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Background: Musician’s dystonia is a task-specific movement disorder that 
deteriorates fine motor control of skilled movements in musical performance. 
Although this disorder threatens professional careers, its diagnosis is challenging 
for clinicians who have no specialized knowledge of musical performance.

Objectives: To support diagnostic evaluation, the present study proposes 
a novel approach using a machine learning-based algorithm to identify the 
symptomatic movements of Musician’s dystonia.

Methods: We propose an algorithm that identifies the dystonic movements 
using the anomaly detection method with an autoencoder trained with the hand 
kinematics of healthy pianists. A unique feature of the algorithm is that it requires 
only the video image of the hand, which can be  derived by a commercially 
available camera. We  also measured the hand biomechanical functions to 
assess the contribution of peripheral factors and improve the identification of 
dystonic symptoms.

Results: The proposed algorithm successfully identified Musician’s dystonia with 
an accuracy and specificity of 90% based only on video footages of the hands. 
In addition, we identified the degradation of biomechanical functions involved 
in controlling multiple fingers, which is not specific to musical performance. By 
contrast, there were no dystonia-specific malfunctions of hand biomechanics, 
including the strength and agility of individual digits.

Conclusion: These findings demonstrate the effectiveness of the present 
technique in aiding in the accurate diagnosis of Musician’s dystonia.
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Introduction

Musician’s dystonia (MD) is a task-specific movement disorder that leads to deterioration 
or loss of control of highly skilled movements at the musical instrument. This career-
threatening disorder has a life prevalence of about 1–2% amongst professional musicians (1) 
and is thus considerably more frequent as compared to writer’s cramps, another form of 
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task-specific focal dystonia, with a prevalence of about 0.08 (2). In the 
beginning, typical symptoms are subtle: feelings of tension in the 
forearm muscles when playing, slowing down of fast repetitive 
movements, and irregularity of movements required to be regular, e.g., 
scale playing in classical music. Later, curling of fingers or uncontrolled 
extension whilst playing, “sticking” fingers at the keys due to 
overactivity of finger-flexor muscles, and visible cramping of wrist 
extensors and flexors are more obvious (3), and can be  observed 
objectively and assessed via video-rating of informed and trained 
raters (4).

Risk factors for Musician’s dystonia include genetic predisposition 
(5), workload at the instrument (1, 6), and over-practice through 
highly repetitive movements over a long period (7). The diagnosis of 
the MD is clinical and not straightforward since it requires 
examination at the instrument and thus, musical knowledge and 
knowledge of the playing technique of the examiner. For example, the 
first symptoms usually include unevenness of regular scale-playing, a 
symptom which develops insidiously and is perceived by musicians; 
however, it is frequently not perceived by medical experts who have 
no musically trained ear. Therefore, there is an urgent need to develop 
a method for diagnosing Musician’s dystonia that can be easily used 
even by those medical doctors with no expertise in music and 
musical performance.

The purpose of this study was to develop a “Red Flag” system of 
biological markers by objectively assessing playing skill at the piano to 
facilitate medical personnel’s diagnosis of Musician’s dystonia. This 
diagnosis system draws on artificial intelligence and trained machine 
learning algorithms. Meanwhile, many diagnostic methods using 
artificial intelligence (AI) technology are being developed. The 
application of AI technology in medical imaging diagnosis, for 
example, is very promising, and there are areas where it surpasses the 
performance of specialists (8, 9). However, the diagnosis of movement 
disorders has not progressed as far as medical imaging diagnosis.

In this study, we  present a video-based Musician’s dystonia 
diagnostic system targeting pianists. Previous studies have shown that 
pianists with focal dystonia have impaired coordination of finger 
movements (10). Based on this, we use a kinematics-based approach 
supplemented by video recordings. In addition, we  undertook 
research into the task specificity of Musician’s dystonia and into 
possible biomechanical risk factors (11). Aberrant anatomical 
connections between tendons and muscles for example may increase 
stiffness and the load on specific, mostly extrinsic and intrinsic finger 
flexor and extensor muscles, which in turn can trigger focal dystonia 
(12). Indeed, abnormalities in biomechanical conditions impacting 
finger joint movements were reported to be associated with focal hand 
dystonia (10, 12), indicating that not only neurological factors but also 
anatomical and biomechanical factors could be involved. Therefore, 
we also examined differences in biomechanical functions that are not 
directly relevant to the piano performance in pianists suffering from 
Musician’s dystonia and in healthy pianists.

