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Background: Metabolomics is increasingly being utilized in IS research to 
elucidate the intricate metabolic alterations that occur during ischemic stroke 
(IS). However, establishing causality in these associations remains unclear 
between metabolites and IS subtypes. In this study, we  employ Mendelian 
randomization (MR) to identify specific metabolites and investigate potential 
causal relationships between metabolites and IS subtypes.

Methods: MR analysis was conducted using genome-wide association study 
(GWAS) summary data. We obtained 1,091 blood metabolites and 309 metabolite 
ratios from the GWAS Catalog (GCST90199621-90201020), which gene 
sequencing data from 8,299 individuals from the Canadian Longitudinal Study. 
We obtained GWAS summary statistics for IS subtypes which include large artery 
stroke (LAS), cardioembolic stroke (CES), and small vessel stroke (SVS) from the 
MEGASTROKE consortium that included 446,696 cases of European ancestry 
and 406,111 controls of European ancestry. The primary analysis utilized 
inverse-variance weighted (IVW) method. To validate our results, we performed 
supplementary analyses employing the MR-Egger, weighted median, simple 
mode, and weighted mode methods. Heterogeneity and pleiotropy were 
assessed through Cochran’s Q test, MR-Egger intercept test, and leave-one-out 
analysis.

Results: The study assessed the possible causality of serum metabolites in 
the risk of IS subtypes. The discovery of significant causal links between 33 
metabolites and 3 distinct IS subtypes.

Conclusion: Metabolites show significant potential as circulating metabolic 
biomarkers and offer promise for clinical applications in the prevention and 
screening of IS subtypes. These discoveries notably advance our comprehension 
of the molecular processes specific to IS subtypes and create avenues for 
investigating targeted treatment approaches in the future.
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1 Introduction

Stroke represents a highly prevalent neurological disorder and 
constitutes a principal cause of disability and mortality among middle-
aged and elderly populations (1). It poses a significant public health 
challenge worldwide. There are 6.3 million deaths caused by stroke (2). 
Ischemic stroke (IS) is frequently encountered in stroke and can 
be divided into large artery stroke (LAS), cardioembolic stroke (CES), 
and small vessel stroke (SVS) (3). Diagnosis and classification of IS are 
predominantly determined by risk factor profiles, stroke’s clinical 
manifestations, and results from brain imaging studies, including CT 
or MRI (3). Multiple studies have illustrated that various subtypes of 
IS entail the demise of nerve cells (4). However, the biological 
processes and risk factors underlying the incidence of ischemic stroke 
remain elusive, notwithstanding extensive research efforts.

Metabolomics is increasingly being utilized in IS research to 
elucidate the intricate metabolic alterations that occur during IS (4–6). 
Metabolites serve as a diagnostic biomarker, enabling the prediction of 
stroke outcomes (6). This approach not only illuminates the underlying 
mechanisms of IS but also facilitates the development of personalized 
treatment strategies (7, 8). However, our current understanding of the 
metabolic profile in IS patients across different subtypes remains limited.

Mendelian randomization (MR) is a genetic epidemiological 
statistical method used for causal inference in cross-sectional research. 
It utilizes genetic variations related to the exposure factor of interest 
as instrumental variables to estimate the causal effect of the exposure 
factor on disease outcomes or other variables in cross-sectional study 
data (9). One of the key advantages of the MR is that genetic variants 
are randomly and independently assigned to the population, making 
them stable throughout a person’s life. This allows the MR method to 
effectively address the influence of confounding factors and achieve 
causal inference (10).

In the study, we  used GWAS summary data to conduct a 
two-sample MR study. The objective was to identify specific 
metabolites and investigate potential causal relationships between 
metabolites and IS subtypes.

2 Materials and methods

2.1 Data sources on the serum metabolites

We obtained 1,091 blood metabolites and 309 metabolite ratios from 
the GWAS Catalog (GCST90199621-90201020), which gene sequencing 
data from 8,299 individuals from the Canadian Longitudinal Study (11).

2.2 Instrumental variables selection

To investigate the causal effect of blood metabolites and metabolite 
ratios on IS across different subtypes, we obtain instrumental variables 
selection (IVs). Firstly, we selected SNPs with a correlation p < 1 × 10−5. 

