical frameworks based on different data characteristics, among 

which convolutional neural networks (CNN) are the most widely 
used. Owing to its multilayer structure, DL has significant advantages 
in feature representation, generalization, and handling of non-linear 
problems. DL can automatically learn and extract complex patterns 
from large datasets, making it particularly suitable for ischemic stroke 
imaging tasks, such as lesion detection and segmentation, collateral 
circulation scoring, and identifying the status of LVOs. The integration 
of DL in stroke management not only enhances diagnostic accuracy, 
but also aids in the development of personalized treatment plans, 
ultimately improving patient outcomes.

LLMs constitute an important branch of AI research and their 
powerful natural language understanding and processing capabilities 
have attracted widespread attention in the medical field. The 
Transformer model, built on the self-attention mechanism, is the 
foundation of LLM research and consists of encoder and decoder 
structures. This model can effectively identify and process the complex 
relationships between elements in sequential data, and it performs 
exceptionally well when handling longer natural language data 
sequences. Compared with traditional supervised deep learning 
models, transformer models reduce the need for large amounts of 
manual annotation while also possessing greater scalability. However, 
Transformer models often contain numerous parameters and require 
large-scale datasets to achieve optimal performance. In contrast, 
CNNs can capture local features through their convolutional layers 
and maintain their performance on smaller datasets through a 
parameter-sharing mechanism. Therefore, combining the 
characteristics of CNNs and Transformer models for specific 
application scenarios may be a more efficient strategy.

In this study, we aim to review the current research landscape of 
integrating ML and DL algorithms, and LLMs in ischemic stroke 
imaging. Our overarching goal is to highlight the main challenges and 
providing directions for future research (Figure 1).

2 Application of AI in ischemic stroke

2.1 Application of AI in the diagnosis of 
ischemic stroke

2.1.1 Automatic segmentation of infarct area and 
prediction of final infarct volume

DL has gained widespread application in the segmentation of 
stroke images. The segmentation of stroke lesions based on 
neuroimaging is important in many aspects, such as quantifying the 
infarct volume, assessing the condition, and predicting outcomes like 
hemorrhagic transformation. However, in current clinical practice, 
manual annotation by physicians is still considered the gold standard 
for segmenting stroke lesions. This process is time-consuming, costly 
in terms of human resources, and highly dependent on the physician’s 
experience, which may lead to human assessment errors (8). To 
improve segmentation performance, DL-based methods have been 
proposed, with CNN-based acute ischemic stroke (AIS) infarct 
segmentation methods achieving excellent performance. The standard 
method for lesion segmentation involves thresholding CT perfusion 
(CTP) images. However, this approach is neither accurate nor time-
consuming. Woo et al. (9) obtained DWI images of 89 patients and 
constructed a model using CNN. He compared this model with a 
traditional ML model inputting the ADC. The performance of the 
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algorithm was evaluated using the dice coefficient in a 10-fold cross-
validation, and the results revealed that the CNN algorithm for 
automatic segmentation of acute ischemic lesions on DWI achieved a 
dice coefficient of ≥0.85, outperforming traditional algorithms.

Soltanpour et al. (10) proposed a new DL-based technique called 
the MutiRes U-Net. Automatic segmentation of ischemic stroke 
lesions was achieved by enriching CTP images with contralateral and 
corresponding Tmax images and subsequently using them as input 
images for MutiRes U-Net. The study results showed a dice similarity 
coefficient of 0.68, indicating improved accuracy in segmentation 
tasks. Accurate segmentation of brain ischemia on CT images is 
crucial for preventing early hematoma expansion in patients with 
stroke (11). However, several issues remain unresolved, including 
images with blurred image, cavitation phenomena, and grayscale 
uneveness. In addition to CT and CTP images, MRI combined with 

DWI sequences is more sensitive for early ischemic detection (12). 
Juan et al. (13) utilized DWI and optimized ADC thresholds as inputs 
for a DL model. The results demonstrated an ICC > 0.98, indicating a 
high consistency between the expert manual annotations and the DL 
model automatic segmentation of the infarct core region. The 
combination of ADC thresholds and DWI achieved a higher dice 
similarity coefficient than DWI alone. Notably, the use of perfusion 
weighted images (PWI) increases the time and cost of imaging and 
may cause harm to patients. Utilizing only baseline DWI as input, 
Sanaz et al. (14) constructed a predictive model using a deep CNN and 
achieved a median AUC of 0.91, which implies good predictive 
accuracy. Thus, DL combined with DWI can predict the final infarct 
volume in patients with stroke, avoid overreliance on PWI to assess 
the final lesion volume, and lead to shorter imaging examination times 
and faster patient triage. These studies demonstrate the enormous 

FIGURE 1

Overview of the main aspects of this review.
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potential of DL as a tool for segmenting the infarct core and predicting 
the final infarct volume, offering possibilities for DL to assist clinicians 
in quantitatively assessing lesions and choosing more effective 
treatment plans for patients.

