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Autoantibodies against proteins in the brain are increasingly considered as 
a potential cause of cognitive decline, not only in subacute autoimmune 
encephalopathies but also in slowly progressing impairment of memory in 
patients with classical neurodegenerative dementias. In this retrospective 
cohort study of 161 well-characterized patients with different forms of dementia 
and 34 controls, we determined the prevalence of immunoglobulin (Ig) G and 
IgA autoantibodies to brain proteins using unbiased immunofluorescence 
staining of unfixed murine brain sections. Autoantibodies were detected in 
21.1% of dementia patients and in 2.9% of gender-matched controls, with higher 
frequencies in vascular dementia (42%), Alzheimer’s disease (30%), dementia of 
unknown cause (25%), and subjective cognitive impairment (16.7%). Underlying 
antigens involved glial fibrillary acidic protein (GFAP), glycine receptor, and Rho 
GTPase activating protein 26 (ARHGAP26), but also a range of yet undetermined 
epitopes on neurons, myelinated fiber tracts, choroid plexus, glial cells, and 
blood vessels. Antibody-positive patients were younger than antibody-negative 
patients but did not differ in the extent of cognitive impairment, epidemiological 
and clinical factors, or comorbidities. Further research is needed to understand 
the potential contribution to disease progression and symptomatology, and to 
determine the antigenic targets of dementia-associated autoantibodies.
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1 Introduction

Detection of anti-neuronal autoantibodies in clinical neurology has markedly changed 
routine assessment of patients with subacute neuropsychiatric abnormalities in the context of 
autoimmune encephalopathies. Lately, autoantibody diagnostics has been expanded to more 
chronic, slowly progressing changes of cognition, mood and behavior—where it allowed the 
recognition of treatment-responsive clinical entities previously thought to be  classical 
neurodegenerative diseases (1).

For several of these autoantibodies, the direct pathogenicity has already been proven, 
such as for antibodies targeting the N-methyl-D-aspartate (NMDA)-receptor, 
ℽ-aminobutyric acid A (GABAA) and GABAB receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor, Contactin-associated protein-like 2 (Caspr2) or 
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FIGURE 1

Recruitment of patients and controls into the study.

leucine rich, glioma activated-1 (LGI1) (2). While many of them 
cause a broader clinical phenotype including epileptic seizures, 
psychosis or movement disorders, cognitive impairment and 
amnesia are common features and can predominate, which then 
overlaps with the clinical presentation of neurodegenerative 
dementias (3, 4). For example, patients with LGI1 autoantibodies 
can present to memory clinics with anterograde amnesia and 
behavioral abnormalities suggestive of Alzheimer’s disease (AD) or 
frontotemporal dementia (FTD) (5, 6). These patients often have 
post-inflammatory rapidly progressing atrophy in the 
mesiotemporal lobes (7), the predominant area of neuronal loss 
also in AD.

Another example is autoantibodies against the neuronal cell 
adhesion molecule Ig family containing LAMP, OBCAM, and NTM 
5 (IgLON5), which causes a subacute encephalopathy with behavioral 
abnormalities and sleep disorder, but also cognitive impairment in up 
to 40% of affected patients (8, 9). Patients can have depositions of 
hyperphosphorylated Tau protein in hippocampus and brainstem, 
indicative of a primary neurodegenerative disease (tauopathy) (10). 
As clinical symptoms can respond to immunotherapy, the 
autoantibodies may be  directly involved in the initiation or 
propagation of neurodegenerative processes, which is currently under 
intensive investigation.

The list of potential “dementia autoantibodies” is continuously 
growing and further contains autoantibodies against GFAP (11, 12), 
alpha1-adrenergic receptors (13), NMDA receptors (14–17), and 
multiple neuronal antigens in cancer patients with cognitive 
impairment (18). Initiation of immunotherapy in patients with LGI1 
and IgLON5 autoantibodies can partially reverse the cognitive 
impairment, underscoring both, the need for and the potential of early 
autoantibody diagnostics in presumed neurodegenerative diseases. To 
further understand the role of such autoantibodies in dementia, 
detailed analyses of the frequencies, titers, kinetics, and pathogenicity 

of the antibodies are needed. Here, we systematically searched for 
established and novel anti-neuronal autoantibodies in cerebrospinal 
fluid (CSF) and serum of patients with different types of dementia 
using indirect immunofluorescence on unfixed murine brain sections.