Additionally, we applied a linkage disequilibrium (LD) threshold of 
R2  < 0.001 and a clumping distance of 10,000 kb by using 
“TwoSampleMR” packages. These stringent criteria ensured that the 
selected SNPs were independent and not in strong linkage 
disequilibrium with each other. By utilizing thresholds, we aimed to 
increase the number of eligible SNPs available for sensitivity analysis and 
to maximize the proportion of genetic variation that the genetic 
predictors could explain. After extracting the relevant information for 
each SNP, we calculated the proportion of interpreted variation (R2) and 
F statistics to quantify the strength of the instrumental variable. The F 
statistic is commonly employed to assess the effectiveness of instruments 
and is calculated using the formula F = R2 × (N − k − 1)/k (1 − R2), where 
R2 represents the proportion of variance explained by the instruments. 
It is calculated using the formula R2 = 2 × MAF × (1 − MAF) × β2, N 
represents the sample size and k denotes the number of selected IVs. In 
this study, we set a standard cutoff value of F statistic >10 to mitigate the 
potential for weak instrument bias (Supplementary material S1).

2.3 Data sources on the IS subtypes

We obtained GWAS summary statistics for IS subtypes which 
include LAS, CES and SVS from the MEGASTROKE consortium that 
included 446,696 cases of European ancestry and 406,111 controls of 
European ancestry (12).

2.4 Statistical methods

This study is reported following the Strengthening the Reporting 
of Observational Studies in Epidemiology Using Mendelian 
Randomization guidelines (STROBE-MR, Supplementary Table S2). 
We employed different MR methods to assess the possible causal link 
between blood metabolites, metabolite ratios, and IS subtypes. We will 
further validate the results using four more MR approaches if the 
inverse variance weighted (IVW) method establishes a significant 
causal association (p < 0.01): Weighted median, basic mode, weighted 
mode, and MR-Egger (13). These supplementary MR methods 
improve the consistency and robustness of our results. For identifying 
and addressing any biases brought about by pleiotropy, the MR-Egger 
approach is especially helpful. The weighted median approach 
provides a more reliable estimate when more than 50% of the IVs are 
invalid (14). The estimates derived from various instrumental 
variables can be combined by employing either the simple or weighted 
mode methods as alternatives. By employing these multiple MR 
methods, we aim to obtain a comprehensive understanding of the 
potential causal connection between blood metabolites, metabolite 
ratios, and IS subtypes. Finally, odds ratios (OR) and 95% confidence 
intervals (CI) were used to present the results of causal connections.

Heterogeneity across estimates of genetic instruments may 
be  assessed using funnel plots and Cochran’s Q statistic, with a 
significant p-value threshold of 0.05 (10). Furthermore, we utilized the 
MR-Egger intercept test, employing a significant p-value cutoff of 0.05, 
to detect the presence of horizontal pleiotropy (15). The results are 
visually presented using scatter plots (16). To test the reliability of our 
conclusions, we  implemented leave-one-out analyses, repeatedly 
performing the IVW analysis while excluding one exposure-related 
SNP at a time. This iterative approach enabled us to assess the robustness 

Abbreviations: IS, ischemic stroke; MR, Mendelian randomization; GWAS, genome-

wide association study; IVW, inverse-variance weighted; LAS, large artery stroke; 

CES, cardioembolic stroke; SVS, small vessel stroke; IVs, instrumental variables 

selection; LD, linkage disequilibrium; OR, odds ratios.
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of our results by examining the individual SNP contributions to the 
causal connection between blood metabolites, metabolite ratios, and IS 
subtypes. By employing these combined methodologies, we aimed to 
ensure the validity and reliability of our findings (14, 17, 18). 
Furthermore, to strengthen the reliability of our MR studies, 
we conducted replicated analyses by removing relevant confounders 
from IVs. Specifically, we obtained the confounder-related SNPs from 
the PhenoScanner V2 database. This step allowed us to address potential 
confounding factors and enhance the reliability of our MR analyses 
(Figure 1).

The analyses in this study were conducted using R software 
(version 4.3.1). For our MR investigation, we utilized two R packages: 
“TwoSampleMR” and “MRPRESSO.”