With the rapid development of LLMs based on transformer 
architectures, powerful natural language understanding and 
processing capabilities have attracted widespread attention in the 
medical field (15). Compared with traditional supervised DL models, 
transformer models reduce the need for large amounts of manual 
annotation while also possessing greater scalability (16). Lu et al. (17) 
utilized a Vision Transformer (Vit) to evaluate ischemic stroke using 
CCD images. Through pre-trained parameters, image features can 
be  automatically and efficiently generated without manual 
intervention, thereby reducing the time-consuming training process 
for practical clinical use.

In addition, transformers can effectively address the challenges 
faced by current DL models. First, traditional DL attention 
mechanisms typically focus only on local features and do not consider 
global contextual information, reducing the segmentation accuracy 
and precision (18). However, transformers are based on global 
perception through self-attention mechanisms, and along with the 
introduction of positional encoding and multilayer feature fusion, 
they can establish global dependencies between different positions 
and better capture the overall contextual information (19). Overall, 
they overcome the limitations of local feature attention structures. 
Second, simple down-sampling in DL leads to semantic information 
loss, particularly for dense prediction tasks (20). In transformers, the 
features at each position are obtained by the weighted summation of 
all positions, meaning that feature representations at each position are 
adaptive and can be  dynamically adjusted according to the task 
objectives (21). This adaptability helps the model better handle tasks 
of different scales and complexities, reducing the loss of task-relevant 
semantic information caused by simple downsampling.

Therefore, the combination of transformers with traditional neural 
network structures provides a new approach to solving problems 
related to stroke imaging. By leveraging a combination of U-Net, which 
restores local spatial information, transformers can be used as powerful 
encoders for medical image segmentation tasks to address existing 
issues. However, the training of transformers for imaging tasks is 
complex and requires high-performance computers. Xu et  al. (22) 
proposed an automatic segmentation method comprising a CNN 
encoder (including a Conv-IN-ReLU module and three 
ResConvBlocks), a transformer encoder, and a decoder. They 
highlighted that high accuracy will be achieved through use of CBAM 
enhancement to extract the importance of the CT image features. Sho 
et al. (23) combined U-Net neural networks with transformers to form 
a parallel hybrid neural network called the U-Net Transformer. The 
U-Net stage focused on local feature extraction and fine segmentation, 
whereas the transformer stage focused on capturing global 
dependencies and long-term correlations. The U-Net transformer 
integrated self-supervised learning mechanisms into the transformer 
network to enhance the overall segmentation and generalization 
capabilities. It achieved this by utilizing intermediate feature vectors 
from the U-Net decoder. The results showed that the U-Net 
transformer outperformed the state-of-the-art SPiN neural network in 
the MRI and CT image segmentation of lesions in patients with stroke. 
However, the U-Net transformer tends to incorrectly identify normal 
brain tissue as infarcts and ignore true lesions, indicating that simple 

downsampling makes the transformer structure prone to ignoring local 
details. To address the limitations of U-Net transformers, Wu et al. (24) 
proposed a novel DL architecture called the feature refinement and 
protection network (FRP-Net) for stroke lesion segmentation tasks. 
The design of the FRP-Net aims to effectively address feature 
refinement and information loss in lesion segmentation. The network 
adopts a symmetric encoder-decoder structure and integrates twin 
attention gates (TAG) and multidimensional attention pool (MAP) 
modules. FRP-Net not only accurately locates lesions through attention 
mechanisms but also refines lesion contours, improving the accurate 
identification and segmentation of lesion areas. Research findings show 
that its segmentation ability for stroke lesions surpassed existing state-
of-the-art techniques, with dice similarity coefficients (DSC) of 60.16 
and 85.72% when deployed on two ischemic stroke datasets.

In addition to basic research based on the transformer large model 
architecture, further study of large language models, such as GPT-4 
and BERT, to analyze and interpret image processing results may show 
potential to provide support for clinical decision making (25).

