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Unveiling the hidden connection: 
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Epilepsy is characterized by abnormal synchronous electrical activity of neurons 
in the brain. The blood-brain barrier, which is mainly composed of endothelial 
cells, pericytes, astrocytes and other cell types and is formed by connections 
between a variety of cells, is the key physiological structure connecting the 
blood and brain tissue and is critical for maintaining the microenvironment in the 
brain. Physiologically, the blood-brain barrier controls the microenvironment in 
the brain mainly by regulating the passage of various substances. Disruption 
of the blood-brain barrier and increased leakage of specific substances, which 
ultimately leading to weakened cell junctions and abnormal regulation of ion 
concentrations, have been observed during the development and progression 
of epilepsy in both clinical studies and animal models. In addition, disruption 
of the blood-brain barrier increases drug resistance through interference with 
drug trafficking mechanisms. The changes in the blood-brain barrier in epilepsy 
mainly affect molecular pathways associated with angiogenesis, inflammation, 
and oxidative stress. Further research on biomarkers is a promising direction for 
the development of new therapeutic strategies.
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1 Introduction

Epilepsy is a neurological disorder characterized by abnormal 
neuronal discharges, and often clinically manifests as convulsions or 
disturbance of consciousness (1). Epilepsy affects at least 65 million 
people worldwide and is the fourth most prevalent neurological 
disorder (2, 3). Although the prevalence of epilepsy has aroused great 
enthusiasm for epilepsy research among scientists, the pathogenic 
mechanism in 50% of epilepsy cases remains unknown (4). This gap 
in knowledge is also an important reason for the currently high 
proportion of drug-resistant epilepsy [notably, 38% in temporal lobe 
epilepsy (5)].

Abnormalities in cerebral vessels, a closely related structure to 
neural tissue, are necessarily associated with neurological diseases 
(6–8), including epilepsy (9). Alterations in microvascular networks 
can be  observed in the sclerotic hippocampus of temporal lobe 
epilepsy patients (10). In 60% of patients with epilepsy, symptoms are 
initiated by structural causes, such as traumatic brain injury (TBI) or 
stroke (1, 11), which are generally considered change blood-brain 
barrier (BBB) permeability. Indeed, discussions about the role of the 
blood-brain barrier in epilepsy have continued for decades (12, 13). 
Studies have shown that disruption of the BBB can cause seizures or 
aggravate epilepsy (14, 15), and conversely, progression of epilepsy can 
further disrupt the BBB (16–18). We discuss the structure of the BBB 
and its role in epilepsy in the following sections. In addition, 
we discuss the discovery of biological targets associated with the BBB 
to provide a reference for further improvement of epilepsy treatment 
strategies in the future.

2 Establishment of the blood-brain 
barrier

2.1 Structure of the BBB

In the nervous system, precise signaling activity places high 
demands on microenvironment stability. This is the significance of the 
existence of the BBB (6, 19). Ehrlich (20) discovered that hydrophilic 
dyes injected into the blood circulation stain peripheral organs but not 
the spinal cord and brain, thus confirming the existence of a special 
interface between the central nervous system and blood for the first 
time. Stern (21) postulated that there was a barrier between blood and 
neuronal tissue and coined the name blood-brain barrier. The BBB is 
necessary for normal activity in the central nervous system (CNS). All 
organisms with a well-developed CNS have a well-established BBB 
(22). In adults, capillary endothelial cells (ECs) are the main 
component of the BBB and constitute a blood-brain exchange 
interface area of 12 to 18 cm2. Even with such a large contact area, 
capillary ECs in the CNS, unlike those in most peripheral organs, lack 
small pores that would allow polar solutes to pass through the barrier 
because of the presence of tight junctions (TJs). TJs are composed of 
different transmembrane proteins, including junctional adhesion 
molecules (JAMs), claudins, and membrane-associated guanylate 
kinase (MAGUK)-like proteins, and have the effect on plugging gaps 
between ECs. Therefore, TJs restrict the free transportation of polar 
solutes such as ions and solutes through paracellular diffusion 
channels by imparting the high transendothelial electrical resistance 
(TEER) of the BBB (23). In addition to TJs, interendothelial gap also 

features adherens junctions (AJs) and related proteins functioning as 
junctional complexes, which are involved in the maintenance of BBB 
permeability, cell adhesion and angiogenesis (24). Loss of AJs can 
cause decreased BBB integrity and increased permeability.

In contrast to peripheral capillaries, special structures such as 
pericytes, basal lamina, and astrocyte end feet cover the periphery of 
the vessels around capillaries in the CNS. Pericytes are located outside 
ECs and embedded in the vascular basement membrane, which plays 
an important role in regulating angiogenesis, extracellular matrix 
deposition, and immune cell infiltration in the CNS. The basement 
membrane covers the adventitial surface of ECs and extends around 
capillaries but separates postcapillaries at venules. This structure 
creates a perivascular space that facilitates drainage of cerebrospinal 
fluid (CSF) for immunosurveillance (25). Astrocytes can polarize 
neuronal processes or perivascular cellular processes and participate 
in the regulation of blood flow (26). Pericytes and the end feet of 
astrocytes are connected (27, 28), which becomes the anatomical basis 
for their functional relationship during development and 
inflammation (29). Studies have confirmed the involvement of 
astrocytes and pericytes in the deposition of basal lamina during 
angiogenesis (23, 30) and the developmental localization and 
polarization of ATP-binding transporters on endothelial cells (31). In 
addition, CNS-associated macrophages are also located between 
astrocyte terminals and parenchymal vessels, where they extend into 
the perivascular space and participate in immune processes by 
phagocytosing debris (32).