Methods

Participants and tasks

Participants were 20 healthy pianists (25.2 ± 4.1 years old, 30% 
male) and 16 pianists (47.0 ± 10.9 years old, 56.2% male) suffering 
from focal hand dystonia. All participants were professional pianists 

with a master’s degree in piano performance. 19 of the healthy and 16 
of the dystonic pianists were reported to be right-handed individuals.

Musicians with dystonia were diagnosed by the senior author of 
the paper (EA), an internationally acknowledged movement disorders 
specialist and neurologist. The affected hands and fingers varied. 
Unfortunately, due to the rarity of the disorder, it was not possible to 
match the gender and age to those of the control group. Data on age, 
gender, duration of being affected by dystonia, affected hand, and 
handedness are summarized in Table 1, while data on age, gender, 
handedness, and piano playing experience of participants in the 
healthy control group are summarized in Table 2.

All participants gave informed consent, and the Ethics Committee 
of Leibniz University Hannover approved the study.

Piano performance measurements

Participants performed 11 pianistic tasks on a Steinway B-Grand 
piano. These pianistic tasks included single-note sequences such as 
scales, arpeggios, and trills and chord-striking sequences such as 
thirds, repetitive five-note chords, and octaves (Figure  1). These 
movement sequences are frequently used in piano performance, and 
some of these are also used in the diagnosis of dystonia (13). 
Participants were instructed to perform with designated fingering. 
Furthermore, each exercise was performed at two loudness levels (pp 
and ff) and two tempi, a fixed tempo and the fastest possible tempo 
for each individual participant. The fixed tempo was set at 100 bpm for 
single-note sequences (tasks 1–6) and 80 bpm for chord-striking 
sequences (tasks 7–11). All performances were played bimanually 
with both hands, using mirror-image fingering.

In order to obtain as naturalistic tactile and proprioceptive 
information from the action of the grand piano as possible, a custom-
made high-precision measurement system (14) capable of non-contact 
measurement inside a grand piano was installed. This measurement 
system records the movements of all the 88 piano keys with 1 
millisecond temporal resolution and 0.01 mm spatial resolution. A USB 
commercial camera was mounted 1.0 m above the piano keyboard so 
that the C4 key is at the center of the field of view. The USB camera 
recorded the video footage of hand and finger movements during the 
performance with a 78-degree angle of view and a resolution of 
1280*720 at 60 Hz (BRIO, Logicool co.). The field of view was 
1620*911 mm at the keyboard surface, with one pixel corresponding to 
approximately 1.3 mm. Since the width of the white keys is 
approximately 22.5 mm, the camera has a resolution of 17 segments for 
each key, providing an enough high resolution to measure hand 
motions. Video-footage from a side camera were often used at video-
based diagnosis of MD in previous studies. However, because of the 
difficulty of controlling the focus when the distance from camera to 
hand significantly changed during playing, we  did not include the 
video-footage from side cameras into the algorithm. Kinematics were 
measured using the hand landmark detection of the MediaPipe Python 
library (15). MediaPipe is a framework for building machine learning 
pipelines for processing time-series data such as video and audio. Using 
MediaPipe makes it possible to detect the positions of 21 anatomical 
landmarks of the hand, including the joint positions of each finger and 
the positions of the fingertips and wrists, in three-dimensional 
coordinates on each video frame. Movement of piano keys and video 
footage are synchronously recorded using an internal clock of the 
measurement system. A display of the set-up is shown in Figure 2-1.
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Machine learning algorithm

For the video-based diagnostic support system, we developed an 
anomaly detection system using an autoencoder. An autoencoder is a 
type of artificial neural network structure that is trained to reconstruct 

input data so that the input and output data are identical (16). It has 
an hourglass-like structure with a middle layer of fewer dimensions 
than the layers representing input/output data. The network structure 
for extracting features that represent the input data is trained from the 
input layer to the middle layer (encoder), and a network structure for 

TABLE 1 Characteristics of pianists with Musician’s dystonia.