2 Methods

2.1 Study population

For anti-neuronal autoantibody testing, 195 patients with different 
forms of dementia and controls were recruited for this study from the 
memory clinic of the Department of Neurology at Charité Berlin, 
Campus Mitte (Figure  1). Patients were diagnosed according to 
current clinical guidelines (19) and assigned to one of the following 
diagnostic groups: (1) AD, (2) mild cognitive impairment due to AD 
(MCI), (3) FTD, (4) other [including Lewy body dementia (LBD), 
mixed dementia, and cerebral amyloid angiopathy], (5) vascular 
dementia, (6) cognitive impairment of unknown cause, and (7) 
subjective cognitive impairment (SCI). Patients with cognitive 
impairment due to depression or with neurological autoimmune 
disease, e.g., multiple sclerosis, were excluded. The control group 
consisted of 34 patients (Table 1) without neurodegenerative disease, 
including patients with depression and other psychiatric disorders 
(n = 19), patients with concerns of memory impairment but excluded 
neurodegenerative disease (n = 8), headache (n = 4), syncope (n = 1), 
minor stroke (n = 1), and paresthesia (n = 1).

Testing for an autoantibody panel using cell-based assays was 
available for the serum of 71 patients and the CSF of 36 patients. 
Serum from 189 and CSF from 34 patients was available for indirect 
immunofluorescence staining on murine unfixed brain sections. 
Serum and CSF were stored at −80°C until further use. Samples were 
pseudonymized and handled blinded to the status of the patients 
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during the assessment and evaluation described below. The study was 
approved by the Charité Universitätsmedizin Berlin Institutional 
Review Board (Berlin, Germany, #EA1/258/18).

2.2 Tissue reactivity screening (indirect 
immunofluorescence)

To determine the prevalence of IgG and IgA isotype 
autoantibodies, serum and CSF were screened for tissue reactivity on 
20 μm cryostat-cut unfixed sagittal mouse brain sections (C57BL/6 
mice) as previously described (20–23). Briefly, sections were blocked 
for 1 h at room temperature in blocking solution [phosphate-buffered 

saline (PBS), pH 7.4, supplemented with 2% bovine serum albumin 
and 5% normal goat serum]. Serum (200 μL, diluted 1:400 in blocking 
solution) or CSF (200 μL, undiluted) were applied to the brain sections 
for 16 h at 4°C and washed with PBS. Bound antibodies were detected 
with goat anti-human IgG [Alexa Fluor®488 AffiniPure Goat Anti-
Human IgG (H + L), Jackson ImmunoResearch, #109-545-003, 
dilution 1:1,000] or goat anti-human IgA (Fluorescein AffiniPure 
Goat Anti-Human IgA, Jackson ImmunoResearch #109-095-011, 
dilution 1:200). After 2 h of incubation at room temperature, sections 
were rinsed again and mounted with Immumount (Shandon, 
#9990402). Images were taken with fluorescence microscopes 
(Olympus CKX41, Leica DMI8/SPE, Nikon Scanning Confocal 
A1Rsi+).

TABLE 1 Clinical data, imaging and laboratory findings of dementia patients and controls.

Dementia group Control 
group

p-value

All Antibody-
positive

Antibody-
negative

Controls Ab-positive 
vs. 

-negative 
(dementia 

group)

All 
dementia 

vs. controls

Subjects (n) 161 34 127 34

Age (mean + SD; median) (years) 72.6 ± 10.5; 76 68.3 ± 11.8; 73 73.8 ± 9.9; 76 60.7 ± 13; 61 p < 0.05 p < 0.05

Sex ratio (m:f) 88:73 18:16 70:57 19:15 p > 0.05 p > 0.05

MMSE (mean + SD; median) (points) 22 ± 6.3; 24 20.25 ± 7; 20.5 22.4 ± 6.1; 24 26.25 ± 3.7; 28 p > 0.05 p < 0.05

Autoimmune disease (n) 16 (9.8%) 3 (11.5%)a 13 (9.5%)c 6 (25.7%)e p > 0.05 p > 0.05