2.1.2 Detection of large vessel occlusion in 
ischemic stroke

AI has improved the diagnostic speed and detection rate of LVO in 
ischemic stroke through high-precision image analysis and data 
processing. Most cases of ischemic stroke are caused by acute intracranial 
arterial thromboembolism. Although this is seen in only 38% of 
ischemic stroke cases, it is responsible for 60% of all stroke-related 
disabilities and 90% of stroke-related deaths (26, 27). In affected patients, 
the likelihood of a favorable outcome decreases by 11% for every half-
hour delay in effective treatment (28). Therefore, rapid and accurate 
detection of LVO is essential. Stavros et al. (29) utilized an automated 
detection software, Viz LVO, as an adjunct tool for stroke diagnosis and 
detecting LVOs based on CT angiography images. The detection rates 
for ICA-T, M1, and M2 occlusions were 100, 93, and 49%, respectively, 
which were higher than those achieved using manual clinical methods. 
The ability of Viz LVO to rapidly and accurately diagnose stroke and its 
high negative predictive value can reduce the number of missed 
diagnoses and improve diagnostic accuracy and treatment, making it a 
potentially valuable adjunct tool for stroke diagnosis.

Jui et al. (30) obtained the digital subtraction angiography images 
of 82 patients with acute ischemic stroke. They employed two neural 
networks, ResNet-50 pre-trained on ImageNet and ResNet-50 trained 
from scratch, and compared rates with two doctors identifying vessel 
occlusions as reference standards. The results showed that ResNet-50, 
trained from scratch, detected vessel occlusions more accurately, with 
an AUC of 0.973. The rapid and accurate diagnosis and high negative 
predictive value of DL algorithms contribute to the early identification 
and better clinical prognosis of patients (Table 1).

2.2 Application of AI in the treatment of 
stroke

2.2.1 Identification of onset time of ischemic 
stroke

AI has demonstrated outstanding performance in determining the 
onset time of ischemic stroke, even surpassing the human DWI-FLAIR 
mismatch in some studies (31). Ischemic stroke requires accurate 
prediction of the stroke onset time (≤4.5 h) for treatment selection 
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TABLE 1 Summary of the application of artificial intelligence in the diagnosis of ischemic stroke.

Author and 
year

Imaging 
modality

Dataset size Methodology Multi center External validation Clinical 
application

Evaluation 
metrics

Conclusion

Woo et al. (9) MRI 429 U-Net, Dense-Net No No Segmentation U-Net: DSC = 0.85

Dense-Net: DSC 

=0.85

DL outperforms traditional ML 

models

Soltanpour et al. 

(10)

CTP 103 MutiRes U-Net No No Segmentation DSC = 0.68 DL improves segmentation 

performance.

Sanaz et al. (14) MRI 445 DCNN No No Segmentation DSC = 0.50 DL segmentation of ischemic stroke 

infarct core

Xu et al. (22) CT 379 CNN + Transformer No No Segmentation DSC = 58.66% Achieves high-precision segmentation 

of CT images in ischemic stroke 

patients.

Sho et al. (23) MRI, CT 239 U-Net Transformer No No Segmentation DSC = 47.2% By combining the advantages of U-Net 

and Transformer, segmentation 

capability is enhanced.

Wu et al. (24) MRI 240 FRPNet No No Segmentation DSC = 60.16, 85.72% Addresses feature refinement and 

information loss in segmentation, 

improving segmentation capability.

Stavros et al. (29) CTA 1882 AI software (Viz LVO) Yes No Identify LVO Detection rates = 100, 

93, 49%

AI detection rates are higher than 

manual detection.

Jui et al. (30) DSA 82 ResNet-50 No No Identify LVO AUC = 97.3% DL can quickly and accurately identify 

LVO.

DSC, Dice similarity coefficient; DCNN, deep convolutional neural network; LVO, large vessel occlusion; VGG-16, visual geometry group network with 16 layers; DCNN, Deep Convolutional Neural Network; ResNet-50, Residual Network-50; TPR, Sensitivity; AUC, 
Area Under Curve; FPR, Specificity; LR, logistic regression; RF, Random Forest; ML, Machine Learning; DL, Deep Learning; AI, Artificial Intelligence.
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(32). Previous studies have shown that the development of ischemic 
tissue is indicated by a mismatch DWI and FLAIR. Identification of 
this mismatch on imaging aids in identifying potential candidates for 
thrombolysis. However, this method relies heavily on physician 
experience and may exclude many patients who qualify for treatment.