Age Gender Affected hand Handedness Duration of being affected 
(year)

Dystonic pattern

A 57 F R R 9 Index and middle finger flexion

B 26 F R R 2 Ring and little finger flexion

C 34 M R R 2 Middle finger and wrist flexion

D 59 M R R 16 Thumb and index finger flexion

E 42 M R R 1 Thumb and index finger flexion

F 46 M R R 22 Index finger flexion

G 43 F L R 5 Ring finger flexion

H 36 M R R 3 Index and middle finger flexion

I 56 M R R 40 Middle, ring and little finger flexion

J 53 M R R 26 Middle finger flexion

K 51 F R R 30 Middle finger flexion

L 53 F R R 11 Middle and ring finger flexion

M 29 F R R 10 Index and middle finger flexion

N 47 M R R 17 Index and middle finger flexion

O 64 M L R 14 Wrist flexion

P 57 F R R 27 Middle and ring finger flexion

47.0 ± 10.9 F:M = 7:9 R:L = 14:2 R:L = 16:0 14.7 ± 11.6

TABLE 2 Characteristics of healthy control participants.

Age Gender Handedness Years of playing the piano

A 25 M R 12

B 24 M R 19

C 21 F R 15

D 23 F R 18

E 31 F R 28

F 20 F R 16

G 22 F R 18

H 21 F R 18

I 24 F R 21

J 38 F R 32

K 25 F L 20

L 20 M R 16

M 28 F R 23

N 28 F R 23

O 28 M R 22

P 25 F R 21

Q 29 F R 24

R 23 M R 18

S 22 F R 18

T 24 M R 19

25.2 ± 4.06 F:M = 14:6 R:L = 19:1 20.1 ± 2.18
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expanding from the extracted features to the original data is trained 
from the middle layer to the output layer (decoder). Therefore, when 
a trained autoencoder encounters unfamiliar data with features 
different from the training data sets, the reconstruction accuracy 
decreases since it cannot reconstruct features that are not included in 
the training data sets well. This characteristic makes autoencoders 
useful in anomaly detection (17). In this study, we  trained the 
autoencoder using the kinematic data of healthy pianists during piano 
performance as training data. If the kinematics of healthy pianists and 
pianists with MD have different features, we can discriminate between 
the performances of MD patients and healthy pianists using the 
reconstruction accuracy.

We used the time series data of the coordinates of the hand and 
finger landmark points output by MediaPipe as input data for the 
autoencoder. We extracted the video frames corresponding to the 
beginning of the first keystroke to the end of the last keystroke based 
on the vertical displacement data of the keys. Using MediaPipe’s hand 
detection for each extracted frame, we obtained the time-series data 
of the positions of the 21 feature points of the hand in three 
dimensions during the performance. Each performance data was 
time normalized by adjusting the number of data points to 128 
through spline interpolation. As a result, the kinematic data of each 
performance is shaped into a tensor of 21 × 3 × 128. Since pianists 

with focal dystonia showed abnormal spatiotemporal coordination 
between adjacent fingers/joints (10), we  used a convolutional 
autoencoder that can compress information while preserving 
adjacent spatiotemporal information. The autoencoder consisted of 
7 layers of convolutional encoders and 7 layers of convolutional 
decoders. We performed data augmentation to make the estimation 
results robust against different camera mounting conditions. Here, 
we used rotation of the coordinates extracted by MediaPipe, scaling 
in the vertical and horizontal directions, and their combination. This 
augmentation was done to simulate possible camera mounting 
deviations. We randomly divided the healthy participants’ data into 
80% for training and 20% for validation. We used mean-squared 
error as a metrics of the reconstruction error of the autoencoder. 
Training continued until the reconstruction error converged (final 
error: ~3.0e-04). When reconstructing the validation data with the 
trained autoencoder, we set the threshold for classifying abnormal 
performance data as the mean reconstruction error +2 standard 
deviations. We regarded the performance data with reconstruction 
errors exceeding the threshold as abnormal performance data. The 
proportion of validation data classified as normal values was defined 
as the specificity of the classifier. The proportion of patient data 
classified as abnormal values was defined as the sensitivity of the 
anomaly classifier (Figure 2).

FIGURE 1

Eleven pianistic tasks participants performed. The pianistic tasks consist of sequence of monophonic notes such as scale, arpeggio, and trill, and chord 
strikings such as third chords, repetitive chord, and octave.
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Measurement of biomechanical function

Although Musician’s dystonia is a disorder in which dexterity is 
impaired primarily during the performance of specific tasks, it is 
known that there are differences in hand perceptive or sensory-motor 
functions unrelated to specific motor tasks, such as longer temporal 
discrimination threshold (TDT), compared to healthy individuals (18, 

19). Conversely, it has been reported that TDT is not altered in 
musicians with dystonia (20). Furthermore, biomechanical factors 
seem to be related to musicians with dystonia, at least in a subgroup 
(11, 21). Therefore, in addition to the piano performance experiments, 
we also examined the biomechanical functions of the fingers that are 
not directly related to the performance, which include the maximum 
strength of each finger, the reduction rate of force exertion during 