Recent research has demonstrated the significant contribution of 
microglia in the maintenance of blood-brain barrier (BBB) function. 
Microglia are involved in the stabilization of intracranial 
neovascularization, facilitation of vasoconstriction, and mediation of 
blood flow signaling upon activation (33–37). Various factors have the 
potential to impede BBB function and compromise BBB integrity by 
influencing microglial activity (38, 39). Notably, microglia play a role 
in synaptic remodeling and contribute to brain development within 
the nervous system (40, 41).

2.2 Permeability and barrier function of the 
BBB

The BBB acts as a barrier between the brain and the blood that 
connects external substances, and its function is achieved by limiting 
or allowing different substances to cross. Compared with that of 
peripheral vessels, BBB permeability is much less, generally allowing 
passive diffusion of lipophilic molecules less than 500 Da and few 
hydrogen-bonded donors and/or acceptors under physiological 
conditions (42, 43). In addition to mass, lipophilicity, and the presence 
of hydrogen bonds, the charge and polar surface area of the compound 
can also influence the associated BBB permeability (6, 44). These 
factors contribute to the inability of 98% of drugs to cross the BBB (45) 
while small, lipophilic, uncharged antiepileptic drugs can easily cross 
the BBB (46). In addition, a few antiepileptic drugs, such as the short 
branched-chain fatty acid valproate, can also enter the brain through 
carrier-dependent active transport (47, 48). Different ion channels and 
transporters at the BBB can complete the transmembrane transmission 
of charges, thereby helping to maintain synaptic signaling activity and 
ion stability in the internal environment. At the BBB, levels of 
potassium (K+), magnesium (Mg2+), and calcium (Ca2+) ions are 
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differently regulated. Potassium ions are present in mammalian 
plasma at concentrations of approximately 4.5 mMol. In CSF, however, 
the potassium concentration is approximately 2.5–2.9 mMol and is not 
affected by external factors such as food consumption, exercise, 
pathological conditions, etc. (49, 50). Selective and region-specific 
expression of some substance transporters in ECs ensures polarization 
of ECs (51). In addition, the BBB is involved in completing the 
regulation of neurotransmitter distribution in the CNS by physically 
separating central and peripheral nerves. Neurotransmitters such as 
glutamate are released in large amounts into the cerebral CSF during 
hypoxia in ischemic stroke and can lead to neurotoxic damage (52). 
Therefore, the permeability of the BBB also plays a significant 
protective role in the central nervous system. On the one hand, the 
BBB prevents macromolecules such as albumin, prothrombin, and 
plasminogen from entering the CNS, preventing apoptosis and 
damage to neural tissue (53, 54). On the other hand, the BBB acts as 
a barrier to prevent invasion of the CNS by toxins in the blood, such 
as endogenous proteins or xenobiotics from the external environment. 
If these toxins enter the brain, they may impair neuronal activity and 
promote cell death.

The barrier effect of the BBB is mainly formed by ECs. The 
physical barrier of the BBB, the first barrier effect, refers primarily to 
the tight junctions between ECs that limit paracellular transport of 
polar solutes (55). Second, the chemical barrier consists of different 
transporters for various substances. ECs involved in the BBB contain 
two types of transporters. One type is nutrient transporters that 
facilitate the entry of specific nutrients into the CNS and the discharge 
of specific waste products into the bloodstream (56). The other is 
efflux transporters, which are generally ATP-binding cassette 
transporters, such as P-glycoprotein and breast cancer resistance 
protein (BCRP). Efflux transporters use energy from ATP hydrolysis 
to pump potentially toxic lipophilic compounds back into the blood 
and limit the access of many therapeutically used drugs to the brain, 
providing a mechanism for brain capillary ECs to act as a chemical 
barrier (57–59). The third barrier effect mediated by ECs is the 
multienzyme barrier, which may provide the BBB with some degree 
of substance metabolism capacity (51). Brain capillaries contain a 
variety of neurotransmitter-metabolizing enzymes, including 
cholinesterase, GABA transaminase, aminopeptidase, and drug-and 
toxin-metabolizing enzymes. They protect the brain from circulating 
neurotransmitters as well as harmful substances with their ability to 
clear or neutralize (60–62).

3 Breakdown of the blood-brain 
barrier in epilepsy

In earlier studies, it has been proposed that seizures disrupt the 
normal barrier to transport or diffusion of certain chemicals between 
the blood and brain tissue. Alternative hypotheses (notably, the BBB 
hypothesis) in the 19th century have already been used to explain 
some phenotypes associated with epilepsy (63, 64). Originating from 
the abnormal physiological state that causes epilepsy, breakage of the 
BBB loop leads to changes in permeability that can ultimately lead to 
abnormal entry of substances from small molecules to intact cells (17, 
65), which is in turn evidence of microvascular dysfunction in 
epilepsy (66, 67). Because prolonged opening of the BBB is associated 
with neuronal network dysfunction and long-term BBB dysfunction 