To address this issue, Hyunna et  al. (32) developed three ML 
models, including LR, RF, and SVM, to identify the stroke onset time 
(≤4.5 h). Incorporating DWI and FLAIR data from 355 patients into 
the models showed an increased sensitivity in all three ML models 
when compared to physician assessments, with RF demonstrating the 
highest sensitivity at 75.8%, However, there was no significant 
difference in specificity compared to physicians, with all three models 
achieving a specificity of 82.6%. This highlights the potential of ML 
algorithms based on DWI and FLAIR features to identify the onset 
time of stroke and guide decision on thrombolysis. Liang et al. (33) 
developed ML models based on diffusion- and perfusion-weighted 
imaging fusion (DP fusion) to identify stroke within 4.5 h. The results 
revealed that DP fusion-based ML models yielded a greater net benefit 
than DWI- and PWI-based ML models, suggesting that in addition to 
selecting more advanced algorithms, integrating different imaging 
data could be enhance model performance.

Zhu et al. (34) employed the EfficientNet-B0 network approach 
for binary prediction of symptom onset time (≤4.5 h). The core 
methodology involved mobile inverted bottleneck convolution 
(MBConv) for segmentation in the DWI region of interest (ROI). 
To address challenges such as the delayed appearance of FLAIR 
infarct signals and the imbalance between lesion ROIs and other 
tissues, the researchers utilized a cross-modal network to provide 
lesion location information from DWI for FLAIR segmentation. 
These features were then inputted into an ML model to determine 
TSS. The study findings showed an accuracy of 0.805 for the model, 
surpassing traditional ML predictions and further validating the 
predictive advantage of DL in handling large datasets on nonlinear 
stroke lesion development.

2.2.2 Classification of ischemic stroke into 
subtypes

AI technology based on imaging data plays a crucial role in the 
classification of stroke into subtypes. The combination of radiomics 
and ML provides a new method for accurately identifying the etiology 
of ischemic stroke. Accurate identification of the etiology of ischemic 
stroke is crucial for timely treatment to address its cause and prevent 
new ischemic events (35). However, identification of the etiology is 
often challenging and relies mainly on clinical features and data 
obtained through imaging techniques and other ancillary 
investigations. The TOAST system classifies stroke based on different 
etiologies and it includes five subtypes: large-artery atherosclerosis, 
cardioembolism, small-vessel occlusion, stroke of other determined 
etiologies, and stroke of undetermined etiology (36).

As an ensemble learning algorithm, RF is used for classification 
and regression problems, and it consists of multiple decision trees 
trained independently. Final prediction using RF is based on votes or 
the average of all trees. Zhang et al. (37) used RF combined with 
radiomics features to identify and classify symptomatic and 
asymptomatic basilar artery plaques in acute and subacute strokes. 
The results showed that ML model incorporating radiomic features 
achieved an AUC of 0.936 and an accuracy of 83.2%, demonstrating 
the value of ML algorithms in the classification of stroke subtypes.

Wu et al. (38) incorporated DWI data from a large database of 
2,770 patients with stroke and employed DeepMedic for automation 
and precise lesion segmentation to distinguish different stroke 
subtypes. The results indicated that the performance of the ensemble 
model surpassed all individual CNN models, with a dice coefficient of 
0.77 and a precision of 0.83. The results indicated that large artery 
atherosclerotic stroke had the most distinctive lesion shapes, whereas 
small vessel occlusion stroke had the smallest lesion areas. This 
suggests that DL based on extensive imaging data is valuable for stroke 
subtype classification and may pave way for future high-throughput 
studies using AI-driven tools to explore the correlations between 
imaging phenotypes, genetics, stroke severity, and long-term 
functional outcomes in large multicenter datasets.

2.2.3 Automatic grading of collateral circulation 
score

Collateral scoring is typically based on visual assessments of 
neuroimaging such as CTA and CTP, which rely heavily on the 
radiologist’s level of expertise, resulting in significant inter-observer 
variability. However, DL offers a more objective computational 
method for clinical collateral circulation scoring, reducing observer 
dependency, and enhancing the consistency and accuracy of 
evaluations. Collateral circulation scoring is a relevant parameter for 
determining treatment effects and is significantly associated with 
postoperative hyperperfusion and recurrence (39). Kim et al. (40) 
developed a supervised DL model for grading the collateral circulation 
status in dynamic susceptibility contrast-enhanced MR perfusion 
images using expert manual grading scores as a reference. The results 
showed good consistency between DL-based collateral circulation 
grading and expert manual grading in both the development and 
validation cohorts. Current research on the use of DL for predicting 
collateral circulation is limited. Further prospective clinical studies are 
needed to verify the accuracy and reliability of DL models. Only with 
large-scale clinical validation can DL models become useful tools in 
clinical practice and provide more information and guidance for 
patient treatments (Table 2).

