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Purpose: Currently, a range of electromagnetic therapies, including magnetic 
field therapy, micro-currents therapy, and tumor treating fields, are under 
investigation for their potential in central nervous system tumor research. Each 
of these electromagnetic therapies possesses distinct effects and limitations. 
Our focus is on overcoming these limitations by developing a novel electric field 
generator. This generator operates by producing alternating induced currents 
within the tumor area through electromagnetic induction.

Methods: Finite element analysis was employed to calculate the distribution of 
electric fields. Cell viability was assessed using the CCK-8 assay. Tumor volumes 
and weights served as indicators to evaluate the effectiveness of TTIF. The in-
vivo imaging system was utilized to confirm tumor growth in the brains of mice.

Results: TTIF significantly inhibited the proliferation of U87 cells both in vitro 
and in vivo.

Conclusion: TTIF significantly inhibited the proliferation of U87 cells both in 
vitro and in vivo. Consequently, TTIF emerges as a potential treatment option for 
patients with progressive or metastatic GBM.
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Introduction

The dysregulation of biological characteristics in tumors arises from changes occurring 
at both the cellular and tissue levels. One mechanism of dysregulation is through 
bioelectrical changes (1). Tumor cells exhibit a resting membrane potential of 
approximately −25 mV, significantly lower than that of normal cells (2). Moreover, multiple 
ion channels are found to be  overexpressed in various types of tumor cells (3–6). 
Consequently, tumor cells disrupt local ionic environments, resulting in the generation of 
distinct local electric fields (EFs) (7). These EFs are present within the tumor interior and 
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on its surface, leading to outward electric currents at tumor sites 
(8). The differences in metabolism, structure, and electrical 
properties between tumors and normal tissues provide the 
mechanistic basis for electromagnetic therapy to selectively kill 
tumor cells through non-thermal effects, while minimally 
impacting normal cells.

Low-frequency (<100 Hz) alternating magnetic fields (MFs) and 
pulsed magnetic fields generated by the coil exhibit anti-tumor effects 
by inducing cell apoptosis, oxidative stress, increasing intracellular 
calcium levels, and reducing angiogenesis (9–15). One direct effect of 
magnetic field therapy is the disruption of ion movement by the 
Lorentz force. Another hypothesis suggests that alternating magnetic 
fields induce currents within tumors. Research on central nervous 
system (CNS) tumors has indicated that MFs enhance the apoptotic 
effects of temozolomide (TMZ) through redox regulation in U87 cells 
(16, 17). However, there is a lack of relevant clinical-level studies.

Common current therapies include direct current therapy (DCT) 
and alternating current therapy. DCT involves inserting electrodes 
into tumors and delivering stable direct current (40–80 mA) at low 
voltage (6–8 V). Direct current exerts its anti-tumor effects through 
electrochemical reactions, anti-angiogenesis, and altering the pH of 
the surrounding environment (18–20). One study demonstrated that 
sustained exposure to low-frequency (50 Hz), low-intensity (7.5 μA) 
alternating current can impact the proliferation of rat glioma C6 cells, 
and increasing the frequency and intensity can enhance its cytotoxic 
effect (21). Additionally, alternating current with a frequency of 
100–200 kHz, intensity of 10–50 mA, and intermittent exposure 
(30 min/day) significantly inhibits the proliferation of breast cancer 
cells and glioma cells (22). However, due to the requirement of surgical 
implantation, there is currently a lack of clinical research on 
CNS tumors.