FIGURE 2

Schematic illustration of the video-based diagnostic support system. The video footage was recorded using a commercially available USB camera, and 
the movement of the piano keys was captured by a custom-built contactless measurement system using optical sensors (14). Hand kinematics during 
piano performance were measured using a video-based motion capture system (MediaPipe). The kinematic data of healthy pianists were used to train 
a convolutional autoencoder. This convolutional autoencoder trained with healthy pianists’ data effectively reconstructs healthy pianists’ hand 
kinematics. However, it cannot accurately reconstruct the data with different kinematic features, i.e., the data of pianists with MD.
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simultaneous force exertion with all fingers, the independence, agility, 
moving range in extension/flexion and abduction/adduction rotation 
directions of each finger and the temporal sensory ability.

For assessing finger strength, simultaneous force exertion, 
independence, and agility, we used a custom-made force sensor device 
designed to measure the force exerted by the five fingers. Participants put 
each of the five fingers on different independent force sensors (TAL220, 
SparkFun), the location of which can be customized so as to fit with the 
hand of the individual participants. The wrist and elbow were immobilized 
during the measurement, and only the fingers were allowed to exert force 
for flexion. In measuring the maximum finger strength, participants were 
instructed to press the force sensor as strongly as possible with each finger 
individually. In measuring simultaneous force exertion, participants were 
instructed to press the force sensor with all fingers simultaneously. The 
reduction rate of force exertion was calculated as the ratio of finger force 
during simultaneous force exertion and the maximum finger strength of 
each finger (22, 23). During the assessment of finger movement 
independence, participants were instructed to press the force sensor at 
20% of full strength with only the designated finger for 5 s with all fingers 
on the force sensor. The independence was calculated as the 1 – the ratio 
of the designated finger force and the sum of the other fingers’ force (24). 
To assess movement agility, participants were instructed to tap the force 
sensor repetitively with the designated finger at the fastest rate for 5 s 
(Supplementary Figure 1-1).

The measurement of the finger moving range was conducted with 
keeping the wrist and the upper arm fixed to the base. The range of 
motion was measured by the relative values of the posture sensor that 
was attached to the proximal phalangeal bone and back of the hand. 
The posture sensor, consisting of an inertial measurement unit (ICM-
20948, TDK InvenSense), calculates the three-dimensional posture by 
utilizing the Earth’s gravity and magnetic field (Supplementary  
Figure 1-2).

The participants in this study included right-handed and left-
handed individuals. Furthermore, the dystonia patients did have 
different patterns of dystonic movements and were affected either on 
their left or right hand. Therefore, we  focused on the asymmetry 
between the left and right hands. The asymmetricity is defined as

 

Assym
z z z z z

z

L thumb L index L middle L ring L pinky
T

R
=
  −, , , , ,, , , ,

,, , , , ,thumb R index R middle R ring R pinky
Tz z z z, , , , 

where z indicates the z-score of each biomechanical function 
score, the first subscript indicates the hand (L: left and R: right), and 
the second subscript indicates the finger.

We used the Temporal Order Judgment Threshold (TOJT) to 
assess the temporal sensory ability of participants, as the commonly 
used TDT is susceptible to judgment bias. TOJT was measured using 
a custom-made tactile stimulator consisting of a microcontroller 
(STM32 Nucleo-32, STMicroelectronics) and two solenoids 
(ZH0-0420S-05A4.5, Shenzhen Zonhen Electric Appliances). 
Participants placed their right index and middle fingertips on the 
solenoids. Two tactile stimuli were sequentially delivered to the fingers 
in a randomized order by the two solenoids with a short time interval. 
Subsequently, the participants were required to answer which finger 
received the tactile stimuli first. The time interval between two stimuli 
was shortened if the response was correct and increased if incorrect 
according to the ZEST method in psychophysics (25). TOJT of the 

participants was defined as the time interval at which the correction 
rate exceeded 75% (Supplementary Figure  1-3). We  opted for 
mechanical stimulation instead of electrical stimulation for simplicity, 
while adhering to the target body parts of previous studies that 
measure TDT of patients with MD (20). Prior to measurements, 
we  ensured that the magnitude of the mechanical stimuli was 
sufficiently above each participant’s tactile threshold.