Cancer (n) 26 (16%) 1 (3.9%)b 25 (18.2%)d 4 (11.4%)f p > 0.05 p > 0.05

CSF

Phospho-Tau (mean) (<62 pg./mL) 78.7 84.3 77.1 45.2 p > 0.05 p < 0.05

Total-Tau (mean) (<290 pg./mL) 572.8 622.1 558.6 246.9 p > 0.05 p < 0.05

Beta-amyloid 1–40 (mean + SD) 15600.2 14857.7 15,813 11097.9 p > 0.05 p < 0.05

Beta-amyloid 1–42 (mean + SD) (>629 pg./mL) 735.9 774.1 724.5 768.9 p > 0.05 p > 0.05

Amyloid ratio (mean + SD) (>0.069) 0.053 0.051 0.053 0.074 p > 0.05 p > 0.05

NfL (mean) (<1,300) 1824 1350.5 1981.9 703.8 p > 0.05 p < 0.05

Cell count (mean) (0–4/μL) 2.2 2.7 2.2 5.9 p > 0.05 p > 0.05

Lactate (mean) (10–22 mg/dL) 15.2 15.8 14.9 14.9 p > 0.05 p > 0.05

Total protein count (mean) (150–450 mg/L) 501.4 442.6 523.1 514.9 p > 0.05 p > 0.05

Q-Albumin (mean) 7.6 6.8 7.9 7.8 p > 0.05 p > 0.05

CSF-specific oligoclonal bands 21 (20.2%) 5 (20%) 16 (20.3%) 2 (11.1%) p > 0.05 p > 0.05

Imaging

Imaging available 102 19 83 12

No pathological findings 11 3 8 7 p > 0.05 p < 0.05

Atrophy 68 12 56 3 p < 0.05 p < 0.05

Leukoencephalopathy 28 3 25 0 p > 0.05 p < 0.05

Ischemia 17 3 14 0 p > 0.05 p > 0.05

Bleeding 10 3 7 0 p > 0.05 p > 0.05

aLichen ruber planus (n = 1), Hashimoto’s thyreoiditis (n = 1), and myasthenia gravis (n = 1). bProstate cancer (n = 1). cHashimoto’s thyreoiditis (n = 3), CIDP (n = 2), vitiligo (n = 2), rheumatoid arthritis 
(n = 2), Crohn’s disease (n = 1), polymyalgia rheumatica (n = 1), psoriasis (n = 1), and myasthenia gravis (n = 1). dProstate cancer (n = 9), breast cancer (n = 3), colon cancer (n = 2), bladder cancer 
(n = 2), neuroendocrine tumor (n = 1), cutaneous B-cell lymphoma (n = 1), testicular cancer (n = 1), ovarian cancer (n = 1), chronic myelogenous leukemia (n = 1), rectal cancer (n = 1), thyroid cancer 
(n = 1), vestibular schwannoma (n = 1), basal cell carcinoma (n = 1), adenocarcinoma (n = 1), non-Hodgkin lymphoma (n = 1), astrocytoma (n = 1), and esophageal cancer (n = 1). eHashimoto’s 
thyroiditis (n = 2), vitiligo (n = 1), anti-phospholipid syndrome (n = 1), granulomatosis with polyangiitis (n = 1), rosacea (n = 1), and polychondritis trachea (n = 1). fBreast cancer (n = 3), prostate 
cancer (n = 1). CSF, Cerebrospinal fluid; MMSE, Mini mental state examination; NfL, Neurofilament light chain; and SD, Standard deviation. Bold values represent the statistical significance.
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FIGURE 2

Prevalence of autoantibody-positive patients among different diagnostic groups. The percentage of positive patients within the diagnostic group is 
given for serum and for CSF, respectively. Lewy body dementia, mixed dementia, and amyloid angiopathy. AD, Alzheimer’s disease; MCI, Mild cognitive 
impairment; FTD, Frontotemporal dementia; VaD, Vascular dementia; SCI, Subjective cognitive impairment; CG, Control group; and CSF, Cerebrospinal 
fluid.