Tumor treating fields (TTFields) delivered by a pair of insulated 
electrodes are an intermediate-frequency (100–300 kHz), 
low-intensity(1–3 V/cm), alternating electric fields (23, 24). The early 
proposed TTFields’ anti-tumor mechanism of action involved 
polymerization-depolymerization process of microtubules and mitotic 
disruption interfered by electrical forces on cell structure proteins 
(25). Recent research showed that TTFields can exert anti-tumor 
effects through multiple mechanisms, including disrupting cell 
membrane potential, increasing cell membrane permeability, affecting 
calcium ion channels, damaging DNA and inhibiting DNA repair 
(26–29). Currently, multiple clinical trial results demonstrated that 
TTFields have excellent anti-tumor effects in various types of cancers, 
including glioblastoma (GBM), malignant pleural mesothelioma 
(MPM), non-small cell lung cancer (NSCLC), and pancreatic 
carcinoma (PAC) (30–38). The median overall survival (OS) time of 
patients with newly diagnosed glioblastoma received temozolomide-
only is 16.0 months. When TTFields are administrated, the median 
OS time is 20.9 months. Due to the unique treatment form of 
TTFields, it can not only treat tumors alone but is also particularly 
suitable for combination with other treatment methods, such as 
radiotherapy (RT), chemotherapy, targeted therapy, and 
immunotherapy (39). TTFields therapy has demonstrated promising 
results in the treatment of GBM when combined with targeted 
therapies such as bevacizumab. And one case report described a 
patient with thalamic glioblastoma who achieved a complete 
radiological response following treatment with proton therapy, 
temozolomide (TMZ), and TTFields (40). Multiple combination 

therapies incorporating TTFields are currently in Phase 2 
clinical trials.

Over the past 20 years, numerous preclinical studies on 
electromagnetic therapy for CNS tumors have shown promising 
results, but clinical studies have been very limited. The unique tissue 
structure and biological functions of the CNS have posed barriers to 
the translation of devices into clinical practice. The application of 
invasive electromagnetic devices has been approached with caution. 
Even the TTFields device, which is a capacitor-like device delivering 
electric fields, has limitations. Insulated electrodes are placed on the 
shaved scalp when patients receive TTFields therapy. While the 
existing TTFields device has demonstrated efficacy against 
supratentorial GBM, its efficacy against infratentorial and spinal cord 
GBM has not been confirmed (41). It is challenging to arrange two 
opposite arrays on the face and the skin adjacent to the spinal cord to 
ensure that the threshold of electric field intensity is sufficient to arrest 
cellular proliferation (42).

We are committed to addressing these limitations by developing a 
new electric field generator. We have found that a transformer-like 
electric fields device offers several advantages, including the feasibility 
of vertical electric fields covering the infratentorial and spinal cord 
areas, wearability, and non-disposable packaging. The device generates 
alternating induced currents in the tumor area based on electromagnetic 
induction. In the present study, we propose and validate, for the first 
time to our knowledge, the feasibility of Tumor-treating Induced Fields 
(TTIF) therapy delivered by a transformer-like electric fields device.

Methods

TTIF device

The TTIF device mainly consists of one motor, wires, one 
capacitor, and one magnetic ring (Figure 1A). The electric coil wound 
around the magnetic core, together with the capacitor, forms an LC 
resonance circuit. The switch on the LC resonance circuit is turned 
off after the motor is powered once, and energy is continuously 
transferred in the inductor and capacitor. Based on electromagnetic 
induction, alternating current in the inductor coil generates an 
alternating magnetic field within the magnetic ring. Then, the 
alternating magnetic field within the magnetic ring generates an 
alternating electric field radiating outward. Consequently, the tumor 
microenvironment exhibits micro-alternating induced currents. The 
function of the switch and the LC resonance circuit is to convert the 
low voltage direct current in the wire into high voltage, medium-
frequency alternating current in the inductor coil. In cellular 
experiments, the current density in the tumor cell region reached 
1,000 mA/m2. This result was obtained through finite element analysis.

Finite element analysis

The electric field distribution around the device was calculated 
using the finite element method to solve the quasi-static 
approximation of the Maxwell’s equations, which is valid for this 
model. For the model we utilized the Comsol Multiphysics, version 
6.2. The following boundary conditions were imposed: continuity 
of the normal component of the current density at all interior 
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boundaries and electric insulation at the external boundaries. The 
frequency was set to 200 kHz.