2.3 Applications of AI in stroke outcome

2.3.1 Prediction of stroke outcomes
ML has proven to be a powerful tool for predicting outcomes 

following ischemic stroke, and various models have been developed 
for this purpose. High mortality and disability rates associated with 
ischemic stroke impose significant economic and psychological 
burdens on patients. Early and accurate prognostic predictions can aid 
physicians in identifying high-risk patients and enable timely and 
personalized interventions and treatments. This can reduce 
unnecessary treatments and complications and facilitate effective 
communication among healthcare providers, patients, and 
their families.

Studies have shown that ML-based predictive models have 
higher accuracy in forecasting long-term outcomes for patients with 
ischemic stroke than widely used clinical scoring systems, such as 
the ASTRAL and SOAR scores (41). This enhanced accuracy is likely 
due to the complex and nonlinear relationships between the disease 
manifestations and clinical data. The prognosis of stroke is frequently 
determined by interactions of multiple factors. Unlike scoring 
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systems and traditional statistical models that are assume a linear 
relationship, ML is better posed to capture the existing nonlinear 
relationships more effectively. By constructing multilevel data 
representations ranging from simple to complex, ML provides 
valuable insights into disease diagnosis, prognosis, and treatment. 
Moreover, its automated data analysis process quickly delivers more 
accurate results, reduces human bias, and improves prediction 
accuracy. Studies have also shown that in addition to patient 
characteristics and clinical data, details such as volume and location 
of the infarction are significantly associated with the outcomes of 
ischemic stroke. This has led to an increasing integration of medical 
imaging data and clinical data for outcome prediction. Zhang et al. 
(42) enrolled 240 patients with acute ischemic stroke who underwent 
standard treatment. They extracted radiomic features from the 
infarct region in non-contrast CT scan images and used the Kruskal–
Wallis test and recursive feature elimination to select radiomic 
features. These features were subsequently matched with clinical 
characteristics and incorporated into predictive models constructed 
using the SVM algorithm. To enhance the model interpretability and 
highlight the importance of predictive features, the researchers 
employed the Shapley algorithm. The results indicated that the 
predictive model incorporating only clinical characteristics had an 
AUC of 0.643, which was lower than that of the model based on 
radiomic features alone (AUC = 0.705). The model integrating both 
radiomics and clinical features demonstrated the best predictive 
performance, with an AUC of 0.857, suggesting that ML algorithms 
provide high predictive accuracy for the prognosis of patients with 
acute ischemic stroke receiving standard treatment and can assist in 
early individualized care. Moreover, imaging data enhanced the 
predictive accuracy of ML models.

Yang et al. (7) developed a DL imaging biomarker based on MR 
images to predict poor outcomes 3 months following acute ischemic 
stroke. The research team trained a DL model using a deep neural 
network architecture on MR images and radiomic features to generate 
a DL score. The accuracy of the DL score was compared with that of 
five commonly used clinical risk scores (NIHSS score, SPAN, PLAN 
score, DSS score, and ASTRAL), and the additional benefit of the DL 
score to these risk scores was evaluated. The results showed no 
significant difference between the DL score alone and the other four 
risk scores; however, adding the DL score to the four risk scores 
improved their predictive performance.

Owing to their robust capability to capture complex relationships, 
transformers have been widely used for the joint processing of 
multimodal datasets (43). Their cross-attention mechanism allows 
transformer-based model to focus selectively on relevant information 
from different modalities and integrate it into context-aware 
representations (44). Furthermore, models can simultaneously 
consider multiple modalities and extract complementary and 
interrelated features, thereby enhancing its performance in 
multimodal tasks. Amador et  al. (45) utilized an advanced 
spatiotemporal CNN-transformer architecture to analyze 4D CTP 
images. The researchers also combined 4D CTP imaging with clinical 
data to predict stroke lesion outcomes. The spatiotemporal 
CNN-transformer architecture enabled the model to effectively handle 
time-series data, and the introduction of the cross-attention 
mechanism facilitated the comprehensive modeling of spatial and 
temporal relationships. Finally, attention maps were generated to 
identify the most relevant clinical variables at the patient level, T
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improve model interpretability, and provide clinicians with a more 
comprehensive understanding of the patients’ conditions.

