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Background: Exercise has been proposed as the “Universal Prescription 
for Parkinson’s Disease”; however, the specificity of exercise dose in terms 
of frequency, intensity, duration, and type to be  prescribed remains to 
be  elucidated. The 2018 US updated guidelines and WHO Guidelines on 
Physical Activity and Sedentary Behavior recommend older adults (> 65+ years) 
to achieve weekly minimal activity levels, indicating the intensity of aerobic 
exercise as the metabolic equivalent of task and duration as minutes/week 
(150–300  min/week at a moderate intensity of 3–5.9 MET- or 75–150  min/week 
of a vigorous intensity of ≥6 MET). Translating these recommendations to PD 
patients, the study aimed to assess the dose–response effects of standardized 
volume of structured exercise, measured as METs-minutes/week (weekly 
energy expenditure) of two different rehabilitation settings to quantify the 
change in neurotrophic factors. The exercise-induced benefits between the 
two rehabilitation settings will be  evaluated based on motor and non-motor 
symptoms, kinematic parameters of gait, cognitive function, quality of life, and 
cortical activity and brain connectivity.

Methods: METEX-PD is a pilot, prospective, observational, cohort study. The 
study will enroll consecutively thirty (N  =  30) participants with mild-to-moderate 
Parkinson’s disease diagnosis to be  assigned to a non-intensive or intensive 
rehabilitation group. The non-intensive rehabilitation group will achieve a range 
of 180–270 METs-min/week (90  min/week of low-intensity aerobic exercise, 
2–3 METs), while the intensive rehabilitation group will exercise at 1350–1980 
METs-min/week (225  min/week of high-intensity aerobic exercise, 6–8.8 METs). 
The METEX-PD trial will last 12  weeks, including 4  weeks of aerobic training 
program and two follow-ups. Assessments will be performed at baseline (T0), at 
the end of the exercise program (T1—end of the program), and 4- and 8  weeks 
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after the end of the training program (FU-1 and FU-2). The primary outcome is 
the change from baseline in peripheral blood BDNF levels. Secondary outcomes 
are differences in peripheral biomarkers, functional-motor assessments, clinical-
functional evaluations, and brain imaging.

Conclusion: METEX-PD trial will enable us to estimate the change in BDNF 
levels and other peripheral biomarkers under precise exercise-induced 
energy expenditure. The primary results of the METEX-PD study will allow the 
development of a larger multicenter randomized controlled trial to investigate 
the molecular pathways inducing the change in selected neurotrophic factors, 
such as BDNF, IGF-1, or irisin, and the downstream mechanisms of neuroplasticity 
in PD patients.

KEYWORDS

exercise, Parkinson’s disease, rehabilitation, metabolic equivalent of task, 
neurotrophic actors, peripheral biomarkers, neuroplasticity, brain connectivity

1 Background

Over the past two decades, aerobic exercise has emerged as a 
mainstream recommendation to improve motor function and 
quality of life in people with Parkinson’s disease (1). Although 
exercise has been reported as “The Universal Prescription for 
Parkinson’s Disease,” the specificity of exercise prescription in terms 
of frequency, intensity, duration, and type to be  followed to 
maximize its beneficial effects remains unclear. Furthermore, the 
inappropriate use of physical activity and exercise as interchangeable 
terms contributed to providing a non-specific exercise 
recommendation to PD patients (2). Following the American 
College of Sports Medicine (ACSM) Guidance for Prescribing 
Exercise (3), physical activity is defined as any bodily movement that 
produces energy expenditure. Exercise is a subset of physical activity 
that is planned, structured, and repetitive and has as a final or an 
intermediate objective for the improvement or maintenance of physical 
fitness (4).

To compare doses and frequencies of exercise regimens to PD 
medications, the efficacy and safety of aerobic exercise are being tested 
in the clinical pipeline. Indeed, similar to pharmacological trials 
evaluating the safety of escalating drug dosages in Phase 2, and 
determining the efficacy of different dosages of medications in Phase 
3, two main trials assessing safety (SPARX2) and efficacy (SPARX3) 
of moderate-intensity vs. high-intensity aerobic exercise in de novo PD 
patients have been conducted (5).

Since the results of the SPARX2 trial proved the non-futility 
threshold by high-intensity but not by moderate-intensity exercise 
compared with the control group, the ongoing SPARX3 trial is 
evaluating the efficacy of high-intensity endurance exercise to 
attenuate the progression of motor signs in de novo PD patients, 
measuring the change in Movement Disorders Society—Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) motor score (part 
III) (6).