itself also indicates cortical damage, it is presumed that BBB damage 
in the epileptic brain contributes to epilepsy comorbidities. Many 
animal experiments and instances of clinical evidence also support the 
hypothesis that vascular lesions, including BBB dysfunction, trigger 
seizure mechanisms (68). In experimental models of epileptic rats, 
researchers found that serum IgG leaks into the interstitial space and 
is taken up by neurons as vascularization progressively increases (69). 
A process of tight junction protein reduction and increased 
permeability were also observed in 17-day embryos from the VgatECKO 
model (70). Notably, vascular remodeling may lead to the formation 
of leaky vessels, further contributing to epileptogenesis (71). In 
another rat model of epilepsy, inhibition of angiogenesis by the 
chemical inhibitor sunitinib was shown to result in seizure freedom 
(72). Following increased permeability of the BBB, extravasated 
albumin is taken up into astrocytes (73), resulting in impaired 
buffering of potassium and glutamate, which may cause neuronal 
hyperexcitability and spontaneous seizures (74). In addition, activated 
astrocytes can promote the release of proinflammatory cytokines and 
chemokines (19). Albumin itself can also be taken up by neurons, 
leading to hyperexcitability and epileptogenesis (75). Evidence from 
patients with epilepsy showed that epileptic tissues had significant 
BBB abnormalities (64) and showed a more significant tendency to 
hemochemistry than normal tissues (69). Clinically, seizures have 
been observed in patients with brain lymphoma who underwent a 
brief BBB opening regimen (76).

3.1 Mechanisms of neuronal excitability 
changes

Under physiological conditions, K+ is the major player in neuronal 
excitation (77). To rapidly repolarize excited neurons, in addition to 
energy-dependent neuronal mechanisms, a glial buffer is required to 
achieve stable regulation of K+ concentrations under physiological 
conditions. In particular, astrocyte buffering is responsible for this 
process (78). It was previously shown that K+ is removed from the ECS 
by glial-specific Na+/K+ ATPase (79), and it was recently shown that 
the Na+/K+/Cl− cotransporter (NKCC1) in astrocytes is associated 
with BBB disruption (80). Astrocytes can use them to temporarily 
sequester excess extracellular K+ and release it as a buffer when K+ 
levels decline. In addition, astrocytes can also achieve K+ homeostasis 
through spatial buffering. Astrocytes take up K+ in areas with high 
concentrations through gap junctions between adjacent cells and 
release it in areas with lower concentrations (78, 81). When the K+ 
concentration is high, K+ diffuses into the larger extracellular space via 
net outwards movement guided by the astrocyte network through 
inwards rectifier potassium channels located in astrocyte foot 
processes (Kir 4.1) after causing a temporary increase in intracellular 
concentration (82, 83). The essential role of K+ during seizure 
initiation has been demonstrated. Researchers recorded K+ changes in 
epileptiform activity at different depth positions of the PC and found 
that surface K+ increased during epileptiform activity and spread to 
the deep layer; they also recorded enhanced spike activity at the same 
position (84). In animal experiments, extracellular K+ concentrations 
were found to reach the highest levels during irregular firing phases 
and bursting activity and to eventually recover (85). During seizures, 
K+ transport across the membrane leads to more intense 
depolarization, action potentials, and increases in potassium flux 
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through potassium channels (86). Drastic membrane depolarization 
is accompanied by inhibitory collapse of interneurons and allows ictal 
firing to spread widely in the brain (87). Transient pauses in 
interneuronal activity may occur under conditions of elevated 
extracellular K+ concentrations and sustain seizure progression by 
promoting principal cell recruitment (88–90).

Albumin is currently one of the best-known predisposing factors 
for epilepsy. Albumin itself is not toxic. No neurodegeneration has 
been observed after intracerebral injection of albumin into mice (91, 
92). Following BBB injury, leaked albumin can induce epileptogenesis 
by lowering the abnormal potential threshold for seizures (93). 
Albumin has been shown to enhance neural excitability in several 
studies (18, 73, 74). Albumin uptake by astrocytes is mediated by 
transforming growth factor, and is followed by downregulation of 
inwardly rectifying potassium channels, impacting buffering capacity 
(73). In addition, the absence of aquaporins in the telopodia affects 
the regulation of water and K+, resulting in the disruption of 
homeostasis of the nervous system. Albumin also attenuates gap 
junction coupling (94), leading to impaired potassium buffering and 
increased excitability (95, 96). In addition to changes in neural 
excitability induced by albumin leakage following BBB disruption, 
astrocyte uptake of glutamate is also compromised, resulting in loss of 
excitatory modulation of glutamate buffering assurance (18). BBB 
damage may also allow zinc in the blood to enter the brain, and its 
ability to continuously block extrasynaptic GABA-A receptors may 
lead to neuronal hyperexcitability and seizures (97, 98).

