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Purpose: Identifying the etiology of acute ischemic stroke (AIS) before endovascular 
treatment (EVT) is important but challenging. In CT perfusion imaging processed 
by perfusion software, we  observed a phenomenon called patchy profile sign 
(PPS), that is, the hypoperfusion morphology in RAPID software is a discontinuous 
sheet pattern. This phenomenon is predominantly observed in patients diagnosed 
with intracranial atherosclerotic stenosis (ICAS). The study intends to assess 
whether the PPS can be used to differentiate ICAS from intracranial embolism.

Method: Patients with AIS due to M1 segment occlusion of the MCA who 
underwent mechanical thrombectomy were retrospectively enrolled. The 
receiver operating characteristic (ROC) curve analysis was performed to assess 
the value of PPS in predicting ICAS. Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy of the PPS for 
prediction of ICAS were calculated.

Results: A total of 51 patients were included in the study. The PPS was observed 
in 10 of 19 (52.6%) patients with ICAS, and in 2 of 32 (6.3%) patients with 
intracranial embolism (p  <  0.001). Interobserver agreement for identifying PPS 
was excellent (κ  =  0.944). The sensitivity, specificity, PPV, NPV, and accuracy of 
the PPS for predicting ICAS were 52.6, 93.8, 83.3, 76.9, and 78.4%, respectively.

Conclusion: The PPS on RAPID software is an imaging marker with high 
specificity for ICAS. Larger sample sizes are imperative to validate the findings.
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1 Introduction

Acute ischemic stroke (AIS) resulting from large vessel occlusion (LVO) stands as a prominent 
cause of global morbidity and mortality. Mechanical thrombectomy (MT) has emerged as a 
pivotal intervention, notably improving outcomes in LVO (1–6). Nevertheless, the prognosis of 
certain patients undergoing EVT for LVO remains suboptimal, primarily attributable to the 
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interval between onset and intervention, surgical procedure duration, 
and the volume of cerebral ischemia during interventional procedures 
(7). Intracranial atherosclerotic stenosis (ICAS) and embolic etiologies 
constitute the primary pathogenesis of LVO, with ICAS prevalent in 
Asian populations (8, 9). Additionally, ICAS-related LVO presents 
distinct challenges, including lower recanalization rates and extended 
procedural durations (10–12). Owing to subsequent platelet aggregation, 
patients with ICAS frequently encounter residual stenosis and 
reocclusion during mechanical thrombectomy. In cases of reocclusion, 
considering rescue treatment, such as balloon and stent angioplasty, is 
advisable (13–16). Clear delineation of pathogenesis before intervention 
will aid in formulating a personalized treatment strategy and enhance 
the procedural workflow. Preoperative differentiation between ICAS and 
embolic LVO remains imperative, yet effective imaging biomarkers are 
lacking, warranting further investigation.

Perfusion imaging utilizing artificial intelligence (AI) software has 
become a primary modality for preoperative MT assessment. This 
modality automatically performs image postprocessing of CTP imaging 
system-derived images, accurately identifying and quantifying the infarct 
core and ischemic penumbra (17, 18). Multiple clinical studies have 
confirmed that patients identified using the RAPID software based on 
perfusion imaging may derive benefits from endovascular therapy within 
an extended time window (19, 20). Parameter of perfusion imaging, such 
as the hypoperfusion intensity ratio (HIR) is valuable in discerning 
collateral flow in patients with anterior LVO (21). Both the HIR and 
cerebral blood volume (CBV) index are associated with underlying ICAS 
and may function as predictors of ICAS before EVT (22).

In our clinical practice, we have documented the patchy profile 
sign (PPS), an observed phenomenon in some patients where the 
hypoperfusion morphology manifests as a non-continuous sheet 
pattern. Specifically, we  have observed that PPS is more prone to 
manifest in patients with ICAS-associated LVO. We postulated that 
PPS could serve as a valuable imaging marker for predicting ICAS 
before EVT. This study aims to objectively ascertain whether the PPS 
on RAPID software can effectively differentiate between ICAS and 
intracranial embolism before EVT.