The MDS-UPDRS motor score is generally used to assess the 
disease-modifying effects of pharmacological treatments in 
PD. Similar to pharmacological trials, the MDS-UPDRS motor score 
was adopted as the primary outcome in the SPARX3 trial. However, 
change in this primary outcome cannot explain the molecular 

mechanisms driving neuroplasticity changes in PD patients 
performing exercise.

Several animal studies (7–15) and human trials (16, 17) suggested 
that aerobic exercise facilitates structural and functional changes in 
the CNS, potentially involving neuroprotective and neuroplasticity 
phenomena (18, 19).

Pioneering studies in this field have revealed the neuroprotective 
effects of exercise in PD rodent models. In particular, Zigmond et al. 
(10) showed that exercise performed before toxin treatment reduced 
the dopaminergic neurotoxin-induced behavioral impairments and 
the loss of dopaminergic neurons as assessed by PET imaging, 
biochemical, or histochemical assays of tissue samples. The authors 
suggested the involvement of glial-derived neurotrophic factor 
(GDNF)-mediated signaling cascade to trigger endogenous 
neuroprotective effects on dopaminergic neurons. The increase in 
brain-derived neurotrophic factor (BDNF) and GDNF levels was also 
observed in Tajiri et al. (14), who compared the effects of running 
wheel exercise with respect to sedentary behavior in PD rat models of 
the striatal unilateral lesion with 6-hydroxydopamine (6-OHDA). 
Therefore, several authors suggested that the neuroprotective effects 
of exercise in PD animal models were mediated by neurotrophic, anti-
inflammatory, and angiogenic factors (7, 9, 14, 20–23). Indirect 
evidence supports the neuroprotective role of exercise also in people 
with PD, potentially involving changes in neurotrophic and anti-
inflammatory factors (18, 19, 24).

Among neurotrophic factors (NFs), the attention was primarily 
focused on BDNF, which plays a pivotal role in neurogenesis, synaptic 
transmission, and plasticity in the hippocampus, acting as a key 
regulator for the long-term potentiation (LTP), learning, and memory 
(25). Several animal studies demonstrated that the activation of the 
BDNF signaling cascade is crucial to observing the exercise-induced 
effects on hippocampal plasticity (26–28).

However, recent systematic reviews and meta-analyses, which 
included randomized and non-randomized controlled trials (RCTs 
and no-RCTs), revealed that a dose–response relationship between 
exercise and BDNF release needs to be further clarified (18, 19).

Indeed, a few low-risk-of-bias randomized controlled trials 
(RCTs) investigated aerobic exercise-induced changes in NFs and 
plasticity-related mechanisms. The first evidence of Frazzitta et al. 
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(29), which linked the improvements in motor signs with an increase 
in serum BDNF levels in people living with PD performing a 
moderate-intensity aerobic exercise (≤60% HRR, treadmill), was 
reinforced by the results of Szymura et al. (30). The latter not only 
showed a significant increment in serum BDNF concentration but 
also in β-neurotrophic factor (β -NGF) in people with PD performing 
a moderate-intensity aerobic exercise (60–70% HRmax, balance 
training). However, the study did not reveal any significant impact on 
IGF-1 concentrations in the same conditions. To understand the 
contribution of aerobic and anaerobic exercises to BDNF release, 
O’Challagan et al. (31) compared the effects of high-intensity interval 
training (HIIT, ≥85% HRmax, speedflex machine) with a moderate-
intensity resistance and aerobic exercise (60–80% HRmax, treadmill). 
This study revealed a significant increase in serum BDNF levels from 
the first to the last session for the HIIT intervention but not for the 
moderate-intensity continuous training (MICT). The contribution of 
exercise complexity to BDNF release was further explored by Freidle 
et  al. (32), who incorporated goal-based training in a homemade 
aerobic program, but without positive achievements.

Considering the high heterogeneity within training programs 
performed by individuals with PD in clinical trials, we conducted a 
systematic review and meta-analysis coding the different training 
programs of studies included in accordance with Zhou et al. (33) and 
generalized our findings as physical activity-induced changes in NFs 
rather than as changes induced by exercise (19).

Our study revealed limited evidence to support or refute the 
increase in serum/plasma concentration of neurotrophic factors 
(NFs), BDNF, and insulin-like growth factor (IGF-1) in people with 
PD performing physical activity (19). Therefore, the need to develop 
a rigorous clinical trial, with a standardized volume of physical 
exercise to establish a dose–response relationship between structured 
exercise and NF levels, may contribute to changes in brain connectivity 
in people living with PD.