3 Results

3.1 MR analysis

We performed MR analysis to assess the causal association of 1,091 
blood metabolites and 309 metabolite ratios with IS. The results assessed 

by the IVW-FE showed that N6-carbamoylthreonyladenosine levels 
(GCST90199762), N2,N2-dimethylguanosine levels (GCST90199764), 
6-oxopiperidine-2-carboxylate levels (GCST90199949), palmitoyl 
dihydrosphingomyelin (d18:0/16:0) levels (GCST90200035), 1-stearoyl-
2-docosahexaenoyl-gpc (18:0/22:6) levels (GCST90200046), ascorbic 
acid 2-sulfate levels (GCST90200094), methyl vanillate sulfate levels 
(GCST90200207), N-formylmethionine levels (GCST90200343), 
leucine levels (GCST90200389), caprylate (8:0) levels (GCST90200445), 
caproate (6:0) levels (GCST90200450), arachidonate (20:4n6) to 
paraxanthine ratio (GCST90200977) were associated with an increased 
risk for LAS, while quinate levels (GCST90199645), glycocholenate 
sulfate levels (GCST90199841), sphingomyelin (d18:1/20:2, d18:2/20:1, 
d16:1/22:2) levels (GCST90199995), C-glycosyltryptophan levels 
(GCST90200008), 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) 
levels (GCST90200082), 3-hydroxyphenylacetoylglutamine levels 
(GCST90200162), eicosenedioate (C20:1-DC) levels (GCST90200245), 
N-succinyl-phenylalanine levels (GCST90200262), Glycerol levels 
(GCST90200325), 1-palmitoyl-2-linoleoyl-gpc (16:0/18:2) 
levels (GCST90200330), 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) levels 
(GCST90200332), X-17335 levels (GCST90200530), X-21733 
levels (GCST90200587), glycochenodeoxycholate glucuronide (1) levels 
(GCST90200693), adenosine 5′-diphosphate (ADP) to 
N-acetylglucosamine to N-acetylgalactosamine ratio (GCST90200733), 
isoleucine to phosphate ratio (GCST90200868) were associated with a 
decreased risk for LAS. Sphingomyelin (d17:1/16:0, d18:1/15:0, 
d16:1/17:0) levels (GCST90200017), glycosyl ceramide (d18:1/23:1, 
d17:1/24:1) levels (GCST90200119), X-24565 levels (GCST90200645), 
glutamine to asparagine ratio (GCST90200787), were associated with 
an increased risk for CS, while cysteine-glutathione disulfide levels 
(GCST90199784), 1,2-dilinoleoyl-GPE (18:2/18:2) levels 
(GCST90200068), ceramide (d18:1/24:1) levels (GCST90200098), 
N-oleoylserine levels (GCST90200099), perfluorooctanesulfonate 
(PFOS) levels (GCST90200100), lithocholate sulfate (1) levels 
(GCST90200231), plasma free asparagine levels (GCST90200452), 
X-17653 levels (GCST90200553), X-21383 levels (GCST90200591), 
X-23782 levels (GCST90200618), lycochenodeoxycholate glucuronide 
(1) levels (GCST90200693), glutamate to glutamine ratio 
(GCST90200776) were associated with a decreased risk for 
CS. 6-hydroxyindole sulfate levels (GCST90200002), 3-methoxycatechol 
sulfate (2) levels (GCST90200007), dibutyl sulfosuccinate levels 
(GCST90200256), 4-acetamidobutanoate levels (GCST90200311), 
sphingosine levels (GCST90200385), X-12822 levels (GCST90200507), 
X-13866 levels (GCST90200527), aspartate to mannose ratio 
(GCST90200882), phenylpyruvate to 4-hydroxyphenylpyruvate ratio 
(GCST90200886), alanine to asparagine ratio (GCST90200992) were 
associated with an increased risk for SVS, while 7-alpha-hydroxy-3-
oxo-4-cholestenoate (7-hoca) levels (GCST90199804), 4-vinylguaiacol 
sulfate levels (GCST90199982), trans 3,4-methyleneheptanoate levels 
(GCST90200023), 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (p-16:0/18:2) 
levels (GCST90200060), carotene diol (2) levels (GCST90200140), 
docosahexaenoylcarnitine (C22:6) levels (GCST90200146), stearoyl 
sphingomyelin (d18:1/18:0) levels (GCST90200335), X-23659 levels 
(GCST90200616), were associated with a decreased risk for SVS 
(Figure 2).

In addition, four additional methods, MR-Egger, weighted 
median, simple mode, and weighted mode, were performed to assess 
the causal effect of these 1,091 blood metabolites and 309 on LAS, 
CES, and SVS (Supplementary material S4).