Cell viability

In this study, TTIF was applied to glioblastoma cells at 200 kHz, 
based on previous research. The cell dish was positioned at the 
center of the magnetic ring, perpendicular to its plane. Cell viability 
was assessed using the Cell Counting Kit-8 (CCK-8). A total of 
1 × 10^5 cells were seeded into a 35 mm culture dish and incubated 
overnight. At each time point, the medium was replaced with 1 mL 
of media containing 10% CCK-8 reagent and incubated for 1–2 h at 
37°C with 5% CO2. Subsequently, the media from each 35 mm 
culture dish were transferred into 96-well plates (100 μL/well). The 

absorbance of each well was measured at 450 nm using a 
microplate reader.

Animal models

Both subcutaneous and intracranial xenograft tumor models were 
utilized to evaluate the effect of TTIF on GBM in vivo.

The subcutaneous tumor models

Female BALB/c-nu mice aged 6 weeks were obtained from Beijing Si 
Bei Fu Experimental Animal Technology Co., Ltd. Subcutaneous 
injections of U87 GBM tissue (8mm3) with 200 μL phosphate-buffered 

FIGURE 1

Structure diagram of the TTIF device (A). Distribution of electric field lines generated by TTIF (B). Vertical electric field lines at the center of the 
magnetic ring (C). Detection of electric field intensity (D). Relationship between electric field intensity and distance (E).
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saline (PBS) were administered in the right groin of the mice. Successful 
inductions of 75 mm3 subcutaneous tumors were observed within 10 days. 
The mice were randomly divided into different groups: Control or Tumor-
Treating Induced Fields (TTIF) groups. The maximum allowable tumor 
size in the mice before euthanasia was 2,000 mm3. Tumors were isolated 
and measured at the end of the experiment. Tumor volumes were 
calculated using the following formula: width^2 × length × 0.52.

The brain tumor models

A total of 0.32 μL of the G261-luc cell suspension was injected into 
the brains of C57BL/6 mice, approximately 1.8 mm lateral and 1 mm 
posterior to the bregma in the right brain hemisphere, over 4 min 
using a stereotactic rodent brain injection system. In total, either 
1 × 10^4 or 1 × 10^5 G261-luc glioma cells were injected. Mice 
underwent bioluminescence imaging with an in-vivo imaging system 
(IVIS) before and after treatment to confirm tumor growth. Total flux 
(p/s) was calculated from the Region of Interest (ROI) in Living Image 
Software to quantitatively assess treatment efficacy.

Statistical analysis

Statistical analyses were conducted using GraphPad Prism 8.0.1. 
One-way ANOVA tests were utilized to compare tumor volumes and 
total flux between treatment groups. The normality of data was 
assessed using the Shapiro–Wilk test. Unpaired t-tests were employed 
to compare tumor weight and cell viability. Log-rank tests were 
conducted to compare overall survival (OS) between two groups. A 
p-value of <0.05 was considered statistically significant. Numerical 
values were reported as mean ± standard error of mean (SEM). When 
P is greater than or equal to 0.05, the figure is labeled with “ns.” When 
P is less than 0.05 but greater than or equal to 0.01, the figure is labeled 
with “*.” When P is less than 0.01, the figure is labeled with “**.”

Results

The TTIF device generated a vertical electric 
field at the center of the magnetic ring

Initially, a quadrilateral magnetic ring was utilized as the electric 
field generator, and FEA was conducted to analyze the electric field 
distribution. The results indicated that the TTIF device produced 
circular, closed electric fields surrounding the magnetic ring (Figure 1B). 
As proximity to the center of the magnetic ring increased, the curvature 
of the electric field lines decreased, tending towards perpendicularity to 
the plane of the magnetic ring (Figure 1C). Electric field intensity in the 
air surrounding the magnetic ring was measured (Figure 1D), showing 
values exceeding 50 V/m within a 10 cm range (Figure 1E).