3.2 BBB disruption by traumatic brain injury

Traumatic brain injury (TBI) is associated with epilepsy. In 
Europe and the United  States, approximately 2.5 million people 
develop TBIs each year (99). The risk of seizure development increases 
dramatically with the severity of the TBI. Seizures develop in 53% of 
penetrating TBI patients (100). Posttraumatic epilepsy (PTE) is 
estimated to account for approximately 5% of all cases of epilepsy and 
20% of structural epilepsy cases (101). TBI can be  categorized 
according to several dimensions as impingement or nonimpingement; 
focal or diffuse; and mild, moderate, or severe. Intracranial 
hemorrhage can be  observed in moderate to severe cases. BBB 
impairment is one of the well-established pathological features of TBI 
(102–106). Other features include neurovascular structural damage 
caused by mechanical factors, secondary oedema formation, decreased 
cerebral perfusion levels, and increased glutamate levels (107–110). 
BBB damage following most mild TBI in which seizures or epilepsy 
develop is persistent, and perivascular and distributed IgG staining 
results have been found in the grey matter of TBI patients who died 
1–47 years after initial injury (111, 112). This has also been observed 
in animal models. Specifically, IgG staining was observed in the 
corpus callosum 3 months after TBI injury (113). In addition, 
increased expression of fibronectin and decreased capillary diameter 
have been observed (114). Cav-1 levels increased in cortical vessels 
2 months after injury (115, 116). Finally, TJ proteins such as claudin-5, 
occludin, and ZO-1 were downregulated during the early post-TBI 
period; however, levels increased after 1–2 weeks (117, 118). In 
addition to paracellular alterations, BBB transcellular permeability 
may also increase after TBI (119). More intuitively interpretable 
evidence for BBB disruption comes from measurements of vascular 

endothelial growth factor (VEGF), which is a BBB-related indicator 
and a protein that regulates angiogenesis and permeability. In animal 
experiments, increases in VEGF were observed at both 2 h and 
1 month following TBI, indicating impaired vascularity in both the 
short and long term (120, 121). In addition, serum hypoxia-inducible 
factor 1α (HIF-1α, which regulates VEGF expression) expression was 
also increased after experimentally induced TBI (122). Neuroimaging 
further substantiated the disruption of the blood-brain barrier (BBB) 
in traumatic brain injury (TBI). van Vliet et  al. (123) conducted 
T1-weighted magnetic resonance imaging on an animal model of TBI, 
revealing diverse levels of contrast agent leakage in the cerebral cortex 
and thalamus, indicative of notable impairment in BBB function. 
Notably, even minor trauma can lead to BBB disruption (124). TBI 
can cause endothelial cell damage by altering tight junction protein 
expression and the basal lamina, thereby disrupting BBB integrity 
(125, 126). BBB disruption produced by TBI causes inflammatory 
responses, lipid peroxidation, and DNA damage, further exacerbating 
damage to the BBB (126). Oxidative stress has been identified as a 
major cause of BBB damage in the subacute phase of blast TBI, and 
subsequent matrix metalloproteinase (MMP) activation can also lead 
to oxidative stress-mediated loss of BBB integrity (127). During or 
after TBI, astrocytes and microglia can rapidly respond to injury by 
affecting BBB function. VEGF, MMP, glutamate, and other substances 
are specific promoters of BBB integrity loss and are associated with 
astrocyte activation following TBI (128, 129). Apoptosis and 
neuroinflammation are also involved in the delayed breakdown of the 
BBB after TBI (130). Although BBB abnormalities can be observed 
early after TBI, they usually do not immediately induce seizures, 
which are observed later in most cases (14, 112).