Cerebrospinal fluid samples were additionally screened for 
established autoantibodies using commercial panel tests (Euroimmun 
AG, Lübeck, Germany), including Hu, Ri, anti-neuronal nuclear 
antibodies 3 (ANNA3), Yo, Anti-Tr/anti-Delta/Notch-like epidermal 
growth factor-related receptor (Tr/DNER), myelin, Ma/Ta, glutamate 
decarboxylase 65 (GAD65), amphiphysin, glutamate receptor type 
AMPA, GABAB receptor, LGI1, Caspr2, zinc finger protein 4 (ZIC4), 
dipeptidyl aminopeptidase-like protein (DPPX), carbonic anhydrase 
related protein VIII (CARPVIII), glycine receptor (GlyR), 
metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), 
GABAA receptor, ARHGAP26, inositol 1,4,5-trisphosphate receptor 
type 1 (ITPR1), homer3, potassium voltage-gated channel subfamily 
A member 2 (KCNA2), myelin oligodendrocyte glycoprotein (MOG), 
recoverin, neurochondrin, glutamate receptor δ2 (GluRD2), 
flotillin-1/2, and IgLON5.

2.3 Evaluation criteria

Indirect immunofluorescence sections were evaluated according 
to a modified semi-quantitative fluorescence score ranging from 0 to 
3, as previously described (24). “0” defined the absence of any 
fluorescence signal, “1” the faint “background” intensity commonly 
seen with serum of healthy controls, “2” a clearly visible fluorescence 
patterns with reproducible anatomical distribution, and “3” a high-
intensity fluorescent staining as in positive controls. Consistent 
intensities ≥2  in repeated experiments were considered 
positive staining.

The frequently observed staining of neuronal nuclei often 
corresponded to established anti-nuclear antibodies (ANA, e.g., finely 
speckled nuclear ANA) (25) and was considered positive only if it was 
detected with an intensity of ≥2 in CSF. Co-staining with an anti-
GFAP antibody (NeuroMab, Cat# 75–240, RRID:AB 10672299; 
dilution 1:1,000) was performed when a glia-like pattern was observed.

2.4 Statistical analysis and figures

Statistics were conducted in Microsoft Excel (RRID: 
SCR_016137) including XLSTAT (RRID: SCR_016299). Statistical 
significance was assumed when p < 0.05. Differences in the 
prevalence of antibody-positive patients in the dementia cohort 
compared to controls were calculated using the Chi square test. 
Clinical parameters, including CSF markers, age and mini-mental 
state examination (MMSE) were compared using t-test, assuming 
unequal variances (Welch’s test). ANOVA was used for subgroup 
analysis. Figure  2 was created in GraphPad Prism (RRID: 
SCR_002798).

3 Results

3.1 Clinical data

Epidemiological and clinical data, CSF and imaging findings of 
dementia patients and gender-matched controls are shown in Table 1. 
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The control cohort was younger than the dementia group (mean age 
60.9 vs. 72.5 years). Basic CSF diagnostics (e.g., cell count, protein) 
were available for 89 dementia patients (55.3%) and 10 controls 
(29.4%). MMSE test results were available for 107 dementia patients 
(66.5%) and eight controls (23.5%) and showed lower values in the 
dementia group, as expected. Autoimmune diseases were more 
frequent in the control cohort (17.6 vs. 9.3%), while cancer was more 
prevalent in the dementia cohort (16.1 vs. 11.8%), not reaching 
statistical significance.

3.2 Prevalence of autoantibodies

IgG isotype autoantibodies were significantly more frequent in 
dementia patients (34 of 161 = 21.1%) compared to controls (1 of 
34 = 2.9%, p = 0.04) (Table 2; Figure 2). Antibody-positive patients were 
younger compared to antibody-negative patients (p = 0.01; Table  1), 
while they did not differ significantly in MMSE scores, epidemiological 
and clinical factors, CSF and imaging parameters, or comorbidities 
(Table 1).

Statistical comparison of the individual dementia groups showed 
differences in autoantibody frequencies and clinical characteristics 
such as age, sex, and comorbidities (Table 2). Age and MMSE varied 
between groups (ANOVA, p < 0.001). The highest autoantibody 
prevalence was observed in patients with vascular dementia (41.7%) 
but was also high in AD (30%) and dementia of unknown cause 
(25%), while lowest in MCI (2.1%).