TTIF inhibited the proliferation of U87 cells 
in vitro

Following 72 h of TTIF treatment with a current density exceeding 
1,000 mA/m2, U87 cell density markedly decreased, accompanied by 

noticeable alterations in cell morphology (Figures 2A,B). Circular cell 
proportion increased, while cytoplasmic vacuoles emerged 
(Figures  2C,D). The inhibitory effect of TTIF was found to 
be  dependent on exposure time, with efficacy increasing with 
prolonged treatment durations (Figure 2E).

TTIF inhibited the growth of GBMs in the 
subcutaneous murine model

To investigate the anti-tumor effects of TTIF in vivo, we initially 
transplanted U87 tissue subcutaneously into BALB/c-nu mice (n = 4 
for each group). The tumor-bearing mice in the TTIF group were 
housed at the center of the magnetic ring and received continuous 
TTIF treatment for 21 days. Tumor volume was assessed every 7 days 
using a caliper (Figure 3A). The time-tumor volume curve indicated 
that TTIF significantly suppressed the growth of subcutaneous glioma 
volumes in mice (p = 0.007, Figure 3B). Following 21 days of TTIF 
treatment, the tumor volume of the experimental group mice was 
notably smaller than that of the control group mice (Figure  3C). 
Supporting this observation, the data on tumor weight also 
demonstrated a significant difference (p = 0.010, Figure  3D). 
Additionally, we assessed the weight of various organs in mice, with 
results showing no statistically significant difference between the two 
groups (Figure 3E).

TTIF prolonged the OS of intracranial 
tumor-bearing mice

1 × 104 G261 glioma cells were injected into the brains of C57 mice 
(n = 10), and IVIS was used on days 7, 14, 21, and 28 (Figure 4A). On 
day 7, after confirming successful induction of brain tumors using 
IVIS, mice were randomly divided into control and TTIF groups. 
Although the difference was not statistically significant, we observed 
a trend of decreasing luciferase intensity in mice receiving TTIF 
treatment compared to the control group (p = 0.0826, Figures 4B,C).

To further investigate TTIF’s ability to inhibit tumor growth in the 
in situ brain tumor murine model, the number of cells injected was 
increased to 1 × 105. On day 3, mice were randomly divided into 
control and TTIF groups. Subsequently, we recorded the OS of each 
mouse. TTIF-treated mice showed prolonged survival, with a median 
survival of 47 days compared to 37 days in the control group 
(p = 0.0274, Figure 4D).

The characteristics of the small magnetic 
ring

In previous research, we thoroughly examined the characteristics 
and verified the therapeutic efficacy of a large magnetic ring. 
Subsequently, we pursued the development of a smaller magnetic ring, 
measuring 4 cm in external diameter and 1.6 cm in internal diameter 
(Figure  5A). However, we  encountered challenges stemming from 
inadequate miniaturization and insufficient reduction in weight of the 
smaller ring, impeding its applicability in animal experiments involving 
tumor-bearing mice. To overcome this hurdle, we devised a simplified 
cubic model of human head tissue for finite element analysis, aimed at 
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investigating the behavior of small magnetic coils. This model 
comprehensively incorporates the scalp, skull, cerebrospinal fluid, gray 
matter, and white matter, each with distinct thicknesses of 5 mm, 6 mm, 
3 mm, and 4 mm, respectively. Upon situating the small magnetic ring 
on the surface of the head tissue, a radial fountain-like distribution of 
electric field lines manifests within the head (Figure 5B). Upon reaching 
voltage levels comparable to those of clinical TTFields equipment, 
we observed the emergence of a specific intensity of electric field and 
longitudinal induced conduction current in the vicinity of the brain, 
adjacent to the ring (Figures 5C,D).