3.3 Neuroinflammation

Inflammation is a physiological process of the body that aims to 
resist pathogen invasion, is regulated by multiple signals in the 
immune system and triggers the recruitment of leukocytes. Leukocytes 
initiate the release of chemotactic cytokines by detecting molecular 
cues associated with pathogens or injury. Chemotactic cytokines bind 
to other leukocyte surface receptors and induce local chemotaxis and 
the accumulation of inflammatory factors. Neuroinflammation is the 
normal response of the CNS to various insults, such as tissue damage, 
infection, autoimmune diseases, and epilepsy, and can balance the 
stronger metabolic needs during increased neuronal activity (131, 
132). However, prolonged or excessive neuroinflammatory responses 
lead to cellular dysfunction in various diseases, including epilepsy. 
Usually, neuroinflammation is closely associated with dysfunction of 
the BBB. Various mediators, including inflammatory cytokines and 
prostaglandins, can affect paracellular TJs and vesicular transport in 
ECs and are involved in multiple mechanisms (133, 134). Leukocyte 
transmigration can alter BBB permeability to serum proteins and 
circulating molecules through adhesion molecule interactions on ECs 
(63). In the absence of circulating leukocytes, glial-derived 
interleukin-1 also disrupts the BBB (17). Neuroinflammation and 
disruption of the BBB are well-established elements of the pathological 
process of epilepsy following brain injury (135). Gram-negative 
bacterial lipopolysaccharide (LPS) stimulates macrophages to produce 
IL-6 and IL-1, two cytokines that increase BBB permeability and are 
associated with seizure progression (136). LPS also increases BBB 
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permeability and promotes the migration of inflammatory cytokines 
into the periventricular space (137, 138) as well as an increase in 
activated microglia (139). Suidan et  al. (140) found significant 
upregulation of VEGF, a classic result of neuroinflammation-induced 
BBB disruption, in an animal model of neuroinflammation mediated 
by CD8 T cells. Notably, induction of inflammatory mediators also 
occurs in BBB ECs, suggesting the progression of inflammation from 
glia to cerebral microvessels. Inflammatory mediators released by 
macrophages and granulocytes also enter the brain during 
epileptogenesis (141). On the one hand, BBB leakage is a consequence 
of epilepsy. On the other hand, BBB leakage is involved in the 
promotion of epilepsy progression (15, 142). Epilepsy-related BBB 
disruption also involves activation of mast cells and mechanisms of 
action of proinflammatory cytokines (142). The synergistic effect of 
inflammatory molecules and leukocyte infiltration disrupts the BBB 
and promotes leakage of serum proteins (68, 143). Increased albumin 
levels in the brain activate transcriptional signals associated with 
TGF-β, which can maintain inflammation and induce epileptogenesis 
(93, 144). Overall, neuroinflammation plays an important role in 
epileptogenesis, acute symptomatic seizures, and chronic seizures 
(131, 136). Clinical trials involving positron emission tomography 
(PET) with translocator protein expressed by activated microglia 
(TSPO) have demonstrated that seizures, temporal lobe epilepsy, 
frontal lobe epilepsy, and focal cortical dysplasia are associated with 
neuroinflammation, and their acute onset leads to chronic 
neuroinflammation and exacerbates its deterioration (145). 
Autoimmune diseases increase the risk of epilepsy fourfold in young 
and middle-aged people (146). Another meta-analysis showed a 
2.5-fold increase in the prevalence of epilepsy among patients with 
systemic autoimmune diseases (SAD) and a 2.5-fold increase in the 
prevalence of SAD among patients with epilepsy, with a stronger 
association between SAD and epilepsy in people less than 20 years of 
age (147). Follow-up studies have found that serum IL-1β and IL-6 
levels in the central and peripheral regions of patients with drug-
resistant epilepsy decreased at 1 year after surgical treatment compared 
with those before surgery (148). The remaining studies in patients 
with epilepsy also demonstrated high serum and CSF levels of multiple 
proinflammatory cytokines, including IL-6, IL-17, TNF-α, 
transforming growth factor (TGF)-β, and interferon (IFN)-γ (149–
153). Gene expression profiling of surgically resected hippocampi 
from temporal lobe epilepsy (TLE) patients showed increased levels 
of chemokines CCL2, CCL3, and CCL4, as well as upregulation of the 
chemokine receptor CXCR4 (154). Expression levels of the chemokine 
ligand CX3CL1 were elevated in the hippocampus and adjacent cortex 
of epileptic rats and in the temporal neocortex of TLE patients (155). 
Different inflammatory pathways are active in patients with focal 
epilepsy, including serum nuclear factor kB (NF-kB) (156). In 
addition, a study by Numis et al. (157) demonstrated that higher levels 
of proinflammatory cytokines in neonates with encephalopathy were 
associated with an increased risk of developing epilepsy later in life. 
Associations between serum levels of inflammatory cytokines and 
disease course in patients with encephalopathy with status epilepticus 
during sleep (ESES) have also been demonstrated (153).

Experimental studies further explain the mechanism of the 
interaction between inflammation and epilepsy. Astrocytes generate 
many inflammatory molecules, including TGFβ, involved in epilepsy 
pathogenesis. TGFβ transduction is involved in the degradation of the 
perineural network around inhibitory neurons and reactive excitatory 

synapse formation, promoting the recurrence of seizures and 
pathological neural excitation (158, 159). Correspondingly, as TGFβ 
signaling blockers, angiotensin receptor 2 antagonists and specific 
inhibitors prevent functional impairment and reduce seizure 
frequency in animal models (160, 161). Inflammatory mediators and 
glutamate produced by astrocytes increase the overexpression of drug 
transporters in patients with drug-resistant epilepsy (162). In 
particular, p-glycoprotein reduces the efficacy of various antiepileptic 
drugs (AEDs) by transporting them from the brain to the blood and 
restricting their access to the brain (162). Neuroinflammation and 
oxidative stress were observed to appear before neuronal damage and 
seizures in mice with progressive myoclonic epilepsy (Unverricht–
Lundborg disease) (163). Inflammation exacerbates spiking and wave 
discharge (SWD) in a rat model of absence epilepsy, a form of epilepsy 
which can be  reduced by anti-inflammatory drugs (162, 164). 
Endogenous nitric oxide (NO), a proinflammatory mediator, was 
shown to be  a critical factor in seizure initiation and to promote 
seizures in mice (165). Similarly, HMGB1, another proinflammatory 
molecule, increased seizure frequency in rats after injection into the 
hippocampus (166).

Inflammatory processes are also involved in BBB leakage and 
disruption in status epilepticus. The occurrence of generalized status 
epilepticus (SE) triggers various inflammatory reactions, such as 
reactive astrocytosis, microglial activation, and infiltration of 
mononuclear cells (167). Elevated levels of sphingosine 1-phosphate 
receptor 1, which contributes to blood-brain barrier permeability in 
epileptic brains through the promotion of neuroinflammation, were 
detected alongside reduced levels of tight junction proteins in mice 
induced with pilocarpine-induced status epilepticus (168). A swift 
increase in blood-brain barrier permeability within epileptogenic 
brain regions was also observed during magnetic resonance imaging 
in this particular animal model (169). This finding serves as crucial 
evidence linking neuroinflammation to blood-brain barrier 
dysfunction in status epilepticus. Rojas et al. (170) observed a time-
dependent increase in pro-inflammatory mediators and disruption of 
blood-brain barrier (BBB) integrity in rats with status epilepticus (SE). 
It is noteworthy that novel pharmacological interventions may 
be more effective in light of the compromised BBB in SE (171).