The patterns of autoantibody binding on unfixed murine brain 
sections in the 34 dementia patients ranged from myelin staining in 
cerebellum and/or thalamus (n = 11, Figure 3C) to astrocytes (n = 2, 
Figures  3A,B), brain blood vessels and immunostaining of the 
choroid plexus (n = 5, Figures 3E,F,H). Several of these patients had 
additional ANA patterns in the CSF (n = 10) and serum (n = 17) 
(Figures  3G,I), but also various staining patterns of fibers and 
structures with unknown target antigen (Table 3). ANA patterns 
included among others “rings and rods” and fine-speckled patterns. 
The single autoantibody-positive control patient showed binding to 
myelin and nerve fibers. Two further controls had ANA in serum, 
but not in CSF, thus being negative according to our criteria 
(Figure 3D).

The search for IgA isotype autoantibodies revealed only one 
positive patient (0.6%) with ANA reactivity in CSF. This patient was 
also positive for IgG autoantibodies.

Panel diagnostics for established autoantibodies using a 
commercial cell-based assay were available in 77 patients (30 CSF plus 
serum, 41 serum only, and six CSF only). Eleven (14.1%) were 
autoantibody-positive in serum, and included autoantibodies against 
myelin (n = 3; titers 1:100 to 1:320), GlyR (n = 2; 1:32), GABABR (n = 2; 
1:10 to 1:100), ARHGAP26 (n = 1; 1:32), GFAP (n = 1; 1:100), KCNA2 
(n = 1; 1:320), and Caspr2 (n = 1; 1:32).

4 Discussion

In this pilot study, we  identified both, well-established and 
potentially novel autoantibodies in 21.1% of patients with different 
forms of cognitive impairment and dementia, compared to 2.9% of 

controls. Antigenic targets included GFAP, ARHGAP26, KCNA2, 
Caspr2, GlyR, and GABABR, but also various not yet identified 
antigens on unfixed mouse brain sections, such as myelinated fibers, 
brain vessels, astroglia, choroid plexus, and antinuclear antigens. 
Autoantibody prevalence was highest in vascular dementia (41.7%), 
but also common in AD (30%). Given the large variety of 
autoantibodies, it is not surprising that autoantibody-positive patients 
had similar MMSE scores compared to autoantibody-negative 
patients. Further studies are needed to identify potential relationships 
between certain subgroups of autoantibodies with clinical symptoms 
including cognitive impairment.

The here observed frequencies are in a similar range to previous 
studies. For example, in a recent cohort of 349 patients with various 
neurodegenerative diseases, established autoantibodies overlapping 
with our diagnostic panel were detected in 11.8% (26). Likewise, 
13.8% of 93 patients with neurodegenerative disorders in another 
study had surface-reactive autoantibodies, although less common in 
AD (27). Focusing on NMDAR autoantibodies, an early study from 
our center reported 16.1% seropositivity in 286 patients with 
neurodegenerative dementia, with the highest prevalence in the 
subgroup of unclassified dementia (15).

Detection of autoantibodies in patients with cognitive impairment 
is clearly not sufficient for the classification of dementia as being 
“autoimmune,” as even well-characterized autoantibodies also 
regularly occur in control populations, at least in serum (26). The 
concept of autoimmune dementia so far embraces conditions with 
predominant memory impairment typically characterized by subacute 
onset, a rapid, fluctuating progression and inflammatory CSF 
parameters, often with detected anti-neuronal autoantibodies and 
responsiveness to immunotherapy (3, 28, 29). In some patients with 
autoimmune dementia, neurodegeneration biomarker profiles can 
mimic protein patterns indicative of neuronal destruction seen in 
neurodegenerative dementias. On the other hands, autoantibodies 
may not always cause damage, but could be mere bystanders or even 
convey positive effects, ranging from limiting damage to reducing 
neurodegeneration-associated proteins such as β-amyloid, or 
facilitating remyelination (30).