2 Materials and methods

The study was approved by the Ethics Committee, and the need for 
informed consent was waived for the retrospective nature of the study. 
The procedures of this study adhere to the declaration of Helsinki.

2.1 Study participants

The study retrospectively involved 51 patients selected from our 
database of consecutive AIS patients who underwent emergency EVT 
at the Comprehensive Stroke Center from December 2018 to December 

2022. Figure 1 depicts the patient screening process. Inclusion criteria 
comprised individuals aged over 18, admitted within 24 h from 
symptom onset, undergoing CTP within 24 h of onset, experiencing 
ischemic stroke due to MCA M1 occlusion, and receiving EVT with 
successful recanalization (defined as an mTICI grade of 2b-3 or eTICI 
grade of 2b-3). Exclusion criteria involved individuals with MCA M1 
lesions lacking embolism or stenosis, tandem lesions of the MCA, a 
history of stroke disease, incomplete clinical or imaging data, or poor 
image quality (concurrent intracranial structural lesions or strenuous 
activity during image refinement). Collected clinical data of study 
participants encompassed demographic characteristics (age and 
gender), stroke risk factors (history of hypertension, diabetes, atrial 
fibrillation, hyperlipidemia, smoking, and drinking), and clinical 
characteristics (Intravenous thrombolysis, systolic and diastolic blood 
pressure, admission random intravenous blood glucose, admission 
NIHSS, 24-h post-operative NIHSS, admission Glasgow Coma Scale 
[GCS], ASPECTS, onset to imaging time, onset to puncture time). Data 
supporting the study can be obtained from the corresponding authors 
upon reasonable request.

2.2 Imaging data

All stroke patients underwent a comprehensive CT scan, 
consisting of a non-contrast CT, CT angiography of the head and 
neck, and CT perfusion, using a 256-slice multi-detector CT scanner 
(Brilliance iCT). Initially, a non-contrast CT scan of the head was 
performed to rule out intracranial bleeding, followed by a CT 
angiogram of the head and neck, and subsequent CT perfusion 
imaging. Whole-brain helical NCCT (120 kVp,100–350 auto-mAs) 
was performed with 5-mm section thickness. CT perfusion 
parameters were obtained in a periodic spiral pattern. A high-
pressure syringe was utilized to inject 70–90 mL of the contrast agent 
iopamidol at a flow rate ranging from 4.0 to 6.0 mL/s. Subsequently, 
the tube was flushed with 30 mL of physiological saline, and the scan 
commenced with a 5-s delay. The imaging spanned from the foramen 
magnum to the level above the lateral ventricle, utilizing an 80 mm 
collimation, tube voltage of 80 kV, and tube current of 100 mA. The 
perfusion maps and their associated parameters underwent 
automated analysis using the RAPID software (iSchemaView, Menlo 
Park, CA; version 5.0.4). The ischemic core was defined as a tissue 
volume with cerebral blood flow of <30% on CTP imaging. 
Hypoperfusion was defined as a volume of tissue of Tmax >6 s on 
CTP. The mismatch ratio was calculated by dividing the ischemic core 
volume by the lesion volume with Tmax >6 s. The mismatch volume 
was calculated by subtracting the ischemic core volume from the 
lesion volume with a Tmax >6 s. HIR was defined as the ratio of the 
volume of the “Tmax >10 s” lesion divided by the volume of the 
“Tmax >6 s” lesion. The CBV index was defined as the ratio of the 
mean CBV within the “Tmax >6 s” lesion in the ipsilateral hemisphere 
over the mean CBV of the unaffected brain area. We  defined 
HIR ≤ 0.22 and CBV ≥ 0.90 as favorable predictors of atherosclerosis 
based on previous research (22).

Collateral status on CTA was assessed by a straightforward 
method, which assesses the backfilling of the soft meningeal arteries 
in the entire MCA ischemic area compared to the contralateral side, 
defined as (0, minimal; 1, less than 50%; 2, greater than 50%; 3, filling 
100% of the ischemic area) (23).