We adopted different approaches for each of the video footage 
and biomechanical function datasets because we  prioritized 
simplicity. The main purpose of this study is to propose simple 
diagnostic support methods for MD, targeting physicians with no 
expertise in music performance. We  aimed to provide 
straightforward hand biomechanical function tests to support the 
diagnosis of MD. Therefore, instead of employing a machine learning 
approach that discriminates MD based on the distribution of diverse 
test scores, we employed conventional statistical methods to identify 
tests where significant differences emerge. Furthermore, integrating 
video footage and hand biomechanics data into a single machine-
learning algorithm was challenging due to the different modalities 
of the datasets.

Results

Video-based classification of Musician’s 
dystonia

We evaluated the sensitivity and specificity of the anomaly 
classifier using the autoencoder trained with the kinematic data of 
healthy pianists during the performances for each pianistic task. For 
four out of the 11 tasks, including a scale, arpeggios, and thirds chord 
striking (tasks 1, 3, 4, and 7), the sensitivities were higher than the 
chance level (>50%). The sensitivity and specificity were 66 and 79% 
for task 1 (scale), 82 and 78% for task 3 (arpeggio), 91 and 95% for 
task 4 (arpeggio with black keys), and 91 and 88% for the for task 7 
(thirds chord striking), respectively. These results indicate the highest 
classification accuracy for pianistic task 4, which involved striking the 
black and white keys by opening and closing the hand with the 
thumb-under maneuver. For the remaining seven tasks, the sensitivity 
of the autoencoder was below the chance level (<50%), which 
indicates a failure of classification between patients and controls with 
these tasks (Figure 3).

Assessment of biomechanical functions

We evaluated the asymmetricity of the biomechanical functions 
between the left and right hands. There were no group-wise significant 
differences in the asymmetricity of strength of each finger, agility, and 
flexibility between the left and right hands between healthy pianists 
and pianists with MD. By contrast, asymmetricity in the force exertion 
with all fingers and finger independence were larger in the pianists 
with MD (Man-Whittney U test with Benjamini-Hochberg correction 
for multiple comparisons: p = 0.017, and p = 0.013). We  found no 
significant differences in the asymmetricity of the flexibility between 
healthy pianists and pianists with MD in any direction. We did not 
observe significant differences in the TOJT between healthy pianists 
and pianists with MD nor between the right and left hands of pianists 
with MD (Figure 4).
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Discussion

In this study, we proposed a machine-learning algorithm capable 
of detecting focal dystonia in pianists with an accuracy of 
approximately 90% by using anomaly detection and a commercially 
available video camera. The diagnosis of MD has been readily prone 
to misdiagnosis due to the task-specific manifestation of symptoms 
and the need for specialized knowledge on complex movement 
coordination in musical performance. Despite using only video 
images during the performance, the method proposed in this study 
achieved high accuracy in the classification of movements between 
pianists with and without MD. Furthermore, by assessing the finger 
biomechanical functions, which are unspecific to musical 
performance, the accuracy of the classification was improved.

Several methods using scale performance and specific tasks on the 
piano keyboard have been proposed to objectively assess the nature 
and degree of MD (13). However, these methods require an electronic 
piano and a non-commercially available program based on data from 
MIDI technology, which is difficult to handle and requires time-
consuming post-processing. This makes them difficult to use in 
non-specialized institutions in musician’s medicine.

An innovative aspect of the method in this study is the use of 
simple video footage, allowing for the development of an automatic 
diagnostic assistance system using a smartphone camera. Furthermore, 
this study used an anomaly detection method using an autoencoder 
based on unsupervised learning rather than supervised learning. 
Unsupervised learning is appropriate here because the prevalence of 
musician’s dystonia is estimated to be  around 1% (1). Therefore, 
collecting performance data from healthy pianists is much easier than 
collecting data from dystonia patients. In general, creating a high-
performance machine learning model requires a large amount of 
high-quality training data. In the case of supervised learning, normal 
and abnormal labels need to be annotated to the performance data to 
teach the model how to classify. However, when there is a significant 
imbalance in the number of labels, the features of the minority labels 
tend to be ignored, such as in the case of rare disorders, which makes 
it difficult to improve accuracy even by increasing the number of 
training data (26). By contrast, in the case of anomaly detection 
methods using unsupervised learning, learning the features of normal 

data enables the segregation between the performances of pianists 
with focal dystonia and healthy pianists. Therefore, further accuracy 
improvement is possible by increasing the training data of healthy 
pianists. Moreover, by expanding the dataset of healthy pianists, the 
algorithm can address the diagnosis of an early stage of MD, in which 
its symptoms only appear on limited passages, and provide follow-up 
assessments where the pattern of dystonic movements changes 
with treatment.