FIGURE 1

The diagram of MR analysis processing. SNPs, single nucleotide 
polymorphisms; GWAS, genome-wide association study; MR, 
Mendelian randomization; MR-PRESSO, Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test.
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FIGURE 2

Forest plot shows the expression causality of metabolites for ischemic stroke subtypes.
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3.2 Sensitive analysis

Firstly, the results of Cochran’s Q test indicated the absence of 
heterogeneity. Subsequently, eicosenedioate (C20:1-DC) levels, 
ceramide (d18:1/24:1) levels, dibutyl sulfosuccinate levels, 
3-methoxycatechol sulfate (2) levels showed horizontal pleiotropy by 
using the MR-Egger intercept test (p > 0.05) and MR-PRESSO global test 
(p > 0.05) (Supplementary materials S2, S3). Finally, the leave-one-out 
analysis (p > 0.05) proved the unreliability of the MR data in 
6-oxopiperidine-2-carboxylate levels, sphingomyelin (d18:1/20:2, 
d18:2/20:1, d16:1/22:2) levels, 1-stearoyl-2-docosahexaenoyl-gpc 
(18:0/22:6) levels, 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) levels, 
1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) levels, arachidonate (20:4n6) to 
paraxanthine ratio, cysteine-glutathione disulfide levels, sphingomyelin 
(d17:1/16:0, d18:1/15:0, d16:1/17:0) levels, plasma free asparagine levels, 
glycochenodeoxycholate glucuronide (1) levels, glutamine to asparagine 
ratio since excluding some IV did shift the results. Reorganization of the 
forest plot after the presentation of these metabolites (Figure 3).

3.3 Replicated analysis after removing 
confounders-related IVs

In the study, we identified 40 blood metabolites and metabolite 
ratios that were associated with IS subtypes. However, some of these 

blood metabolites and metabolite ratios were also found to 
be associated with other factors such as body mass index, high blood 
pressure, self-reported hypertension, self-reported atrial fibrillation, 
venous thrombosis (Table 1; Supplementary material S5). To investigate 
the causal associations of these blood metabolites and metabolite ratios 
with IS subtypes, the researchers removed the SNPs that were associated 
with these confounding factors from the IVs and re-evaluated the 
causal associations using MR analysis and sensitive analysis.

The results indicated that the causal effects of blood metabolites 
and metabolite ratios, with the exception of N2,N2-dimethylguanosine 
levels, Palmitoyl dihydrosphingomyelin (d18:0/16:0) levels, 
N-formylmethionine levels, 1,2-dilinoleoyl-GPE (18:2/18:2) levels, 
perfluorooctanesulfonate (PFOS) levels, docosahexaenoylcarnitine 
(C22:6) levels, aspartate to mannose ratio, remained significant 
(Figure 4; Supplementary material S6). This approach helps to isolate 
the effects of blood metabolites and metabolite ratios on IS subtypes 
by accounting for the potential influences of these confounding factors.

4 Discussion

The past few decades have witnessed remarkable advances in 
metabolomics as a valuable tool for accurately identifying disease 
biomarkers, enabling a deeper understanding of the disease processes 
underlying strokes (4, 19, 20). Most studies were animal or case-control 

FIGURE 3

Forest plot shows the expression causality of metabolites for ischemic stroke subtypes following sensitivity analysis.
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TABLE 1  Details of the genetic variants with potential pleiotropy among instrumental variables used for blood metabolites and metabolite ratios.

SNP Trait p-value

rs1047891 Body mass index 2.65 × 10−6

rs1047891 Vascular or heart problems diagnosed by doctor: high blood pressure 9.30 × 10−8

rs1047891 Self-reported hypertension 2.37 × 10−7

rs10993370 Self-reported atrial fibrillation 3.90 × 10−8

rs11244061 Venous thrombosis 3.20 × 10−14

rs11244061 Phlebitis and thrombophlebitis 1.81 × 10−20

rs11693959 Alcohol intake frequency 6.21 × 10−7

rs12316258 Atrial fibrillation and flutter 4.60 × 10−8

rs1260326 Alcohol intake frequency 7.60 × 10−40

rs1260326 Alcohol consumption 1.00 × 10−21

rs1260326 Diabetes diagnosed by doctor 7.62 × 10−13

rs12607820 Alcohol intake frequency 1.16 × 10−6

rs141471965 Body mass index 2.31 × 10−6

rs1728911 Alcohol intake frequency 6.83 × 10−14

rs2021965 Body mass index 2.11 × 10−6

rs2325676 Alcohol usually taken with meals 7.09 × 10−6

rs270607 Vascular or heart problems diagnosed by doctor: high blood pressure 6.92 × 10−6