In this regard, a recent systematic review by Li et  al. (33) 
revealed that exercise-induced neuroplastic effects were mediated 
by increased activation and network connectivity toward normal 
function or improving the efficiency of compensatory brain 
networks (17, 34–36), rather than by inducing alteration in gray 
matter volume (33, 36). However, a direct correlation between 
BDNF release under a predeterminate dose of exercise and changes 
in brain connectivity in people with PD has not yet 
been established.

We designed a pilot prospective observational clinical trial to 
evaluate the dose–response effects of two different rehabilitation 
settings characterized by different workloads (measured as energy 
expenditure) on neurotrophic factors and clinical symptoms.

Energy expenditure is defined as the total amount of energy 
(gross) expended during exercise, including resting energy 
expenditure (resting energy expenditure + exercise energy 
expenditure) (3). Since energy expenditure may be articulated in 
the metabolic equivalent of task (MET), the volume of exercise can 
be  expressed as METs-minutes/week, thus considering the 
frequency, intensity, time, and type (FITT) of each session of 
structured exercise. By convention, 1 MET is equal to an oxygen 
uptake of 3.5 mL∙kg−1∙min−1 (3).

The intrinsic definition of physical exercise as energy expenditure 
explains the rationale of the study, which aims to investigate the 
biomolecular drivers of exercise-induced neuroplasticity phenomena 

in people with PD. Muscle work needs energy and requires much 
oxygen consumption to generate ATP. During aerobic and anaerobic 
processes, the energy-rich macromolecules (carbohydrates, fat, and 
phosphocreatine) are transformed into less energy compounds 
(lactate, H2O, CO2, and creatine). The authors hypothesize that a 
molecular choreography during exercise could orchestrate the 
activation of different biochemical pathways (37) in a dose–response 
manner, potentially capable of inducing changes in NFs and, 
therefore, in the brain connectivity of people living with PD 
(Figure 1).

1.1 Objectives

This pilot observational study will evaluate the dose–response 
relationship between the volume of exercise, measured as METs-
minutes/week, of two different rehabilitation settings to quantify the 
change in neurotrophic factors driving neuroplasticity in PD patients. 
The study will also compare the changes induced by non-intensive and 
intensive rehabilitation settings on motor and non-motor symptoms, 
kinematic parameters of gait, cognitive function, quality of life, and 
the changes in cortical activity assessed with electroencephalogram 
(EEG) and in brain connectivity by functional magnetic resonance 
imaging (fMRI).

2 Methods and analysis

2.1 Study design and setting

METEX-PD is a monocentric pilot, prospective, observational, 
cohort study.

This study will be conducted by the research unit of the Clinical 
Trial Center for Parkinson’s Disease at San Raffaele Cassino Hospital 
(CTC for PD—SR Cassino), affiliated with the academic center of 
IRCCS San Raffaele Rome and in collaboration with the San Raffaele 
University of Rome, the University of Rome Tor Vergata, and the 
University of Urbino Carlo Bo.

The study will last 12 weeks, including 4 weeks of aerobic training 
program and two follow-ups. Assessments will occur at baseline (T0), 
at the end of the exercise program (T1—end of the program), and 4 
and 8 weeks after the end of the training program, FU-1 and FU-2, 
respectively (Figure 2) (31).

2.2 Participants

In total, thirty (N = 30) participants, who will meet the eligibility 
criteria, will be  consecutively enrolled and assigned to the 
non-intensive rehabilitation or intensive rehabilitation group. Similar 
to pharmacological trials, the inclusion/exclusion criteria have been 
established in accordance with the SPARX2 trial results, which 
demonstrated the feasibility and safety of high-intensity aerobic 
exercise in people with PD (5). All patients will be evaluated in the 
ON phase.
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2.2.1 Inclusion criteria
 • Diagnosis of Parkinson’s disease according to the United Kingdom 

(UK) Parkinson’s Disease Society Brain Bank (45)
 • Aged between 30 and 80 years.
 • Disease stage II-III in the “ON” phase according to modified 

Hoehn and Yahr (H&Y) (46)
 • Having no severe cognitive impairment:

 o Mini-Mental State Examination—MMSE ≥24.
 o Montreal Cognitive Assessment—MoCA ≥17/30.

 • Under stable dopaminergic pharmacological treatment.
 • A motor condition that permits to execute 6-min walking 

test (6MWT).
 • Willing to participate in the study, understand the procedures, 

and sign the informed consent.

2.2.2 Exclusion criteria
 • Diagnosis of neurological disorders not related to 

Parkinson’s disease.
 • Musculoskeletal diseases that could impair gait and execution of 

the exercise program.
 • The presence of known cardiovascular disease that can 

compromise the performance required by the protocol.