3.4 The effect of BBB dysfunction on drug 
therapy

Dysfunction of the BBB mainly impacts drug resistance in epilepsy. 
Current antiseizure drugs (ASDs) are ineffective in approximately 30% 
of patients with epilepsy; that is, drug resistance has emerged (172). 
Drug resistance is associated with increased seizure morbidity and 
mortality (173). ASDs are often lipophilic and are a potential substrate 
for BBB efflux carriers, with efflux being an important cause of 
resistance. P-glycoprotein (Pgp), located on the endothelial luminal 
membrane of the BBB, is the main efflux carrier of the BBB, and its 
substrates are estimated to account for 50% of drug candidates (58, 59). 
Combined ASD is somewhat increased when the BBB is compromised. 
The drug is transported back into the bloodstream, thereby reducing 
brain levels of the drug and attenuating its effects (172). For phenytoin 
in particular, Pgp can reduce brain uptake by up to approximately 
70–80% (46). The reversibility of ASD efflux-related epilepsy drug 
resistance has been experimentally demonstrated. For example, NMDA 
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receptor antagonists or COX-2 inhibitors can inhibit Pgp increase by 
inhibiting glutamate release during seizures (46, 174). In addition to 
Pgp, BCRP transports some ASDs, such as lamotrigine. Interestingly, 
BCRP is expressed at significantly higher levels than Pgp in the human 
BBB, whereas the opposite is observed in the rodent BBB (175). 
Increased metabolism of ASDs also leads to increased drug resistance. 
Cytochrome P450 enzymes, which are responsible for the metabolism 
of multiple ASDs, have been found to be elevated in the brain ECs of 
surgically resected tissues from patients with drug-resistant epilepsy 
(176). In conclusion, BBB leakage in epilepsy does not increase drug 
levels in the brain parenchyma.

4 Molecular biomarkers of epilepsy

4.1 Angiogenesis

In neurological diseases, angiogenesis is associated with the 
permeability of the BBB (177). As a well-known angiogenic factor, 
VEGF promotes endothelial cell proliferation and migration and 
increases BBB permeability (178). In medically intractable epilepsy, 
VEGF regulates aberrant angiogenesis and is upregulated (179, 180). 
VEGF mediates astrocyte activation and increases seizure-related events 
(181). Furthermore, VEGF signaling leads to significant epileptiform 
activity in the hippocampus (179). In animal experiments, sunitinib, a 
VEGFR-2 inhibitor, completely inhibited pilocarpine-induced 
angiogenesis and seizures (72). Similarly, rapamycin reduces seizures by 
inhibiting mTOR, a kinase that mediates positive feedback to the VEGF 
pathway, which decreases BBB leakage and reduces activation of 
microglia and macrophages (182). The succinylation of PGK1 disrupts 
the integrity of the blood-brain barrier by modulating the angiostatin/
VEGF pathway, leading to alterations in seizure activity (183). In 
addition to the members of the VEGF family, multiple factors are also 
involved in the angiogenic process. EphA4, which can mediate dentate 
gyrus neurogenesis and angiogenesis, has recently been found to 
promote angiogenic processes in the CA1 and CA2 regions of the 
hippocampus (184). The Jagged/Notch1 signaling pathway has been 
shown to mediate astrocyte regulation of angiogenesis in a mouse 
model of kainate-induced epilepsy (185).

4.2 Inflammation

The upregulation of multiple inflammatory factors upregulated 
during BBB damage has been demonstrated (186). IL-1R1-TLR4 
signaling is involved in initiating neuroinflammatory processes in 
epilepsy (187). Overactivation of TLR4 and IL-1R1 is associated with 
autoimmune sepsis, diseases, and neurodegenerative diseases (188–
190). In drug-resistant epilepsy, signaling from both receptors 
stimulates neuronal hyperexcitability (191–194). IL-1R1 and TLR4 are 
expressed in astrocytes and BBB ECs and have been shown to 
be upregulated in clinical and experimental studies of epilepsy. IL-1R1 
can also be  induced in microglia (187). IL-1 receptor-associated 
kinase 1 (IRAK1) was found to be elevated in temporal lobe epilepsy 
(195). HMGB1, a ligand of TLR4, can shuttle between the nucleus and 
cytoplasm. HMGB1, serving as a biomarker for epilepsy, plays a 
crucial role in initiating neuroinflammation following epileptogenic 
injury. In TLE and cortical developmental malformations, 

translocation of HMGB1 impacts upregulation of TLR4 and RAGE 
(also activated by HMGB1) in neurons and astrocytes (196, 197). In 
addition, oxidative stress stimulates HMGB1 release, which 
subsequently promotes seizures by inducing TLR4 and RAGE. This 
also links neuroinflammation to oxidative stress in epilepsy (198). 
Recent research has shown that HMGB1 is expressed at markedly 
elevated levels in the bloodstream of individuals with drug-resistant 
epilepsy compared to those with well-managed seizures and healthy 
individuals. This differential expression of HMGB1 suggests its utility 
as a predictive biomarker for treatment response, holding substantial 
promise for clinical implementation (199).

Cyclooxygenase 2 (COX2) and arachidonic acid are involved in 
prostaglandin production. Selective inhibition of COX2 raises the 
seizure threshold in experimental animals with pentylenetetrazole-
induced acute transient epilepsy. However, this effect was not observed 
in rodents with status epilepticus (200). In experiments in rats with 
pilocarpine-induced status epilepticus, a reduction in the number and 
severity of chronic seizures was observed following treatment with 
celecoxib or parecoxib, COX2 inhibiting drugs (201, 202). Aspirin, as 
a nonselective COX1 and COX2 inhibitor, has also been investigated 
in epilepsy-related trials. In animal experiments, brief aspirin 
treatment reduced the frequency and duration of seizures and was 
associated with neuroprotective effects (203).