Abbreviations: AIS, acute ischemic stroke; EVT, endovascular treatment; ICAS, 

intracranial atherosclerotic stenosis; ROC, receiver operating characteristic; PPV, 

positive predictive value; NPV, negative predictive value; LVO, large vessel occlusion; 

ACA, anterior cerebral artery; GCS, Glasgow Coma Scale; HIR, hypoperfusion 

intensity ratio; CBV, cerebral blood volume; PPS, patchy profile sign; AI, artificial 

intelligence; HMCAS, hyperdense middle cerebral artery sign.
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2.3 Operational definitions of ICAS and 
intracranial embolism

ICAS was differentiated from embolism based on the outcome of 
angiographic findings and endovascular treatment. ICAS was defined 
as (1) fixed stenosis ≥70% with either angiographically evident 
impaired perfusion or evidence of reocclusion following sufficient 
treatment with a stent retriever, and (2) percutaneous transluminal 
angioplasty and dual antiplatelet therapy were required to maintain 
effective recanalization (Figures 2C,D). Iatrogenic dissection or vessel 
wall injury resulting in stenosis was not classified as an ICAS and was 
excluded from the study. Embolism was classified as there was no or 
certain focal stenosis and no tendency for reocclusion after clot 
retrieval. If CTA within 1 week of surgery confirms complete 
recanalization of the responsible vessel, it is also considered an 
embolism (22, 24) (Figures 2A,B).

2.4 Definition of the PPS

The positive PPS was defined as (1) a hypoperfusion region 
comprising two or more comparable scattered patches or primarily 
contiguous regions with highly irregular edges that do not conform to 
any geometric or morphological definition. (Figures 3A,B) (2); the 
aforementioned images accounted for half or more of all images in the 

presence of hypoperfusion. Small patches of hypoperfusion images 
considered individually insignificant were not included in the 
preceding definition. Similarly, images displaying regular edges on one 
side were also excluded. (Figures 3C,D).

Both physicians were trained on irregular profile and simulant 
images by means of photographs, and all perfusion images were 
concealed from any associated information, independently evaluated 
by two neurologists each with over 3 years of experience. The two 
neurologists discussed the controversial findings until a consensus was 
reached. The imaging features of hypoperfusion in RAPID software 
with and without PPS are illustrated in Figures 4, 5.

2.5 Statistical analysis

Normally distributed data were expressed as mean ± standard 
deviation (SD), and the student t test was used for comparisons 
between groups. Non-normally distributed data were presented as 
median (M) with upper and lower quartiles (P25, P75), and the 
Mann–Whitney U test performed the comparison between groups. 
Categorical variables were expressed as frequencies (percentages, %). 
The χ2 tests and Fisher exact tests were used to analyze categorical 
variables as appropriate. The consistency of the observer in 
identifying PPS was examined by the Kappa consistency test, with 
consistency defined as κ = 0.01 to 0.20, 0.21 to 0.4, 0.41 to 0.6, 0.61 

FIGURE 1

Patient selection process. AIS, acute ischemic stroke; EVT, endovascular treatment; ACA, anterior cerebral artery.
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to 0.8 and 0.81 to 0.99 indicating slight, fair, moderate, substantial, 
and excellent interobserver agreement, respectively. The area under 
the ROC curve (AUC) was performed to assess the value of HIR, 
CBV, and PPS in predicting ICAS. Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and 
accuracy were calculated to investigate the diagnostic value of PPS 
for ICAS. All statistical analyses were performed with IBM SPSS 
Statistics 26.0 (IBM Corporation, Armonk), and p < 0.05 was 
statistically significant.

3 Results

3.1 Patient characteristics

A total of 480 patients with AIS receiving endovascular treatment 
were screened, of which 51 met the criteria for inclusion in the 
analysis. The cause of vascular occlusion was intracranial embolism in 
32 patients and ICAS in 19 patients. The PPS was positive in 12 
patients and negative in 39 patients.