 • The presence of diabetes or other metabolic and 
endocrine diseases.

 • Uncontrolled hypertension (resting blood 
pressure > 150/90 mmHg).

 • Individuals with orthostatic hypotension and systolic pressure in 
feet below 100 will be excluded. Orthostatic hypotension (OH) is 
a reduction in systolic blood pressure of at least 20 mmHg or 
diastolic blood pressure of at least 10 mmHg within 3 min 
of standing.

 • Hypo- or hyperthyroidism (TSH <0.5 or > 5.0 mU/L), abnormal 
liver function (AST or ALT more than 2 times the upper limit of 
normal, ULN), and alteration of kidney function.

 • The values of complete blood tests in out of range and abnormal 
values that are clinically significant as per clinical judgment.

 • The recent use of psychotropic drugs (e.g., anxiolytics, hypnotics, 
benzodiazepines, and antidepressants) in which the dosage was 
not stable for 28 days before screening.

 • Severe disease (requiring systemic treatment and/or 
hospitalization) in the last 4 weeks.

 • Any other clinically significant medical condition, psychiatric 
condition, drug or alcohol abuse, laboratory evaluation, or 
abnormality that, in the opinion of the investigators, would 
interfere with the subject’s ability to participate in the study.

 • Beck Depression Inventory-II (BDI) score > 28, indicating a 
severe depression that precludes the ability to exercise.

FIGURE 1

Potential biochemical pathways orchestrating neuroplasticity process in PD patients performing standardized volume of physical exercise. Muscle work 
needs energy, thus much oxygen consumption to generate ATP, through aerobic and anaerobic processes, by which energy-rich macromolecules 
(such as glycogen) are transformed into less energy compounds (lactate, H2O, CO2, and creatine). Skeletal muscle contraction and related energy 
expenditure can increase concentrations of BDNF levels in the central nervous system, through direct and indirect mechanisms. The release of 
myokines, such as irisin, may induce BDNF through a PGC-1α/FNDC5 (38) pathway in the hippocampus; energy consumption to sustain muscle 
contraction induces an increase in circulating blood lactate, which induces the bdnf gene expression and TRKB signaling in the hippocampus via NAD-
dependent deacetylase sirtuin-1 (SIRT1). In turn, SIRT1 increases the levels of the PGC-1α/FNDC5 pathway and thus the bdnf gene expression (39). 
Peripheral increase could be also the result of BDNF release from platelets, the major storage of pro-BDNF, which is supposed to be produced in 
megakaryocytes (40–42). The storage of BDNF in the platelets may be correlated with their number and platelet distribution width (PDW). Moreover, 
exercise can induce a rapid release of peripheral circulating levels of IGF-1, which, in turn, can regulate BDNF levels (28). Finally, vascular endothelial 
cells may contribute to the production, storage, and release of BDNF centrally as well as peripherally, in response to eNOS activity (43).
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 • (Only for women) State of pregnancy.
 • Other disorders, injuries, diseases, or conditions that may 

interfere with the ability to perform exercises (e.g., history of 
stroke, breathing problems, traumatic brain injury, orthopedic 
injury, or neuromuscular disease).

Pharmacological treatments will be kept stable throughout the 
length of the study for all subjects involved. Participants requiring any 

change in PD medications will be early discontinued by the study and 
evaluated for their final assessments.

2.3 Cohort study

The primary endpoint of the METEX-PD study is the change in 
BDNF in PD patients performing a standardized volume of two 

FIGURE 2

Study design of METEX-PD trial. The non-intensive rehabilitation group assigned will exercise for a range volume of 180–270 METs-min/week, while 
patients assigned to the intensive rehabilitation group will exercise for 1,350–1980 METs-min/week (44). The duration of the training is 4  weeks. 
Assessments will be performed at baseline (T0) and the end of exercise training (T1). Follow-up assessments will be scheduled at weeks 8 (FU-1) and 12 
(FU-2).
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different exercise workloads. Walsh et al. (47) highlighted the need to 
interpret BDNF levels considering a measurement error (up to 20%), 
sample age range, and characteristics. In healthy adults, basal serum 
BDNF is expected to range between 20 and 30 ng/mL, with an 
age-associated decline of at least 0.5–5% per year. Therefore, the two 
groups will be matched for age, sex, duration, and stage of disease 
(according to H&Y score) to be  recruited separately and ensure 
comparable levels at baseline.