4.3 Oxidative stress

Oxidative stress can act as an important link between angiogenesis 
and inflammation and has been demonstrated to be associated with 
multiple neurological diseases, such as stroke, traumatic brain injury, 
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and 
multiple sclerosis. Oxidative stress exacerbates BBB disruption 
through activation of the inducible enzymes NADPH oxidase 4 
(NOX4) and NOX5. It also increases levels of inflammatory cell 
infiltration in the nervous system (204, 205). Nuclear factor erythroid 
2-related factor (Nrf2) is also a regulator of oxidative stress, involved 
through the transcription of antioxidant detoxification genes (206). 
Nrf2 has been demonstrated to affect BBB integrity by regulating the 
expression of BBB endothelial TJ proteins such as ZO-1 and OCLN 
(207). Pathological oxidative stress can cause the destruction of 
reactive free radicals and the BBB, which inevitably affects the 
progression of epilepsy. The inhibition of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS), as representative 
intracellular signaling molecules during oxidative stress, have been 
shown to ameliorate cognitive deficits caused by epilepsy and improve 
associated survival (208–210). In a rat model of epilepsy, seizure 
progression was suppressed after the application of antioxidants, and 
seizure frequency was drastically reduced after discontinuation of 
drug administration by blocking ROS production (196). In another 
similar animal trial, the antioxidant treatment promoted the 
translocation of the transcription factor NRF2 to the nucleus and gene 
transcription of antioxidant enzymes, ultimately blocking epilepsy 
progression and producing neuroprotective effects (211). Notably, 
NRF2 is a key molecule involved in the treatment of epilepsy with 
antioxidants. Induced expression of NRF2 in the mouse hippocampus 
reduced seizure frequency and duration. In addition, NRF2 was 
shown to directly regulate 3.5% of differentially expressed genes 
between the hippocampus of epileptic patients and controls (212).
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5 Other BBB-related neurological 
disorders

The BBB is associated not only with epilepsy but also with many 
other neurological diseases. The mechanisms underlying BBB damage 
in these diseases are similar, which not only demonstrates the 
importance of the BBB but may also be an important clue for the 
development of treatments for such diseases in the future.

5.1 Alzheimer’s disease

Alzheimer’s disease (AD), discovered 100 years ago by German 
physician Dr. Alois Alzheimer (213), is a disease characterized by 
impaired cognition and memory due to neuronal vulnerability (214). AD 
is characterized pathologically by the accumulation of 
hyperphosphorylated tau-forming neurofibrillary tangles (NFTs) in the 
brain and accumulation of amyloid-β (Aβ) into plaques (215). The 
progression of AD is associated with BBB dysfunction, even at an early 
stage (216, 217). In addition to a significantly higher rate of tracer leakage 
(218), tau oligomers and Aβ were found to accumulate in the cerebral 
vessels of AD model mice (219), and eventually the mice developed 
cognitive decline. Neuroimaging revealed that BBB permeability was 
significantly increased in the gray matter of patients with early-stage AD 
compared with controls (220). Moreover, promotion of brain tissue 
infiltration by peripheral macrophages by disruption of the BBB has also 
been found to be exacerbated in AD patients upon autopsy (221, 222).

There are many similarities in the mechanisms underlying BBB 
disruption between epilepsy and AD. For example, as in epilepsy, 
neuroinflammation is an important mechanism of BBB disruption in 
AD patients. Proinflammatory cytokines produced by microglia and 
astrocytes upon activation cause upregulation of MMP-9 expression 
in endothelial cells, which results in the degradation of tight junction 
proteins and causes the breakdown of the BBB (223). In turn, 
increased permeability of the BBB promotes immune cells to enter 
brain tissue, which is normally prevented by the BBB, and increases 
neuroinflammation (224). Infiltration of immune cells into the central 
nervous system can affect neurological function. T cells in the aging 
brain inhibit the proliferation of neural stem cells (225), and cytokines 
that mediate the infiltration process are also thought to have an 
important relationship with cognitive impairment (226).

Aβ and tau are classical markers of AD, and disruption of BBB also 
worsens AD by causing their deposition. In addition to transporting 
antiepileptic drug as described above, Pgp can transport Aβ out of the 
brain (227). Glucose transporter 1 (GLUT1) also promotes Aβ 
clearance from the brain via the LRP1-dependent pathway (228). 
Studies have confirmed that GLUT1 and Pgp are expressed at reduced 
levels in endothelial cells of cerebral vessels in AD patients, resulting 
in the accumulation of Aβ in the brain by disrupting its clearance (229, 
230). ABCC1 demonstrates a comparable and notably influential role 
in the pathogenesis of AD. In an animal model of AD expressing 
ABCC1, the activation of this protein substantially decreased the 
accumulation of Aβ (231). Furthermore, the overexpression of ABCC1 
resulted in a reduction in Aβ production and an increase in the 
cleavage ratio of amyloid precursor protein (232).