Discussion

GBM stands as the most aggressive primary tumor affecting the 
central nervous system (43). The standard treatment protocol for 

newly diagnosed GBM involves surgery followed by radiotherapy 
(RT) concurrently with TMZ, along with adjuvant TMZ, optionally 
supplemented with TTFields (44). Advanced stages of glioblastoma 
exhibit notably aggressive characteristics (45). Approximately 4.5% 
of patients diagnosed with supratentorial glioblastoma experience 
infratentorial metastases, while 3–5% present with metastatic spinal 
dissemination (MSD) (46, 47). Autopsy findings have revealed 
frequent incidental spread from supratentorial regions to the brain 
stem and spine, in contrast to relatively infrequent clinical incidences 
(48, 49). Complications such as infratentorial recurrence (ITR) and 
MSD may occur more frequently. Presently, there exists no 
standardized treatment approach for managing ITR and 
MSD. Although these patients may undergo additional radiotherapy 
and chemotherapy, their median OS, which are 5.5 months for ITR 
and 4 months for MSD, significantly lag behind those of the general 
GBM patient population (9.1 months).

FIGURE 2

The 30  V TTIF device can inhibit the proliferation of U87 cells, achieving a current density of up to 1,000  mA/m2 in the cell area. Comparison of cell 
images between the control group (A) and the electric field group (B) under a 4x phase-contrast microscope. Cell images of the control group (C) and 
the electric field group (D) under a 10x phase-contrast microscope. Relationship between cell viability and TTIF exposure time (E).
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The grim prognosis observed in GBM patients is partly attributed 
to the challenges associated with successful drug delivery across the 
blood–brain barrier (BBB) (50). The presence of the BBB limits the 
availability of traditional chemotherapy and targeted drugs for 
GBM. Since 2005, only a few new drugs—namely, Temozolomide, 
bevacizumab, and regorafenib—have been included in the NCCN 
guidelines as first- and second-line treatments for glioblastoma GBM 
(51, 52). However, research into new treatments for GBM is advancing 
rapidly (53). One promising option is vemurafenib, a highly selective 
BRAF V600 inhibitor that has demonstrated long-term antitumor 
effects in some patients with BRAF V600 mutant gliomas (54). 
Additionally, combination therapy targeting both BRAF and MEK has 
shown advantages over monotherapy with BRAF inhibitors. In a study 
involving the combination of dabrafenib and trametinib for recurrent 
or refractory high-grade gliomas (HGG) with the BRAF V600E 
mutation, an objective response was observed in 32% of GBM 
patients, with a complete response in 6.5% of cases (55). Furthermore, 
paxalisib, a small molecule capable of penetrating the blood–brain 
barrier and inhibiting the PI3K/AKT/mTOR pathway, has 
demonstrated clinical activity in newly diagnosed GBM patients with 
unmethylated MGMT promoters (56).

During radiation therapy, particularly reirradiation, the 
tolerance of normal brain tissue to radiation doses emerges as a 
significant limiting factor (54). Another important factor in 

qualifying patients for re-radiation is the increased risk of 
radionecrosis. The two primary directions in the development of 
radiotherapy for central nervous system tumors are: (1) modifying 
the radiotherapy regimen, including approaches such as 
preoperative radiotherapy and phased radiotherapy; and (2) 
enhancing the capabilities of radiotherapy equipment, exemplified 
by advancements in gamma knife and proton therapy 
technologies (57).

Electromagnetic therapy presents itself as a potentially viable 
option for treating CNS tumors. However, when utilizing TTFields, 
the range of EFs remains highly restricted. While TTFields delivered 
through capacitor-like devices demonstrate effectiveness primarily for 
supratentorial GBM, their application may not extend to infratentorial 
and spinal cord GBM. Consequently, patients with GBM face a dearth 
of sufficient treatment options when tumors progress or metastasize.