2.4 Study procedures

Following the routine clinical practice, the medical history and 
clinical status of PD patients admitted to intensive and non-intensive 
rehabilitation settings will be  recorded. Patients will undergo a 
cardiological examination to estimate aerobic fitness, measured as 
maximal oxygen uptake (VO2max), and neuropsychological 
assessments, including the administration of MoCA, MMSE, and 
BDI-II scales.

Before starting with exercise training, all routine laboratory 
analyses, clinical-functional evaluations, functional-motor 
assessments—including movement analysis with wearable inertial 
sensor for kinematic parameters (BTS G-WALK system, BTS 
Bioengineering S.p.A, Italy)—and neuroimaging analysis (EEG and 
fMRI) will be performed (Table 1, T0). Biological specimens (blood, 
urine, and fecal samples) will be collected and appropriately stored for 
biobanking and research activities.

A recent systematic review and network meta-analysis by Zhou 
et al. (48) coded the intensity and period of aerobic and resistance 
exercise applied in clinical trials involving people with PD, following 
the recommendations of ACSM (3). Based on these considerations, 
the exercise parameters will be set for intensive and non-intensive 
rehabilitation settings.

2.4.1 Standardization of exercise volume: the 
metabolic cost of exercise

The study will compare the exercise volume of two different 
rehabilitation settings, measured as METs-minutes/week. MET 

TABLE 1 Project timeline.

Activity Screening T0 T1 FU-1 FU-2

Study presentation X

Informed consent X

Eligibility criteria X

Demographic, anthropometric, and vital signs X

Medical history X

Physical/neurological examination X

Clinical-functional 

evaluations

Montreal Cognitive Assessment (MoCA) X X X X X

Mini-Mental State Examination (MMSE) X X X X X

Beck Depression Inventory II (BDI-II) X X X X

Wearing OFF Questionnaire-19 (WOF-

19)

X X X X

Non-Motor Symptoms Scale (NMSS) X X X X

Frontal Assessment Battery (FAB) X X X X

O’clock Drawing Test X X X X

Parkinson’s Disease Questionnaire-39 

(PDQ-39)

X X X X

Functional-motor 

assessments

Hoehn and Yahr (H&Y) X X X X X

MDS—Unified Parkinson’s Disease 

Rating Scale (MDS-UPDRS)

X X X X

Gait Analysis X X X X

Time Up and Go (TUG) X X X X

6-min Walk Test (6-MWT) X X X X

Berg Balance Scale (BBS) X X X X

Blood samples Plasma EDTA X X X X

Serum X X X X

Fecal sample X X

Functional neuroimaging EEG X X X

fMRI X X X

Schedule of activities and list of assessments across the study timepoints. T0: baseline; T1: end of a 4-week exercise training program; FU-1: follow-up assessments at week 8; FU-2: follow-up 
assessment at week 12; EDTA: 2,2′,2″,2″′-(ethane-1,2-diyldinitrilo)tetraacetic acid; EEG: electroencephalogram; fMRI: functional magnetic resonance imaging.
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intensity will be set according to the recently updated 2024 Adult 
Compendium of Physical Activities (44). The use of MET as an 
intensity index enables us to compare different types of exercises in 
terms of energy expenditure: for example, walking on a treadmill at 
4.0–4.4 mph (6.4 to 7.1 km/h) with 0% grade consumes 5.8 METs and 
stationary cycling at 70–80 watts (44). In this regard, patients enrolling 
in this clinical trial could be trained alternatively with the treadmill or 
stationary bike. However, treadmill use leads to a more normalized 
gait pattern compared with cycle training, improving clinically 
relevant gait parameters, such as gait speed and stride length (49, 50) 
and will be adopted in the METEX-PD trial.

In detail, PD patients of the non-intensive rehabilitation group 
will perform a 45-min daily session of low-intensity aerobic exercise 
of 2–3 METs [37–45% VO2max; 57–63% HRmax according to Zhou et al. 
(48)] twice a week, for 4 weeks. Therefore, the volume of exercise for 
a participant of the non-intensive group—with a standard weight of 
70 kg—who will exercise on the treadmill walking at ~2 km/h at 0% 
grade for 45 min, twice a week, will be calculated as follows:

 2 45 2 180METs sessions METs week� �� � � �min min/

Similarly, PD patients of the intensive rehabilitation group will 
exercise for 45 min daily at high-intensity aerobic training of 6–8.8 
METs [46–91% VO2max; 76–95% HRmax according to Zhou et al. (48)], 
5 days per week, for 4 weeks. For the intensive group, the exercise 
workload will be at least as follows:

 6 45 5 1350METs sessions METs week� �� � � �min min/

Over the first week, the exercise professionals will set an 
incremental exercise to reach the predetermined intensity. Each 
session of aerobic exercise in both groups will include an additional 
10-min warm-up and 5-min cool-down. Furthermore, the assessment 
of lactate concentration as an internal load marker of exercise intensity 
will ensure to study in aerobic conditions under the lactate threshold 
(<4 mM lactate) throughout the training period (Figure 3).