3.2 Patients with and without PPS

The PPS was observed in 12 (23.5%) of the 51 study patients. The 
consistency of the two observers in identifying PPS was excellent 
(Kappa test, κ = 0.944). Clinical characteristics and imaging features 
of patients with and without PPS are displayed in Table 1. Compared 
to patients without PPS, patients with PPS had smaller ischemic core 
(0 vs. 15.0, p = 0.001), smaller hypoperfusion areas (61.5 vs. 158.8, 
p < 0.001), lower HIR index (0.1 vs. 0.5, p < 0.001), smaller mismatch 
volumes (60.6 vs. 128.4, p < 0.001), higher CBV index (0.8 vs. 0.7, 

p = 0.01), lower random venous glucose (5.5 vs. 6.9, p = 0.046), and 
less often hyperlipidemia (0 vs. 35.9%, p = 0.02). There were no 
significant differences in gender, age, smoking, drinking, 
hypertension, diabetes, atrial fibrillation, systolic blood pressure, 
diastolic blood pressure, intravenous thrombolysis, admission 
NIHSS, admission GCS, 24-h post-operative NIHSS, onset to 
imaging time, onset to puncture time, mismatch ratio, fasting blood 
glucose, CTA collateral score, and ASPECTS between the two groups 
(all p values >0.05).

3.3 Patients with ICAS vs. patients with 
intracranial embolism

Patients with ICAS were diagnosed in 19 (37.25%) of the 51 patients. 
The clinical characteristics and imaging features of patients with ICAS 
and intracranial embolism are shown in Table 2. Patients with ICAS 
were more likely to be smoking (52.6% vs. 18.8%, p = 0.01), more often 
than males (78.9% vs. 40.6%, p = 0.008), less likely to have atrial 
fibrillation (10.5% vs. 62.5%, p < 0.001) and more often to have positive 
PPS (52.6% vs. 6.3%, p < 0.001). The volume of the ischemic core (0 vs. 
15.0, p = 0.002), the volume of hypoperfusion (105.3 vs. 154.1, p = 0.006), 
and the HIR index (0.3 vs. 0.5, p = 0.001), the admission NIHSS score 
(12.0 vs. 17.0, p = 0.003) were lower in the ICAS group than those in the 
intracranial embolism group. The CBV index (0.8 vs. 0.7, p = 0.02) and 
ASPECTS (9.0 vs. 7.0, p = 0.005) were higher in the ICAS group than in 
the intracranial embolism group. There were no significant differences 
in age, drinking, hypertension, diabetes, hyperlipidemia, random venous 
glucose, intravenous thrombolysis, systolic and diastolic blood pressure, 
24-h post-operative NIHSS, admission GCS, onset to imaging time, 
onset to puncture time, mismatch ratio, mismatch volume, CTA 
collateral score between the two groups (all p values >0.05).

FIGURE 2

Illustration of the definition of atherosclerosis and embolism. (A,B) suggest that the etiology of occlusion is an intracranial embolism, while 
(C,D) suggest that occlusion is due to atherosclerosis. A female patient aged 68  years with occlusion of the left middle cerebral artery M1 (A), which 
was revascularized after arterial suction thrombectomy (B). A male patient aged 68  years with occlusion of the right middle cerebral artery M1 (C), 
which was revascularized with antiplatelet therapy and stent thrombectomy (D).

https://doi.org/10.3389/fneur.2024.1414959
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhang et al. 10.3389/fneur.2024.1414959

Frontiers in Neurology 05 frontiersin.org

3.4 Diagnostic performance of the PPS

The PPS was positive in 10 of the 19 patients in the ICAS group 
but in only 2 of the 32 patients in the intracranial embolism group 
(52.6% vs. 6.3%, respectively, p < 0.001). The sensitivity, specificity, 
PPV, NPV, and accuracy of PPS for detecting ICAS were 52.6, 93.8, 
83.3, 76.9, and 78.4%. The PPS showed a better performance in 
predicting ICAS (AUC, 0.73; 95% CI: 0.58, 0.89; p = 0.003) over 
HIR ≤ 0.22 (AUC, 0.65; 95% CI: 0.48, 0.81; p = 0.08) and CBV ≥ 0.90 
(AUC, 0.55; 95% CI: 0.39, 0.72; p = 0.53). The ROC curves are shown 
in Figure 6.