It is subject of intensive research, which autoantibodies may 
contribute to cognitive impairment and how they exert effects. The 
current study did not assess pathogenic functions of the identified 
autoantibodies. For some of them, however, previous studies 
demonstrated pathogenicity that can be plausibly linked to cognitive 
impairment, even though numbers of study participants were generally 
low. For example, cognitive impairment was the main common feature 
of five patients with GlyR autoantibodies in one study, associated with 
elevated tTau/pTau in CSF (31). Similarly, in our analysis, the two 
patients with serum GlyR autoantibodies had the diagnosis of early-
stage AD with increased pTau/tTau levels. Autoantibodies against 
KCNA2 have also been reported in progressive dementia, in one case 
with an AD CSF profile (32). In patients with FTD, autoantibodies 
against GluR3 and IgLON5 were found (33, 34), which are known to 
induce receptor internalization and impair long-term synaptic 
plasticity (35, 36). We could further identify several dementia patients 
with autoantibodies against GFAP and/or astrocytes, which seems an 
interesting new marker not only for a subacute autoimmune 
meningoencephalomyelitis (37–40), but also for patients with slowly 
progressing cognitive decline and dementia (41–44).
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TABLE 2 Staining results and clinical data distributed among different diagnostic groups.

AD MCI FTD Othera VaD Unknown 
cause

SCI Controls

Subjects (n) 63 28 12 35 12 5 6 35

Serum/CSF 63 12 28 4 12 4 32 5 11 1 5 1 6 1 32 6

Antibody-positive in serum/CSF (IIFT plus CBA) 13 6 2 0 3 0 2 3 4 1 0 1 0 1 1 1

Antibody-positive (%) 17 (27%) 2 (7.1%) 3 (25%) 5 (14.3%) 5 (41.7%) 1 (25%) 1 (16.7%) 1 (2.9%)

Age (mean + SD) (years) 73.1 ± 9.1 74.1 ± 11 60.8 ± 9 75.2 ± 9.6 74.7 ± 11.9 65.2 ± 14 71 ± 10.6 60.7 ± 13

MMSE (mean + SD) (points) 19 ± 7.2 26 ± 2.3 21 ± 5.9 22.2 ± 5 23.75 ± 5.1 19.3 ± 5.9 29.5 ± 0.5 26.33 ± 3.7

Sex ratio (m:f) 31:32 16:12 6:6 20:15 10:2 3:2 2:4 19:16

Cancer 12 (19.1%) 5 (17.9%) 2 (16.7%) 4 (11.4%) 2 (16.7%) 1 (25%) 0 4 (11.4%)

Autoimmune disease 7 (11.11%) 1 (3.6%) 1 (8.3%) 3 (8.6%) 1 (8.3%) 1 (25%) 1 (16.7%) 6 (17.1%)

Imaging

Imaging available 38 (60.3%) 16 (57.1%) 10 (83.3%) 23 (65.7%) 10 (83.3%) 2 (40%) 3 (50%) 13 (37.1%)

No pathological findings 5 (7.9%) 2 (12.5%) 1 (8.3%) 3 (8.6%) 0 0 0 8 (22.9%)

Atrophy 29 (46%) 8 (50%) 9 (75%) 13 (37.1%) 4 (33.3%) 2 (40%) 3 (50%) 3 (8.6%)

Leukoencephalopathy 7 (11.1%) 4 (25%) 0 11 (31.4%) 5 (41.7%) 0 2 (33.3%) 0

Ischemia 6 (9.5%) 2 (12.5%) 0 7 (20%) 2 (16.7%) 0 0 0

Bleeding 1 (1.6%) 1 (6.3%) 0 5 (14.3%) 3 (25%) 0 0 0

Other 1 (1.6%) 2 (12.5%) 0 2 (5.7%) 2 (16.7%) 0 0 1 (2.9%)

CSF

pTau (mean + SD) (<62 pg./mL) 103.8 ± 37.5 67.3 ± 21.8 66.8 ± 49.5 59.7 ± 30.8 58.4 ± 17.8 71.7 ± 40.4 57.2 ± 35.5 45.2 ± 25.7

tTau (mean + SD) (<290 pg./mL) 783.3 ± 406.8 445.1 ± 182.2 531.7 ± 550.3 393.7 ± 272.9 410.5 ± 259.2 479.4 ± 358.9 351.4 ± 251.3 246.9 ± 179.4