2.4 Prediction of hemorrhagic 
transformation risk

The combination of AI and radiomics provides a reliable method 
for the early prediction of risk of hemorrhagic transformation, and 
numerous studies have explored this area. Hemorrhagic 
transformation is a common complication in patients with acute 
ischemic stroke and can occur following treatments, such as 
intravenous thrombolysis and mechanical thrombectomy, posing a 
serious threat to patient safety. Therefore, early and accurate prediction 
of HT risk is important. Currently, clinicians often predict risk of 
hemorrhagic transformation by manually assessing individual risk 
factors such as onset time, NIHSS score, and infarct volume on DWI 
(46, 47). However, given the complexity of patients’ conditions, the 
predictive performance of these methods is not always 
satisfactory (48).

Radiomics utilizes high-dimensional features from medical 
imaging data for analysis and prediction. It allows the extraction of 
numerous quantitative features that reflect the biological 
characteristics and pathological processes of diseases, thereby 
providing valuable information for diagnosis, treatment, and 
prognosis (49). Xie et al. (50) developed a prognostic model based on 
the radiomic features of the infarct area in non-enhanced CT images 
to predict risk of HT following acute ischemic stroke. By combining 
the Rad score and radiological features and employing LR, the model 
achieved an AUC of 0.750 in the validation cohort. Meng et al. (51) 
extracted radiomic features from multiparametric MRI images and 
constructed a predictive model using RF, which revealed an AUC of 
0.871, demonstrating superior predictive performance. To predict the 
risk of hemorrhagic transformation after IV thrombolysis, Ren et al. 
(52) included 517 patients, and extracted, reduced, and selected the 
12 most relevant radiomic features. In combination with five clinical 
variables, these features were used to build predictive models using 6 
ML algorithms. The results showed that SVM exhibited a higher 
predictive performance, with an AUC of 0.911  in an external 
validation cohort. Da et al. (53) prospectively included 43 patients 
who underwent thrombectomy and extracted radiomic features from 
CT images. The researchers employed 4 different machine learning 
algorithms to build a predictive model to predict risk of hemorrhagic 
transformation within 24 h post-intervention. The naïve Bayes 
algorithm showed the best performance in predicting risk at 24-h 
(sensitivity, 1.00; specificity, 0.75; accuracy, 0.82).

Liang et al. (54) used multiparametric MRI and clinical data from 
392 patients who underwent endovascular thrombectomy for 
ischemic stroke to construct a DL model for the early prediction of 
hemorrhagic transformation risk. The study initially trained the DL 
models using single parameters such as DWI, CBF, CBV, MTT, and 
TTP, and the models based on MTT and TTP performed best. The 
features extracted from each pre-trained single-parameter model 
using Inception V3 were then concatenated into one tensor. Two fully 
connected layers and a softmax layer were added after the 
concatenation layer to construct a multiparametric DL model for the 
classification of the presence of hemorrhagic transformation and were 

compared with single-parameter models. Finally, a composite model 
was developed and validated by combining the clinical features with 
multiparametric radiomics. The results showed that the ‘DMTC’ 
model based on DWI, MTT, TTP, and clinical features had the highest 
prediction accuracy, with an external validation AUC of 0.939. The 
proposed multiparametric DL model combining DWI, PWI, and 
clinical parameters demonstrated high predictive accuracy and 
generalizability, offering a potential tool for the pretreatment 
prediction of hemorrhagic transformation to assist in the perioperative 
management of patients with acute ischemic stroke and EVT. Ru et al. 
(55) constructed a weakly supervised deep learning (WSDL) model 
based on non-contrast CT images using multi-instance and active 
learning to predict hemorrhagic transformation in acute ischemic 
stroke. The robustness of the model was validated using threefold 
cross-validation and transfer learning. The researchers also analyzed 
and compared the WSDL model with clinical scoring systems 
commonly associated with non-contrast CT images (i.e., HAT and 
SEDAN scores) as well as with traditional DL and ML to assess the 
performance of the DL algorithm. The results indicated that the 
WSDL model exhibited the best predictive performance. Additionally, 
weakly supervised learning reduces the workload of manual 
interpretation and enables the rapid and accurate diagnosis of patients.

These studies demonstrated the superior performance of the ML 
and DL algorithms in predicting HT in ischemic stroke, highlighting 
their significant potential for clinical application. Additionally, 
multiple studies have shown that machine learning predictive models 
that combine radiomics and clinical features often exhibit superior 
predictive performance. These advancements indicate that machine 
learning, particularly when integrated with clinical insights and 
radiomic analysis, can significantly enhance the predictive accuracy 
for complications such as hemorrhagic transformation in patients 
with ischemic stroke. This integration not only leverages the strengths 
of each approach but also opens up new avenues for more personalized 
and effective stroke management.