4 Discussion

In the study, an effortless and time-saving imaging technique was 
discovered, which facilitates the differentiation between intracranial 
atherosclerotic stenosis and intracranial embolism in acute anterior 
circulation stroke patients with MCA M1. The study found that the 
presence of PPS is more likely in patients with ICAS-related LVO. The 
existing literature on the prognostic capacity of AI software images for 
stroke etiology is limited. This study could contribute to facilitating 

further research on AI software imaging across a diverse range of 
clinical practitioners.

4.1 Potential mechanisms underlying PPS

The PPS may arise because the collateral circulation of patients 
with atherosclerotic stenosis is better than that of patients with 
embolism due to the chronic and usually slow progression, allowing 
sufficient time for opening and formation of collateral circulation 
(24–26). While the CTA collateral score did not reach statistical 
significance in this study, there was an observable proportional 
disparity between the positive and negative groups (22). The 
proportion of patients with good collateral circulation was significantly 
higher in the PPS-positive group compared with the PPS-negative 
group, whereas the proportion of patients with poor collateral 
circulation was significantly lower. Such findings potentially stem 
from the limited sample size inherent to our study and disparities in 
the methodologies employed for collateral circulation assessment. 
Consequently, a comprehensive large sample study is warranted to 
validate and substantiate our hypothesis. Chronic cerebral 
hypoperfusion may promote the formation of intracranial collateral 

FIGURE 3

Illustration of the definition of the patchy profile and its mimics. (A,B) are considered images with patchy profiles. (C,D) are considered patchy profile 
mimics. (A) The image is a complete composition, but the edges of the image are extremely irregular and do not satisfy any definition of geometric 
morphology. (B) The image consists of three patches of similar size. (C) The image consists of a complete figure but with a smooth curve on one edge. 
(D) The image consists of a patch of minor area.
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FIGURE 4

Illustration of the patchy profile sign negative. A male patient aged 68  years with occlusion of the right middle cerebral artery M1, where images with 
the patchy profile sign accounted for less than half of all images with hypoperfusion.

FIGURE 5

Illustration of the patchy profile sign positive. A male patient aged 66  years with occlusion of the right middle cerebral artery M1, where images with the 
patchy profile sign accounted for more than half of all images with hypoperfusion.
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arteries, as demonstrated in an animal model of bilateral carotid artery 
occlusion (27). Furthermore, the establishment of intracranial 
collateral circulation is related to the severity and velocity of cerebral 
vascular stenosis (28). Additionally, a previous study demonstrated 
that chronic cerebrovascular stenosis induces prolonged cerebral 
hypoperfusion, inducing a hypoxic-tolerant state in brain tissue. This 
results in an increased concentration of vascular growth factors, 
promoting the establishment of collateral circulation, and providing 
protection against cerebral ischemia (29). Furthermore, it was found 
that some patients who underwent endovascular treatment and 
achieved complete recanalization still experienced considerable 
hypoperfusion on rapid perfusion analysis. The mechanism behind 
this phenomenon remains unclear and may be related to inadequate 
microcirculatory reperfusion (30, 31). ICAS-related LVO with a more 
robust collateral circulation may encounter improved microcirculatory 
reperfusion after occlusion, leading to patchy areas of hypoperfusion. 
In contrast, embolization-related LVO may experience inadequate 

microcirculatory reperfusion due to the rapid occlusion, frequently 
exhibiting areas of hypoperfusion nearly identical to the region 
supplied by the responsible vessel. Our hypothesis posits that the 
presence of PPS in the hypoperfusion region may be attributed to the 
superior microcirculatory reperfusion in ICAS-related LVO compared 
to embolization-related LVO. Naturally, the confirmation of specific 
pathophysiological mechanisms requires further studies.