rs34671296 Body mass index 6.75 × 10−6

rs445925 Presence of carotid artery plaque 4.00 × 10−6

rs445925 Atherosclerosis 2.00 × 10−8

rs445925 Atherosclerosis 4.00 × 10−6

rs445925 Carotid intima media thickness 4.00 × 10−6

rs445925 Carotid intima media thickness 2.00 × 10−8

rs445925 Common carotid artery intima media thickness IMT 1.70 × 10−8

rs4500751 Body mass index 8.90 × 10−6

rs45499402 Body mass index 2.39 × 10−6

rs4665972 Alcohol intake frequency 1.29 × 10−36

rs4665972 Diabetes diagnosed by doctor 4.43 × 10−12

rs4997081 Vascular or heart problems diagnosed by doctor: high blood pressure 8.59 × 10−18

rs4997081 Self-reported hypertension 1.79 × 10−17

rs56113850 Number of cigarettes currently smoked daily 7.33 × 10−19

rs56113850 Smoking status: current 5.27 × 10−15

rs56113850 Smoking status: previous 3.69 × 10−8

rs62132803 Alcohol intake frequency 1.10 × 10−6

rs67402452 Body mass index 6.81 × 10−6

rs67402452 Atrial fibrillation and flutter 4.94 × 10−23

rs67402452 Self-reported atrial fibrillation 2.32 × 10−15

rs7203642 Vascular or heart problems diagnosed by doctor: high blood pressure 1.13 × 10−17

rs7203642 Self-reported hypertension 2.38 × 10−17

rs77924615 Vascular or heart problems diagnosed by doctor: high blood pressure 1.13 × 10−17

rs77924615 Self-reported hypertension 3.32 × 10−17

rs780093 Alcohol intake frequency 1.21 × 10−39

rs780093 Diabetes diagnosed by doctor 2.87 × 10−12

rs8113105 Atrial fibrillation and flutter 3.90 × 10−6

rs9928003 Self-reported hypertension 6.84 × 10−18
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studies, which can demonstrate an association with stroke but cannot 
establish a causal relationship. In this MR study, we identified 17 blood 
metabolites and metabolite ratios in LAS, 5 in CS, and 12 in SVS that 
may serve as distinct metabolomic signatures associated with different 
IS subtypes, potentially aiding in etiology and prognosis determination.

The results of the study suggested that 
N6-carbamoylthreonyladenosine levels, glycocholenate sulfate 
levels, C-glycosyltryptophan levels, ascorbic acid 2-sulfate levels, 
3-hydroxyphenylacetoylglutamine levels, methyl vanillate sulfate 
levels, leucine levels, caprylate (8:0) levels, caproate (6:0) levels 
significantly increased the risk of LAS, whereas quinate levels, 
glycocholenate sulfate levels, C-glycosyltryptophan levels, 
3-hydroxyphenylacetoylglutamine levels, eicosenedioate (C20:1-
DC) levels, N-succinyl-phenylalanine levels, glycerol levels, 
1-palmitoyl-2-linoleoyl-gpc (16:0/18:2) levels, adenosine 
5′-diphosphate (ADP) to N-acetylglucosamine to 
N-acetylgalactosamine ratio, isoleucine to phosphate ratio had a 
negative impact on LAS strength significantly decreased the risk of 
LAS. Previous studies showing that leucine (Branched-Chain Amino 
Acid) levels were positively correlated with IS risk (21–23). Leucine 
concentration, particularly in the atherothrombotic subtype, also 
maintains high plasma after stroke (24). Leucine in particular, a 
branch chain amino acid, is essential for glutamic acid production 
in the brain because it donates amino groups to the process (25). A 
study examined the association between serum glycolithocholate 
sulfate levels and risk of atrial fibrillation, which can lead to LAS, 
among 1,919 Black participants in the Atherosclerosis Risk in 
Communities cohort study (26). Antioxidant qualities of a 
caffeoylquinic acid derivative can reduce lipid peroxidation and 
antioxidant enzyme activity, hence preventing brain ischemia (27). 
Patients with severe and complete ischemia exhibited significantly 

higher levels of glycerol lactate compared to patients without 
symptomatic ischemia; however, the findings differ from our MR 
study (28, 29).