Beta-Amyloid 1–40 (mean + SD) 17073.1 ± 7432.3 15632.3 ± 6624.1 11905.5 ± 6691.6 15640.7 ± 11094.6 13383.9 ± 3,650 11399.3 ± 1930.1 18,232 ± 8540.6 11097.9 ± 3762.4

Beta-Amyloid 1–42 (mean + SD) (>629 pg./mL) 589 ± 205.7 993 ± 452.6 875.9 ± 350 715.8 ± 300.3 953.3 ± 468.5 756 ± 220.6 833.3 ± 201.6 768.9 ± 282.3

Amyloid ratio (mean + SD) (>0.069) 0.036 ± 0.01 0.062 ± 0.034 0.09 ± 0.04 0.06 ± 0.03 0.067 ± 0.035 0.068 ± 0.028 0.028 ± 0.02 0.074 ± 0.031

NfL (mean + SD) (<1,300) 1810.4 ± 727 2,153 ± 1438.5 3,195 ± 912.6 527.4 ± 488.5 - - - 703.8 ± 469.4

Cell count (mean + SD) (0–4/μL) 1.7 ± 1.3 2.8 ± 2.3 1.8 ± 1.3 2.5 ± 5 3.25 ± 2.3 1.5 ± 1.2 2.6 ± 2.1 5.9 ± 14.6

Lactate (mean + SD) (10–22 mg/dL) 14.9 ± 4.8 14. 9 ± 4.2 15.7 ± 2 15.8 ± 6.3 13.9 ± 5 15.3 ± 3.3 16.7 ± 3.7 13.4 ± 6

Total protein count (mean + SD) (150–450 mg/L) 454.2 ± 187.5 452.2 ± 103.2 438.8 ± 167.4 598.1 ± 403.2 540 ± 210 675.5 ± 215.8 357.7 ± 85.2 514.9 ± 353.4

Q-Albumin (mean + SD) 7 ± 3.4 6.8 ± 2.5 6.7 ± 2.5 8.4 ± 4.7 9.8 ± 4.4 9.9 ± 3 5.1 ± 1.3 7.8 ± 5.9

CSF-specific OCB 27% 33% 11% 11% 11% 20% 25% 11%

aLewy body dementia, mixed dementia, and amyloid angiopathy. AD, Alzheimer’s disease; MCI, Mild cognitive impairment; FTD, Frontotemporal dementia; VaD, Vascular dementia; SCI, Subjective cognitive impairment. NfL, Neurofilament light chain; SD, Standard 
deviation; IIFT, Indirect immunofluorescence test; CBA, Cell-based assay; and CSF, cerebrospinal fluid. Bold values represent the sample size for better readability.
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Autoantibodies in our study were not equally distributed 
between subgroups of patients. In AD patients, 30% had IgG binding 
to certain brain antigens, which is in line with previous findings of a 
wide range of autoantibodies observed in AD, such as against 
NMDAR, dopamine receptor, acetylcholine receptor, and many 
more using targeted and unbiased detection approaches (12, 14, 15, 
45–50). The highest prevalence was observed in vascular dementia 
with several patients harboring not previously described 
autoantibodies against the choroid plexus. Whether such 
autoantibodies can impair blood–brain barrier function and 
potentially dysregulate permeability for neurotoxic molecules is 
currently unclear. However, studies on autoantibodies targeting 
endothelial barrier function in the brain suggest that this can be a 
pathogenic mechanism (51–54).

The frequent finding of ANAs adds to previous studies which, for 
example, found significantly increased serum frequencies in patients 
with FTD (60% versus 13% in healthy controls) (55). Data on ANAs 
in CSF are almost not available. We thus focused on CSF and found 
20.5% of available CSF samples from the dementia cohort to 
be positive for ANAs. Although ANAs have long been considered 

non-pathogenic due to their intracellular targets, increasing evidence 
suggests that autoantibodies can reach intracellular epitopes and can 
have disease-related effects (56, 57). Development of pathology may 
take much longer compared to binding of autoantibodies to neuronal 
surface receptors. It is tempting to speculate, however, whether such 
protracted subtle effects may build up over time and contribute to 
cognitive impairment when patients at risk have high-level 
autoantibodies, a concept that was recently coined “smoldering 
humoral autoimmunity” (1).