4.2 Imaging characteristics of ICAS-related 
LVO vs. embolism-related LVO

The study found that ICAS-related LVO had smaller areas of 
hypoperfusion compared to embolization-related LVO, which is 
consistent with prior investigations (22, 32). Contrary to 
embolization-related LVO, EVT for ICAS-related LVO is associated 
with a higher incidence of intraoperative reocclusion, an extended 

TABLE 1 Clinical, Demographic, and Radiological Characteristics of Patients with and without Patchy Profile Sign.

Variables Patchy profile sign 
positive (n  =  12)

Patchy profile sign 
negative (n  =  39)

P value

Male, n (%) 8 (66.7) 20 (51.3) 0.35

Age, years 69.1 ± 12.7 68.9 ± 11.5 0.97

Smoking, n (%) 5 (41.7) 11 (28.2) 0.48

Drinking, n (%) 4 (33.3) 11 (28.2) 0.73

Hypertension, n (%) 7 (58.3) 16 (41.0) 0.29

Diabetes, n (%) 2 (16.7) 11 (28.2) 0.71

Hyperlipidemia, n (%) 0 (0.0) 14 (35.9) 0.02

Onset to imaging time (min) 210.0 (158.0, 480.0) 240.0 (150.0, 420.0) 0.70

Onset to puncture time (min) 300.0 (240.0, 713.0) 390.0 (270.0, 720.0) 0.52

Atrial fibrillation, n (%) 4 (33.3) 18 (46.2) 0.43

Intravenous thrombolysis, n (%) 4 (33.3) 9 (23.1) 0.47

Systolic blood pressure, (mmHg) 147.0 ± 15.4 145.0 ± 28.4 0.82

Diastolic blood pressure (mmHg) 84.2 ± 10.5 79.9 ± 16.2 0.39

Random intravenous blood glucose (mmol/L) 5.5 (5.3, 6.9) 6.9 (5.7, 10.8) 0.046

Admission NIHSS scores 12.0 (8.0, 19.0) 16.0 (12.0, 21.0) 0.051

24 h NIHSS 8.4 ± 7.4 11.2 ± 7.1 0.25

GCS 15.0 (12.0, 15.0) 13.0 (10.0, 15.0) 0.06

CBF < 30%, (mL) 0.0 (0.0, 0.0) 15.00 (0.0, 48.0) 0.001

Tmax>6 s, (mL) 61.5 ± 38.2 158.8 ± 50.2 <0.001

Mismatch ratio# 13.9(13.0, 14.7) 5.5 (2.8, 12.0) 0.13

HIR 0.1 (0, 0.2) 0.5 (0.4, 0.6) <0.001

CBV 0.8 (0.7, 1.0) 0.7 (0.6, 0.8) 0.01

CTA collateral score 0.07

Good (3) 6 (50. 0) 7 (17. 9)

Intermediate (2) 5 (41. 7) 23 (60. 0)

Poor (0–1) 1 (8.3) 9 (23. 1)

ASPECTS 8.5 (7.0,9.8) 7.0 (6.0, 9.0) 0.10

Mismatch volume, (mL)* 60.6 ± 37.8 128.4 ± 44.3 <0.001

#Mismatch ratio is defined as Tmax > 6 s divided by CBF < 30%. *Mismatch volume refers to the regions where Tmax > 6 s does not match CBF < 30%. GCS, Glasgow Coma Scale; CBV, cerebral 
blood volume; HIR, hypoperfusion intensity ratio.
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operating time, elevated mortality rates, and reduced 
revascularization rates (33). In the management of ICAS-related 
LVO, interventions such as stenting, angioplasty, or a combination 
of these techniques are typically employed to achieve successful 
revascularization. Accurate identification of potential ICAS and 
the development of an optimal strategy for ICAS-related LVO 
ensure more effective recanalization of occluded vessels and a 
favorable prognosis for patients with this condition (34, 35). In this 
study, patients with ICAS were more likely to be  smokers but 
exhibited lower rates of atrial fibrillation, aligning with the findings 
of a separate study (24). The results of this study indicate that 
patients with ICAS, in comparison to those with intracranial 
embolism, manifested a lower NIHSS score, potentially attributed 
to superior collateral circulation in ICAS patients (26). In addition, 
the hypoperfusion volume, ischemic core volume, mismatch 
volume and HIR index in patients with intracranial embolism 
surpassed those in ICAS patients, while the CBV index in the 

embolism group was lower than that in the ICAS group. This 
finding aligns with previous studies (22, 24), and may be associated 
with the sudden onset, insufficient collateral circulation, and the 
presence of a large thrombus in patients with intracranial 
embolism (36).