2.4.2 Biospecimen sampling for biomolecular 
analysis

Following the best clinical practices, blood samples will 
be collected at baseline and at the end (4 weeks), 1 h after the first and 
last sessions of the exercise program for routine hematological and 
chemical analysis. In detail, the procedures require the collection of 
12 mL of blood in ethylenediaminetetraacetic acid (EDTA) tubes for 
plasma, another 10 mL of serum in serum collection tubes, a urinary 
sample for urinalysis, and fecal samples for additional analysis. All 
samples will be marked with a unique participant code and processed 
to be aliquoted and stored at −20°C or − 80°C for future analysis.

The collection of biological samples will be performed during 
8-week (FU-1) and 12-week (FU-2) outpatient visits, which patients 
regularly undergo to ensure proper continuity of care.

2.5 Primary outcomes

The primary outcome of the METEX-PD study is the change in 
BDNF assessed in peripheral blood samples (ng/ml) in PD patients 
performing two different standardized volumes (METs-min/week) of 
physical exercise in routine clinical practice.

FIGURE 3

Standardization of exercise volume in terms of metabolic equivalent of tasks (METs)-min/week (3). Each group will exercise with a defined frequency, 
intensity, and duration.
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2.6 Secondary outcomes

The secondary outcomes of the METEX-PD study are changes in 
biochemical parameters, functional-motor assessments, clinical-
functional evaluations, and brain imaging.

 - Biochemical analysis will be assessed as follows:

 i Change in IGF-1 assessed by peripheral blood samples (μg/L);
 ii Change in FNDC5/irisin by peripheral blood samples (ng/ml);
 iii Change in high sensitivity C-reactive protein (CRP) assessed 

by peripheral blood samples (mg/L);
 iv Change in platelet distribution width (PDW) and number of 

platelets assessed by peripheral blood samples;
 v Change in blood lactate levels (mM) assessed using finger-stick 

capillary blood samples;
 vi Change in gut microbial diversity (species diversity %) assessed 

by next-generation sequencing (NGS) of the V3–V4 region of 
the 16S rDNA gene.

 - Functional-motor assessments will be evaluated as follows:

 vii Change in Movement Disorder Society—Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) part II (motor symptoms 
of daily living), part III (motor examination), and part IV 
(motor complications), a commonly used tool to measure the 
disease progression (51);

 viii Change in clinical evaluation of walking speed and gait-related 
spatiotemporal parameters by using a wearable inertial sensor 
device (G-sensor, BTS Bioengineering, Milan) (52):

 a Stride length [m], the distance between two consecutive hell 
strikes of the same foot;

 b Stride length/height [%], the stride length normalized by 
subject height;

 c Cadence [steps/min], the number of steps in a minute;
 d Propulsion [m/ss], the anterior–posterior acceleration peak 

during the lower limb swing phase;

 ix Change in execution timing of Time Up and Go, a reliable and 
valid test for assessing mobility, balance, walking ability, and 
fall risk (53);

 x Change in functional capacity evaluated by a 6-min Walking 
Test (6MWT), a standardized method to assess the maximal 
patient’s capacity to walk as far as possible (measured in 
meters) (54);

 xi Change in Berg Balance Scale (BBS), which is a widely used 
clinical test to assess static and dynamic balance abilities (55).

 - Clinical-functional evaluations will be assessed as follows:

 xii Change in cognitive function through the administration of 
MMSE, MoCA, Frontal Assessment Battery (FAB), and clock-
drawing tests, which are widely used to assess multiple 
cognitive domains (56–58);

 xiii Change in major depression symptoms will be evaluated using 
the BDI-II scale, a 21-question multiple-choice self-report 
inventory psychometric test, for measuring the severity of 
depression (59).

 xiv Change in non-motor symptoms will be assessed, in addition 
to the MDS-UPDRS part I  scale related to non-motor 
symptoms of daily living, by using the Non-Motor Symptoms 
Scale (NMSS) in PD (60);

 xv Variation in wearing OFF episodes will be assessed by Wearing 
OFF Questionnaire-19 (WOQ-19) administration (61);

 xvi Change in quality of life will be measured using the PDQ-39 
questionnaire, which assesses how often people living with PD 
experience difficulties across eight dimensions of daily 
living (62).