The study has several limitations. Related to the retrospective 
study design, CSF and serum samples, clinical information, 
neuropsychological assessments and imaging were not available for 
the entire cohort. Despite the number of 195 study participants, some 
disease subgroups were too small for a robust statistical analysis, in 
particular as the patients showed variability in disease course and 
comorbidities. The age difference between dementia patients and 
controls is likely related to the preferential age of the different diseases, 
however, it may have affected our findings as (humoral) autoimmunity 
and inflammation is age-dependent. Although our diagnostic assay 
using unfixed murine brain sections has been consistently used in 

FIGURE 3

Immunofluorescence staining patterns on unfixed mouse brain with serum/CSF of different patients. (A) Staining of astrocytes in the hippocampal 
region (blue: co-staining of the nuclei with DAPI) with serum of an AD patient. (B) Distinct labeling of Bergmann glia cells in the cerebellum with serum 
of an AD patient. (C) Intense myelin staining in the deep white matter of the cerebellum with CSF of an AD patient. (D) Survey micrograph showing 
ubiquitous ANA staining in the cerebellum using serum of an AD patient. (E) Distinct staining of the ependymal layering of brain ventricles with serum 
of an AD patient. (F) Net-like staining in the choroid plexus with serum of an AD patient. (G) Intense ANA staining of rings and rod-like structures in 
hippocampus and cortex using CSF of an AD patient. (H) Reticular labeling of choroid plexus cells resembling a tight junction pattern, in addition 
staining of nucleoli, using serum of an MCI patient. (I) Finely speckled, granular ANA staining in the cerebellum with serum of an SCI patient (blue: co-
staining of the nuclei with DAPI).
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different neuropsychiatric clinical conditions to identify novel 
autoantibodies [e.g. (21, 22, 58, 59)], the handling of unfixed brain has 
technical challenges, which so far prevented broader application in 
routine laboratories, thus validation across different centers 
is pending.

Taken together, the present study reports increased frequencies 
of established and novel autoantibodies in patients with cognitive 
impairment, suggesting that many more autoantibodies can be seen 
in the CSF of patients with cognitive impairment, than currently 
investigated using routine assays. Evolving data on immunotherapy-
responsive cases suggest that some antibodies are not mere bystanders 
of dysregulated autoimmunity following neurodegeneration. Better 
understanding of the autoantibodies’ function will help to identify 
future patients who might benefit from treatment. The generation of 
human disease-derived monoclonal autoantibodies will likely change 
our approach to autoimmune dementia in the near future, as we will 
learn about the pathogenicity of these antibodies, their antigenic 
targets on neurons and glial cells, their contribution to disease, and 
how they can facilitate the development of novel, antibody-
selective therapies.
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TABLE 3 Distribution of staining patterns (intensity ≥2) on unfixed murine brain sections among the autoantibody-positive patients of all diagnostic 
groups.

AD MCI FTD Othera VaD Unknown 
cause

SCI Controls

Positive patients (n) 12 1 1 4 5 1 1 1

Net-like choroid plexus pattern 3 0 0 1 1 0 0 0

Myelin 5 1 1 1 2 0 0 1

Astrocytes 0 0 0 1 1 0 0 0

Fiber-like staining 3 0 1 0 1 0 0 0

Vessel staining 2 1 0 0 1 0 0 0

Purkinje cells 1 1 0 0 0 0 0 0

Other pattern 11 12 0 0 0 0 0 0

ANA

Nucleoli 6 0 0 2 1 1 0 1

Rings and rods 5 0 0 1 0 0 0 0

Other ANA 5 0 0 1 0 0 1 0

aLewy body dementia, mixed dementia, and amyloid angiopathy. 1Bergmann glia cells in cerebellum; 2Binding to vessels and choroid plexus, unknown target. AD, Alzheimer’s disease; MCI, 
Mild cognitive impairment; FTD, Frontotemporal dementia; VaD, Vascular dementia; SCI, Subjective cognitive impairment; and ANA, Anti-nuclear antibodies. Bold values represent the 
sample size for better readability.
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