TTIF emerges as a potential treatment option for these patients. 
The TTIF device generates an alternating electric field at the center 
and on both sides of the magnetic ring through a circular alternating 
magnetic field. When tissues or tumors are in proximity to the TTIF 
device, alternating currents are induced. The device is non-invasive 
and easy to wear. The small magnetic ring is positioned on the skin 
surface corresponding to the tumor’s location. Compared to TTFields 
electrodes, the advantage of TTIF’s small magnetic ring is that it can 
be used individually, allowing placement on the skin atop the head or 

FIGURE 3

BALB/c-nu mice were chosen for the experiment involving subcutaneous tumor formation, and the voltage of the TTIF device was set to 30  V. 
Schedule of TTIF treatment for subcutaneous tumor-bearing mice (A). Relationship between tumor volume and TTIF treatment duration (B). 
Comparison of tumor sizes between the control group mice and the TTIF group mice (C). Comparison of tumor weights between the control group 
mice and the TTIF group mice (D). Comparison of organ weights between the control group mice and the TTIF group mice (E).
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over the cerebellum. With a larger magnetic ring, tumors experience 
vertical induced currents at the center of the magnetic ring.

TTIF can be utilized clinically in various forms. When used alone 
as an alternative to TTFields, TTIF effectively treats tumors located 
within a large magnetic ring placed over the body, such as the head, 
as well as those within a specific range above and below the plane of 
the ring. Additionally, a small magnetic ring can be worn similarly to 
a transcranial magnetic stimulation (TNS) therapy device, generating 

a radial TTIF to treat tumors throughout the body. TTIF offers 
comparable and enhanced benefits when combined with other 
treatments. There is ongoing debate regarding the potential impact of 
wearing a TTFields device on the efficacy of radiation therapy. The 
necessity to remove TTFields can also lead to increased treatment 
costs due to the disposable nature of the electrodes. In contrast, TTIF 
equipment is designed for easy wear and removal, providing added 
convenience. Furthermore, TTIF can complement the effects of 

FIGURE 4

BALB/c-nu mice were chosen for the experiment involving intracranial tumor formation, and the voltage of the TTIF device was set to 45  V. Schedule 
of TTIF treatment for intracranial tumor mice (A). Bioluminescence imaging’s of tumors at various time points (B). Relationship between tumor 
fluorescence intensity and time (C). Comparison of OS between the TTIF group mice and the control group mice (D).
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TTFields therapy. When TTFields are employed to treat supratentorial 
tumors, TTIF can be  utilized as an adjunct therapy to prevent 
supratentorial metastases or to address spinal-disseminated tumors. 
Further FEA is required to determine specific treatment options for 
both scenarios.

Our study is subject to several limitations. The frequency and 
induced current density utilized in cellular experiments with the TTIF 
device were derived from various prior studies. In our initial study, 
we focused exclusively on 200 kHz, which is recognized as the most 
sensitive frequency for TTFields treatment of GBM cells. However, it 
is important to note that the electric field characteristics of TTIF may 

differ from those of TTFields. These differences could include 
variations such as non-conserved electric fields and conservative 
electric fields, potentially resulting in distinct efficacy and frequency 
sensitivity between the two treatments. However, due to the design of 
the LC resonance circuit, which causes these two physical parameters 
to vary together, the relationship between frequency and current 
density and their effective threshold was not established in this study. 
Furthermore, the efficacy of the small magnetic ring has not been 
validated in animal experiments, primarily because the ring has not 
been adequately miniaturized to reduce weight. Additionally, further 
research is warranted to elucidate additional mechanisms of action.

FIGURE 5

The appearance of the small magnetic ring (A). The small magnetic ring generates a radial, geyser-like distribution of electric field lines in the head (B). 
The distribution of the electric field in human head tissue under a voltage of 120 V is expressed in volts per meter (V/m) (C). Additionally, the 
distribution of induced longitudinal conduction current in the human head is presented, with current density expressed in amperes per square meter 
(A/m2) (D).
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Conclusion

We introduced the transformer-like induced fields/currents device 
for the first time in the field of electromagnetic therapy, outlining its 
feasible device structure and testing its functionality. Our findings 
indicate that TTIF significantly inhibited the proliferation of U87 cells 
both in vitro and in vivo. Consequently, TTIF emerges as a potential 
treatment option for patients with progressive or metastatic GBM.
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