 - Brain remodeling will be  evaluated through 
functional neuroimaging:

 xvii Changes in the cortical activity measured with resting-state 
electroencephalography (rsEEG) (63);

 xviii Changes in brain connectivity through functional magnetic 
resonance imaging (fMRI) exploring variation in the 
hippocampus, basal ganglia, cerebellum, and areas of sensory-
motor integrations involved in the movement.

2.7 Participant timeline

The participant timeline is presented in Table 1.

2.8 Data management

Long-term data sharing and retention is envisaged to store and 
make publicly available data beyond the project lifetime. All 
procedures provided by this study will be performed following all the 
authorizations required by local law (D.Lgs. 196/2003). Each subject 
will be identified by a unique code throughout the study.

2.9 Statistical analysis

All outcome measures will be tested to assess whether they follow 
a normal distribution. The graphical evaluation method with normal 
probability plot and the Shapiro–Wilk and Kolmogorov–Smirnov tests 
will be used to choose the most appropriate statistical test (parametric 
or non-parametric tests). Descriptive statistics of all variables will 
be  evaluated. The central tendency will be  calculated as 
mean ± standard deviation (SD), or median with percentile ranks, 
depending on the nature of the variables. If data will be normally 
distributed, the difference between pre- and post-exercise training 
programs within the groups (Group 1: non-intensive rehabilitation 
and Group 2: intensive rehabilitation) will be evaluated using Student’s 
t-test for paired data. Differences between groups will be evaluated 
using the Student’s t-test for unpaired data. If data do not meet the 
normal distribution, Wilcoxon and Mann–Whitney non-parametric 
tests will be used.

Repeated-measures analysis of variance (ANOVA) will be used to 
compare the changes or delta changes (pre−/post-exercise training 
program/FU-1/FU-2) over time (2 groups x 4 times mixed model 
ANOVA, within factor). In case of significant time, group, or 
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interaction effects, post-hoc pairwise comparisons will be conducted 
using Tukey’s HSD correction for multiple pairwise comparisons. 
Otherwise, the Kruskal–Wallis non-parametric test will be used when 
variables do not meet normal distribution. The level of significance is 
set at a p-value of <0.05.

2.10 Ethics approval and consent to 
participate

The METEX-PD study has been approved by the local ethics 
committee (no Protocol 0107243/2023) and will be  conducted in 
accordance with the Declaration of Helsinki. Participants will 
be included in the study after signing informed consent.

The trial has been registered on ClinicalTrials.gov with the 
identification number: NCT06339398.

3 Discussion

The current estimates show a PD pandemic trend driven primarily 
by aging, projecting the number of patients to be over 12 million by 
2040 (64). Despite the intense research efforts in pharmacological, 
rehabilitative, and surgical fields, PD remains a chronic 
neurodegenerative disease, lacking a disease-modifying therapy. 
Systematic review and meta-analysis supported the efficacy of physical 
activity and exercise, reflecting a growing interest in the promotion of 
rehabilitation programs as a disease-modifying treatment for PD 
(18, 19).

The Physical Activity Guidelines Advisory Committee affirmed 
that “the health benefits of physical activity depend mainly on total 
weekly energy expenditure due to physical activity” and concluded that 
a dose–response relationship exists between physical activity and 
health benefits. Therefore, the recommendation is to achieve ≥500 
METs-min/week of physical activity for health benefits and additional 
benefits when achieving ≥1,000 METs-min/week (65).

Although the 2018 US updated guidelines (66) and WHO 
Guidelines on Physical Activity and Sedentary Behavior (67) 
recommend at least 150–300 min/week of moderate aerobic exercise 
(3 to 5.9 MET) or 75–150 min/week of vigorous (≥ 6 MET) aerobic 
exercise for older adults (> 65+ years), the majority of healthy older 
adults do not achieve these weekly minimal activity levels (68). 
Following a diagnosis of PD, activity levels drop under the 
recommended volume of physical activity and are significantly lower 
than those of healthy peers (69, 70).

The dose–response relationship, proposed by the 2008 Physical 
Activity Guidelines Advisory Committee, reflects the rationale of the 
METEX-PD trial. In other terms, the standardization of weekly energy 
expenditure due to exercise is the prerequisite to prescribing exercise 
as medicine with a patient-specific “dose.”

Similar to the pharmacological pipeline, once exercise safety is 
established (5), the efficacy of different dosages of exercise volume 
needs to be  further elucidated, investigating the molecular 
determinants driving the known physical activity benefits on motor 
function and quality of life in people with PD (1).