Tau forms NFTs, which are a hallmark of AD. Some studies have 
revealed that tau can cause leakage of the BBB even in the absence of 
Aβ (233). In aged AD model mice, tau is overexpressed, the cerebral 
microvessels are disrupted, and abnormal malformed vascular masses 

form, and cortical atrophy occurs (234). Tau expression is also 
negatively correlated with cerebral blood flow, a decrease in which is 
often accompanied by cognitive deterioration (235).

BBB disruption is a common pathological hallmark of AD and 
epilepsy (236). Indeed, epilepsy is frequently a comorbidity of 
AD. Emerging evidence suggests that early-stage AD patients are also at 
risk for epilepsy, and this proportion is not low (237, 238). Compared with 
patients with AD alone, AD patients with epilepsy not only have an earlier 
onset of cognitive decline, but also have a shorter life expectancy (239–
241). This demonstrates that epilepsy can accelerate the deterioration of 
AD patients’ condition. The BBB deserves further investigation as a point 
of connection between the two neurological diseases.

5.2 Multiple sclerosis

Multiple sclerosis is a chronic inflammatory demyelinating disease of 
the CNS (242). There are approximately 2.3 million people with MS 
worldwide (243). MS is an autoimmune disease in which reactive T cells 
interact with antigens presented by macrophages or microglia under 
pathological conditions, resulting in damage to myelin sheaths and axons 
and ultimately neuronal loss (244–246). Cytokines secreted by activated 
macrophages can also interfere with myelination and the expression of 
related genes (247), preventing myelin sheath repair and causing disability 
(248). Similar to epilepsy pathogenesis, disruption and leakage of the BBB 
are important contributors to MS pathogenesis. Fibrinogen deposition 
was observed following T-cell infiltration in demyelinated lesions, 
indicating increased endothelial permeability (249). TJ abnormalities, 
including claudin-3 loss, are also found in progressive MS, suggesting 
pathological opening of paracellular channels (250, 251). In fact, BBB 
changes often appear in the early stages of MS, before the formation of 
active lesions, which are a significant feature of early-stage MS (252, 253). 
Recent findings have even shown that functional abnormalities of the 
BBB represent additional pathological changes associated with MS (254). 
Because of the association of MS with the immune system, impaired 
neuroimmunity is often involved in MS-related BBB damage (255).

Endothelial cells under pathological conditions up-regulate 
membrane receptor expression and promote the release of 
pro-inflammatory factors from glial cells, increasing the recruitment of 
leukocytes to the CNS (256, 257). Reactive astrocytes can also separate the 
ends from capillary endothelial cells (258). These neuroimmune responses 
disrupt the TJ and endothelial cell membranes, allowing the BBB to 
continuously break down and increase its leakage.

5.3 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is one of the most common 
motor neuron diseases. This progressive neurodegenerative disease 
leads to eventual death due to paralysis and respiratory failure. ALS 
usually occurs in the middle-aged and elderly population, with a 
prevalence of 4.1–8.4 per 100,000 people, and is characterized by 
progressive loss of upper and lower motor neurons at the spinal cord or 
medullary level (259, 260). Disruption of the BBB or blood-spinal cord 
barrier (BSCB) is one of the features of ALS. Leakage of Evans blue in 
spinal capillaries was observed in an earlier mouse model of ALS (261). 
Detected downregulation of CD146 and laminin in mice revealed 
disruption of the endothelium and basement membrane (262). 
Erythrocytes were even observed in the spinal cord (263). In addition, 
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previous studies have found BBB disruption due to MMP-9 activation 
in patients and animal models (264), and the decrease levels of tight 
junction protein and adhesions protein in spinal cord (265). Autopsy 
results also confirmed dramatic reduction in pericyte numbers (266).

Interestingly, similar to epilepsy, both neuroinflammation and 
oxidative stress are associated with progressive impairment of the BBB/
BSCS in ALS. Activation of microglia, resulting in the release of 
proinflammatory cytokines and the recruitment of astrocytes, has been 
observed in animal models of ALS (267). Proinflammatory factors can 
impair tight junction protein expression. Inhibition of IL and TNF 
signaling in mice has been found to prolong their lifespan (268). 
Astrocytes exacerbate neurodegeneration after they are activated and 
impair vascular repair and vasculature formation. In addition, researchers 
have found that mutations in the angiopoietin gene are associated with 
neuroinflammation and disrupted BBB integrity (269). In addition to 
marked neuroinflammation, increased levels of ROS and decreased levels 
of antioxidants such as reduced glutathione have been detected in the 
cerebrospinal fluid and blood of ALS patients (270), implying the 
important role of oxidative stress in ALS development. ROS are involved 
in glutamate transport disorders in astrocytes, increasing neuronal 
excitotoxicity and promoting ALS development (271).

6 Conclusion

The occurrence of seizures and the advancement of epilepsy are 
intricately linked to the functionality of the blood-brain barrier. Various 
factors contribute to or worsen seizures by compromising the integrity 
of the blood-brain barrier. Additionally, seizures in cases of severe 
epilepsy can further enhance the permeability of the blood-brain 
barrier. The neural activity within the brain is impacted by a multitude 
of factors that are transported through the bloodstream. The BBB, 
acting as a protective barrier between the blood and the nervous system, 
holds significant potential in the regulation of epilepsy. In our study, 
we summarized relevant biomarkers that could potentially be utilized 
as targets for future research in understanding the mechanisms of 
epilepsy and developing more effective antiepileptic medications.
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