The results of the study suggested that glycosyl ceramide 
(d18:1/23:1, d17:1/24:1) levels significantly increased the risk of CS, 
whereas ceramide (d18:1/24:1) levels, N-oleoylserine levels, 
lithocholate sulfate (1) levels, glutamate to glutamine ratio had a 
negative impact on CS strength significantly decreased the risk of 
CS. Sphingolipids, such as ceramide and its derivatives, glucosyl 
ceramide and ceramide-1-phosphate, have shown promise in inducing 
plaque inflammation and vascular events like myocardial infarction 
and IS (30, 31). Glutamate and the glutamine-to-glutamate ratio are 
independently associated with coronary artery disease, which closely 
associated with CS, and its severity in Chinese patients undergoing 
CAG (32).

The results of the study suggested that 6-hydroxyindole sulfate 
levels, 3-methoxycatechol sulfate (2) levels, 4-acetamidobutanoate 
levels, sphingosine levels, phenylpyruvate to 4-hydroxyphenylpyruvate 
ratio, alanine to asparagine ratio significantly increased the risk of 
SVS, whereas 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-hoca) levels, 
4-vinylguaiacol sulfate levels, Trans 3,4-methyleneheptanoate levels, 
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (p-16:0/18:2) levels, carotene 
diol (2) levels, stearoyl sphingomyelin (d18:1/18:0) levels had a 
negative impact on CS strength significantly decreased the risk of 
SVS. Carotene diols, as antioxidants, have been recognized for their 
potential to mitigate various redox-mediated injuries and counteract 
the senescent phenotype, which appears to provide a potential 
explanatory link to the phenomenon of IS (33). Asparagine and 
alanine were found to be  positively correlated with the National 
Institutes of Health Stroke Scale score using high-performance liquid 
chromatography to analyze the levels of amino acids in serum samples 

FIGURE 4

Forest plot shows the expression causality of metabolites for ischemic stroke subtypes following replicated analysis subsequent to the removal of 
confounder-related IVs.
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obtained from both healthy donors and patients diagnosed with 
IS (34).

The identification of particular metabolites as potential 
biomarkers holds great promise for the diagnosis, prognosis, and 
monitoring of IS treatment due to the ongoing discovery of 
metabolites linked to stroke. Various subtypes of IS exhibit distinct 
risk factors, and corresponding treatment protocols have been 
formulated (35). However, research regarding their pathogenesis and 
alterations in metabolite levels is currently constrained. Our study 
aims to investigate the impact of blood metabolites and metabolite 
ratios on IS subtypes, and provide researchers with a framework to 
explore the relationship between blood metabolites and metabolite 
ratios and IS subtypes. Future investigations should delve into the 
mechanisms and assess whether metabolites could serve as diagnostic 
biomarkers. Moreover, exploring therapeutic strategies targeting 
metabolites may improving patient symptoms and prognosis.

However, our study had several limitations. Firstly, the results of 
the MR study included some blood metabolites and metabolite ratios 
are currently no published findings in the literature, these results may 
serve as predictive indicators. Secondly, we cannot totally exclude 
pleiotropy and confounding variables in study outcomes, even when 
sensitivity analyses and confounders-related IVs are employed for 
correction. Thirdly, the analysis focuses solely on the causal 
relationships between metabolites and IS subtypes, without accounting 
for other relevant factors such as lifestyle or genetic predispositions. 
Future studies should integrate these additional factors to provide a 
more comprehensive understanding of the pathogenesis of IS 
subtypes. Finally, excluding IVW, many of the statistical findings lack 
significance, suggesting the necessity for additional data to facilitate 
more comprehensive research.

5 Conclusion

In conclusion, the present study assessed the possible causality of 
serum metabolites in the risk of IS subtypes. The discovery of 
significant causal links between 33 metabolites and 3 distinct IS 
subtypes. Metabolites show significant potential as circulating 
metabolic biomarkers and offer promise for clinical applications in the 
prevention and screening of IS subtypes. These discoveries notably 
advance our comprehension of the molecular processes specific to IS 
subtypes and create avenues for investigating targeted treatment 
approaches in the future.
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