4.3 Challenges in identifying etiology of AIS 
in emergency settings

It can be challenging to differentiate accurately between these 
two causes in clinical settings, particularly during emergency 
scenarios (37). The following imaging techniques are considered 
beneficial in assessing the nature of the lesions. High-resolution 
vessel wall MRI could help to identify ICAS (36, 38), while MRI 
examinations require significant time, patient cooperation, and are 
impractical for preoperatively assessing emergency surgery 

TABLE 2 Clinical, demographic, and radiological characteristics of patients with ICAS and intracranial embolism.

Variables The ICAS (n  =  19) The IE (n  =  32) P value

Male, n (%) 15 (78.9) 13 (40.6) 0.008

Age, years 65.5 ± 11.6 71.0 ± 11.4 0.10

Smoking, n (%) 10 (52.6) 6 (18.8) 0.01

Drinking, n (%) 8 (42.1) 7 (21.9) 0.13

Hypertension, n (%) 11 (57.9) 12 (37.5) 0.16

Diabetes, n (%) 5 (26.3) 8 (25.0) 1.00

Hyperlipidemia, n (%) 3 (15.8) 11 (34.4) 0.15

Onset to imaging time (min) 240.0 (180.0, 600.0) 240.0 (127.5, 382.5) 0.12

Onset to puncture time (min) 390.0 (280.0, 990.0) 360.0 (232.5, 585.0) 0.14

Atrial fibrillation, n (%) 2 (10.5) 20 (62.5) <0.001

Intravenous thrombolysis, n (%) 5 (26.3) 8 (25.0) 1.00

Systolic blood pressure, (mmHg) 154.2 ± 26.8 140.3 ± 24.2 0.06

Diastolic blood pressure, (mmHg) 85.0 ± 18.6 78.5 ± 12.3 0.14

Random intravenous blood glucose (mmol/L) 5.9 (5.3, 9.2) 6.7 (5.6, 10.7) 0.28

Admission NIHSS scores 12.0 (8.0, 19.0) 17.0 (13.0, 21.8) 0.003

24 h NIHSS 9.2 ± 6.5 11.3 ± 7.6 0.30

GCS 15.0 (11.0, 15.0) 12.5 (10.0, 15.0) 0.12

CBF < 30%, (mL) 0.0 (0.0, 5.0) 15.0 (0.0, 6.0) 0.002

Tmax>6 s, (mL) 105.3 ± 67.2 154.1 ± 53.6 0.006

Mismatch ratio# 12.7 (6.7, 18.2) 5.2 (2.6, 11.7) 0.05

HIR 0.3 (0.0, 0.4) 0.5 (0.4, 0.6) 0.001

CBV 0.8 (0.8, 0.9) 0.7 (0.6, 0.8) 0.02

CTA collateral score 0.71

Good (3) 6 (31.6) 7 (21.9)

Intermediate (2) 10 (52.6) 18 (56.3)

Poor (0–1) 3 (15.8) 7 (21.9)