2.5 Prediction of recurrent ischemic stroke 
risk

The AI-based stroke recurrence risk prediction model offers a 
noninvasive method for improving patients’ quality of life and 
reducing mortality rates. Recurrent strokes account for 25–30% of all 
preventable strokes, with higher disability and mortality rates than 
initial strokes (56). LightGBM, a machine learning algorithm based 
on gradient boosting decision trees, employs an efficient tree-learning 
algorithm to build an ensemble model quickly. Liu et al. (57) extracted 
radiomic features, used least absolute shrinkage and selection operator 
(LASSO) regression analysis to filter radiomic features, and selected 
20 key radiomic features. Recursive prediction models are constructed 
using four ML algorithms: LR, SVM, LightGBM, and RF. For each 
algorithm, multiple models were built based on MRI radiomic 
features, clinical features, or a combination of both. The LightGBM 
model, which integrates radiomic and clinical features, demonstrated 
the best performance, with a sensitivity of 0.85, specificity of 0.805, 
and AUC of 0.789. By predicting the risk of recurrence in stroke 
patients, early detection and intervention can be  implemented to 
maximize patient safety (Table 3).
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TABLE 3 A summary table of the application of artificial intelligence in predicting prognosis in ischemic stroke.

Author and 
year

Imaging 
modality

Dataset 
size

Methodology Multicenter External 
validation

Clinical 
application

Evaluation metrics Conclusion

Zhang et al. (42) MRI 224 Radiomic+SVM No No Prediction of outcome AUC = 0.857 Machine learning has high predictive accuracy for 

outcomes in stroke patients receiving conventional 

treatment. Considering radiomics and clinical 

features enhances the model’s predictive 

performance.

Amador et al. 

(45)

4D-CTP 147 spatiotemporal CNN-

Transformer

No No Prediction of outcome MSE = 0.084 This work highlights the potential of the method to 

provide interpretable stroke treatment decision 

support without requiring manual annotations.

Ren et al. (52) CT 517 XGBoost + Radiomic Yes Yes Prediction of HT Risk Internal validation: AUC = 0.950

External validation: AUC = 0.942

ML has become a tool for predicting the risk of 

acute hemorrhagic transformation after 

intravenous thrombolysis.

Xie et al. (50) CT 118 LR + Radiomic Yes Yes Prediction of HT Risk Internal validation: AUC = 0.845

External validation: AUC = 0.750

ML supports predictive analysis of CT stroke 

images to achieve early prediction and intervention 

for hemorrhagic transformation.

Meng et al. (51) MRI 71 RF + Radiomic No No Prediction of HT Risk AUC = 0.871 ML supports predictive analysis of hemorrhagic 

transformation in MRI images.

Liang et al. (54) MRI 392 Inception V3 (CNN) Yes Yes Prediction of HT Risk Internal validation: AUC = 0.932

External validation: AUC = 0.939

The proposed multiparameter DL model has great 

potential for assisting the periprocedural 

management in the early prediction HT of the AIS 

patients with EVT.

Ru et al. (55) NCCT 828 WSDL (MIL and AL) No No Prediction of HT Risk AUC = 0.799 WSDL model based on NCCT images 

demonstrated relatively good performance in 

predicting HT in AIS, reducing the cost and time 

associated with annotated data, and is suitable for 

assisting in clinical treatment decision-making.

Liu et al. (57) MRI 612 Radiomic+ (LR, SVC, 

LightGBM, RF)

No No Prediction of 

Recurrent

AUC = 0.789 ML can predict the recurrence risk in stroke 

patients, allowing for early monitoring and 

intervention.

TPR, Sensitivity; AUC, Area Under Curve; FPR, Specificity; SVC, Support Vector Classification; LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; ACC, Accuracy; MIL, Multiple Instance Learning; AL, Active Learning. WSDL, Weakly 
Supervised Deep Learning; AIS, Acute Ischemic Stroke. HT, Hemorrhagic Transformation.
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3 Current challenges and future 
prospects

3.1 Challenges in clinical translation

Ischemic stroke is an acute condition in which the decision-
making speed is critical. For every hour of delay, approximately 1.9 
billion neurons are lost (58). Although ML and DL models can rapidly 
analyze medical images, various factors in real clinical settings (such 
as equipment compatibility, data transmission speed, and patient 
cooperation) may cause a disconnect between the analysis results and 
the patient’s real-time condition, leading to adverse outcomes. The 
condition of patients with ischemic stroke can change rapidly within 
a short time. Therefore, models must be able to monitor, update, and 
learn in real time to adapt to fast-changing clinical environments.