Starting from the biochemistry definition of energy expenditure, 
which requires oxygen consumption to generate ATP during the 
workout—and therefore setting aerobic fitness and monitoring the 

workload through lactate measuring—this observational study will 
enable us to compare the disease-modifying effects of two 
rehabilitation settings in routine clinical practice. The comparison of 
two different “dosages” of exercise will provide the preliminary 
evidence to clarify the dose–response relationship between different 
volumes of exercise, and therefore different amounts of energy 
expenditure, and the induction of disease-modifying mechanisms.

The METEX-PD study will focus on the identification and change 
of peripheral biomarkers, leading to the preliminary evidence of the 
molecular basis underlying the disease modification process through 
functional-motor assessments, clinical-functional evaluations, and 
functional neuroimaging.

In this regard, the METEX-PD study will especially focus on the 
contribution of BDNF as a driver of neuroplasticity in PD patients 
performing physical exercise, considering both central and peripheral 
sources of this neurotrophic factor. Indeed, although the brain is the 
primary source of BDNF during exercise, the contribution of 
peripheral sources deserves to be elucidated, considering primarily the 
role of skeletal muscle, platelets, and PBMCs.

Emerging evidence from animal studies revealed that skeletal 
muscle contraction can increase concentrations of BDNF levels in the 
central nervous system, through direct and indirect mechanisms. The 
release of myokines, such as irisin, induces BDNF through a 
peroxisome proliferator-activated receptor-gamma coactivator 
(PGC)-1alpha/fibronectin type III domain-containing protein 5 
(PGC-1α/FNDC5) pathway in the hippocampus of mice performing 
endurance exercise (38); energy consumption to sustain muscle 
contraction induces an increase in circulating blood lactate, which 
induces the Bdnf gene expression and tropomyosin receptor kinase-B 
(TrkB) signaling in the hippocampus via nicotinamide adenine 
dinucleotide (NAD)-dependent deacetylase sirtuin-1 (SIRT1). In turn, 
SIRT1 increases the levels of the PGC-1α/FNDC5 pathway and thus 
the bdnf expression (39).

Instead, the peripheral increase could be  the result of BDNF 
release from platelets, as these cells can store the majority of 
pro-BDNF, which is supposed to be produced in megakaryocytes 
(40–42), and secreted in its mature form in a dose-dependent manner 
after shear stress, such as being induced by exercise (71). In addition 
to platelets, the involvement of PBMCs cannot be excluded as revealed 
by an increase in the bdnf expression during exercise in a dose-
dependent response (72). Finally, it is worth noting the contribution 
of vascular endothelial cells to the production, storage, and release of 
BDNF centrally and peripherally, in response to endothelial nitric 
oxide synthase (eNOS) activity (43).

4 Limitations

There are some limitations to this study. Exercise-induced energy 
expenditure (ExEE) represents only ~15–30% of total energy 
expenditure (TEE), which includes also the energy costs to sustain the 
basal metabolic rate (BMR, 60–80% of TEE) and the energy required 
to absorb and process food for storage (thermic effect of food, TEF, 
~10% of TEE) (73, 74). As a pilot study, METEX-PD will focus solely 
on the costs of energy expenditure due to exercise, although PD 
patients generally follow a regular diet regimen that does not interfere 
with their pharmacological therapies.
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Moreover, this is a monocentric clinical trial, in which, findings 
will have to be further validated. However, due to a paucity of results 
on the dose–response effects (which volume of exercise is sufficient to 
be effective in inducing a change in NFs?) and in the absence of clear 
information on the most representative peripheral biomarkers 
(BDNF? IGF-1? irisin? Change in PDW?) of exercise dose efficacy, the 
conduction of a monocentric pilot study is strictly necessary to 
evaluate the feasibility of a multicenter clinical trial.

Therefore, the preliminary results of the pilot METEX-PD clinical 
trial will represent the prerequisite for the development of a rigorous 
multicenter randomized controlled trial with an appropriate sample 
size to investigate the molecular mechanisms of selected NFs, such as 
BDNF, IGF-1, or irisin, driving the disease-modifying effects in people 
with PD performing a defined dosage of structured exercise.

Finally, this trial is a multimodal clinical, biological, and 
functional neuroimaging study with an evident translational value. 
The results of this study can improve the clinical management of PD 
patients by addressing the most effective aerobic exercise in different 
rehabilitation settings. The effects of standardized training programs 
will be  demonstrated not only by clinical evaluation but also by 
changes in biological markers and neuroimaging. The study will 
provide an innovation in highlighting markers that can accurately 
determine the effectiveness of rehabilitation treatments.
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