ASPECTS 9.0 (7.0, 10.0) 7.0 (6.0, 8.8) 0.005

Mismatch volume, (mL)* 100.7 ± 64.6 119.4 ± 41.5 0.27

Patchy Profile Sign 10 (52.6) 2 (6.3) <0.001

#Mismatch ratio is defined as Tmax > 6 s divided by CBF < 30%. *Mismatch volume refers to the regions where Tmax > 6 s does not match CBF < 30%. ICAS = intracranial atherosclerotic 
stenosis; CBV = cerebral blood volume; GCS = Glasgow Coma Scale; HIR = hypoperfusion intensity ratio.
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candidates. Kim et al. reported that patients positive for hyperdense 
middle cerebral artery sign (HMCAS) had a higher incidence of 
intracranial embolism (67.8% vs. 48.9%, p = 0.005), whereas 
HMCAS-negative patients exhibited a higher incidence of ICAS 
(31.9% vs. 12.7%, p = 0.001) (39). However, several studies have 
demonstrated that HMCAS does not exhibit a significant correlation 
with the etiology of AIS (40, 41). Currently, identifying the etiology 
of AIS using HMCAS still requires extensive observational and 
demonstrative research. Furthermore, ICAS can be identified by the 
microcatheter first-pass effect observed during digital subtraction 
angiography (DSA) owing to the low burden of fresh thrombosis 
(14). However, the inability to clarify the etiology of the disease 
before surgery limits the promotion of clinical applications. A 
recent study found that a Tmax ratio of >10 s/>6 s could predict 
ICAS-related LVO with or without embolic sources before EVT 
(42). However, the study did not provide a specific cut-off value, 
and some patients could not calculate the ratio due to a Tmax >6 s 
value of zero. Therefore, it is necessary to identify more effective 
and simpler imaging signs to differentiate ICAS-related from 
embolization-related LVO. A recent study suggested that HIR ≤ 0.22 
(AUC, 0.85; 95% CI: 0.75, 0.96) and CBV ≥ 0.90 (AUC = 0.92, 95% 
CI: 0.81, 0.98) could serve as valid predictive biomarkers for ICAS 
(22). In this study, we dichotomized the two indices based on the 
cut-off values and compared them with the PPS. The analysis 
revealed that PPS had a higher AUC value for predicting 
atherosclerosis compared with HIR and CBV. Both HIR and CBV 
parameters are automatically calculated by software based on 
perfusion images and are currently used to reflect collateral 
circulation. A recent investigation has affirmed a significant 
association between favorable HIR and atherosclerosis (43). 
Importantly, in our current study, we observed the presence of the 
PPS in the perfusion images, suggesting a potential shared 
etiological mechanism with the two indicators.

4.4 Advantages and limitations of the study

Imaging signs such as thrombus imaging, diffusion-weighted 
imaging, vascular calcification, and collateral circulation are primarily 
obtained through catheter angiography or thrombectomy, rather than 
during routine CT scans (44, 45). MRI scanning can also yield some 
signs, but it necessitates that the patient keeps their heads motionless 
throughout the examination period. Recognizing these signs requires 
the expertise of specialized neurologists and imaging physicians, thus 
limiting their clinical application. A significant advantage of this 
research is the introduction of a novel imaging approach that can 
be easily detected in clinical environments. However, our study has 
some limitations. First, the study was retrospective with a small 
sample size, highlighting the need for additional prospective studies 
with larger sample sizes. Second, this study exclusively included 
patients with occlusion of the MCA M1. Subgroups were identified 
through imaging, and patients with persistent vascular occlusion were 
excluded, leaving uncertainty about whether similar conditions exist 
in patients with occlusion of other vessels. Third, while congestive 
heart failure in some patients may lead to decreased cerebral 
perfusion, it remains unclear whether these patients exhibit differences 
in AI software perfusion images. Consequently, such patients were not 
excluded from the present study, potentially introducing selection bias 
into the results. Furthermore, the imaging analysis in this study was 
conducted using the RAPID software, which might potentially limit 
its widespread applicability. Several software options are available for 
perfusion calculations, and further investigation is necessary to 
determine whether alternative software can produce comparable 
outcomes. Further research is required for the differential analysis of 
imaging features in patients with AIS of various etiologies. This will 
contribute to a more comprehensive assessment of AIS etiology, 
guiding the selection of clinical treatment options.

5 Conclusion

In conclusion, this study introduces a novel perfusion image sign 
associated with ICAS. The PPS may function as a specific imaging 
marker for the identification of ICAS and could potentially guide 
subsequent endovascular revascularization therapy. Further 
confirmation through prospective studies with larger sample sizes is 
necessary to validate the findings of this study.
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