3.2 Model interpretability

Ischemic stroke involves the identification, segmentation, and 
classification of multiple brain regions and complex changes in brain 
neural networks (59). Neuroradiology relies on the clinical judgment 
of physicians. When the ML or DL models provide a diagnostic result, 
doctors may require clear reasons or evidence to support the result. 
Therefore, there may be  greater skepticism regarding black-box 
models (60). Although the SHAP model interpretation algorithm has 
been applied in multiple research fields, it is limited to explaining the 
contribution value of single variables in one-dimensional data, and 
has not yet been applied to image or multi-omics data. This limits its 
value in diseases such as ischemic stroke, which rely on image 
segmentation and recognition (61). Future algorithm development 
should consider the interpretability of a patient’s multimodal imaging 
and multi-omics indicators for clinical decision support.

3.3 Limitations in data volume

Machine and deep learning algorithms often require large 
amounts of sample data to train accurate models with robustness and 
generalization abilities (62). As the demand for large datasets 
increases, particularly with the widespread application of large 
language models in the medical field, the establishment of 
standardized large-sample databases has become more urgent. These 
databases provide a better foundation for multitasking and transfer 
learning. Models can be  pre-trained on large-scale data and then 
transfer the learned knowledge to specific tasks, thus improving the 
performance in small-sample tasks.

In addition, standardized large-sample databases offer the 
necessary foundation for developing and validating new machine- 
and deep-learning algorithms. Researchers can use these databases 
to test algorithms, compare their effectiveness, and drive 
technological progress. Various factors related to ischemic stroke 
such as medical history, genetics, and lifestyle require substantial 
high-quality clinical data, particularly high-quality imaging data 
and comprehensive patient follow-up records. Currently, 
neuroimaging lacks large standardized public medical imaging 
databases such as The Cancer Imaging Archive (TCIA). Although 
there is an existing database for deep learning in ischemic stroke, 

ISLES has a limited sample size and lacks clinical information 
regarding patients. This limitation limits many studies to single 
centers with small sample sizes, which affects the generalizability of 
the models.

Furthermore, the lack of clinical information restricted the depth 
and quality of the research. Therefore, researchers need to establish 
large public databases. Despite the large number of patients with 
ischemic stroke worldwide and a potentially vast data pool, the lack of 
legal protection and regulatory mechanisms hampers effective patient 
privacy protection, making data sharing challenging.

Federated learning offers an innovative solution for data privacy 
protection and utilization problems (63). This distributed machine-
learning method initializes a global model through a central server 
and distributes it to all participating devices. Each device uses local 
data to train the global model and generate local model updates. These 
local updates (e.g., model parameters) are then sent back to the central 
server without transmitting the actual data (64). The central server 
aggregates the updates from all the devices to obtain an updated global 
model, which is then redistributed to the devices (65). Throughout 
this process, the data remain on local devices, effectively reducing the 
risk of data leakage (66). As the demand for computational resources 
using AI technologies continues to increase and application scenarios 
diversify, federated learning can utilize distributed computational 
resources more efficiently. Furthermore, federated learning allows 
customized training based on the specific data of each device, thereby 
enhancing model adaptability and performance in specific scenarios 
(67). This method not only strengthens data privacy protection, but 
also optimizes resource utilization, providing significant technical 
support for a wide range of applications.

4 Conclusion

In conclusion, the integration of AI into ischemic stroke imaging 
represents a significant advancement in medical technology, offering 
enhanced accuracy and efficiency in diagnosing and managing stroke. 
These technologies show great promise in areas such as infarct 
segmentation, large-vessel occlusion detection, hemorrhagic 
transformation prediction, and stroke recurrence risk assessment. 
However, challenges such as the need for large and diverse datasets, 
interpretability of ML and DL models, and requirement for real-time 
processing capabilities remain obstacles to their full clinical adoption. 
Future progress will depend on multidisciplinary collaboration, the 
development of interpretable models, the establishment of 
comprehensive imaging databases, and continuous algorithm 
refinement. The potential of large language models, such as those 
based on the transformer architecture in stroke imaging analysis, 
opens up new research avenues, promising more personalized and 
effective stroke management strategies. Despite these challenges, the 
transformative potential of AI in stroke care is clear, and continued 
exploration and investment in these technologies are crucial to realize 
their full potential in improving patient outcomes.
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