The differences in MD detection accuracy among the tasks may 
offer insights for improving the algorithm. The kinematic features of 
each task likely account for these differences. For example, tasks 
requiring minimal finger movement, such as repetitive chord striking 
(B-9), may not adequately elicit symptomatic movement, which might 
complicate MD detection. Additionally, considerable inter-individual 
differences within the training data from healthy pianists could affect 
the autoencoder’s ability to calculate abnormalities for certain tasks. 
To enhance the algorithm’s accuracy, carefully selecting performance 
tasks for training data for the autoencoder and incorporating the 
domain knowledge of experienced physicians would be beneficial.

The proposed algorithm facilitates the diagnosis of musicians’ 
dystonia for neurologists and movement disorders specialists who are 
not experienced in analyzing evenness or sound quality in pianists. 
More importantly, we now have an easily applicable objective measure 
for follow-up studies, such as assessing treatment effects. This has been 
proven to be time-consuming and laborious (27). Plucked instruments 
can be the next target for extending this algorithm to the diagnosis of 
MD on other instruments. Video footage of the right hand can 
be  applicable for assessing hyperflexion and hyperextension in a 
similar manner as proposed in this study. The algorithm for plucked 
instruments can be extendable for the left hand of string players and 
in woodwind instruments according to the same principles. Although 
a single camera was utilized in this study for simplicity, this setup may 
limit the accuracy of kinematic measurements in less kinematically 
constrained tasks such as drumming, violin bowing, and guitar 
playing. This issue could be addressed by altering the source of the 
kinematic data. Employing conventional motion capture with a 
machine-learning algorithm appears promising (28). In addition, a 
whole-body estimation algorithm using multiple RGB or depth 
cameras is a relatively simple and promising method for such 

FIGURE 3

The result of the video-based classification of MD using the autoencoder. The autoencoder is trained to reconstruct the hand kinematics of healthy 
pianists, thus it cannot reconstruct the hand kinematics of pianists with MD. We set the threshold for abnormal performance data as the mean 
reconstruction error +2 standard deviations when reconstructing the validation data of healthy pianists. The sensitivity of the autoencoder exceeds the 
chance level for 4 tasks and exceeds 90% in arpeggio task and triad chords striking task.
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low-constrained tasks. Recently, methods for detecting facial, finger, 
and whole-body feature points using machine learning have been 
developed, enabling almost real-time feature point detection (15, 29, 
30). Therefore, this method is potentially applicable to the diagnosis 
of focal dystonia targeting effectors other than fingers, such as 
embouchure and feet. In principle, the proposed algorithm could 
potentially be adapted to diagnosing other movement disorders by 
creating specific patient datasets.

Furthermore, the proposed algorithm can be  applied to the 
treatment of MD. Since it quantifies the degree of abnormality as the 
autoencoder’s reconstruction error, the algorithm can be directly 
used for quantitative evaluation of the treatment effect. In addition, 
this algorithm can quantitatively evaluate the similarity of 

kinematics, as the performance kinematics are represented by 
feature vectors in the middle layer of the autoencoder. Therefore, it 
can assist in establishing treatment plans by analyzing patient data 
with similar kinematics to determine the most effective treatments 
applied in comparable cases. An intriguing observation was 
abnormal asymmetry of the force exertion of all fingers and finger 
independence between the left and right hand in dystonia patients. 
These biomechanical functions are not specific to the instrumental 
performance that triggers symptoms of MD. However, the former is 
related to simultaneous control of multiple fingers, which is required 
for musical performance (e.g., playing a chord), whereas the latter is 
related to a task requiring inhibitory control between adjacent 
fingers (31). Abnormal surround inhibition of adjacent fingers at 

FIGURE 4

The result of the hand asymmetricity of biomechanical function measurement. There were significant asymmetricity differences between the pianists 
with MD and healthy pianists at the robustness of simultaneous force exertion and finger independence, which require simultaneous control of 
multiple fingers. On the other hand, we did not find any significant differences on the hand asymmetricity of strength and agility of individual fingers.
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resting state in pianists with MD has been reported in 
neurophysiological studies using transcranial magnetic stimulation 
(32). The present behavioral task of evaluating finger independence 
has a clinical advantage over transcranial magnetic stimulation in 
that the abnormal inhibitory control of the fingers can be readily 
evaluated. Significant differences between healthy pianists and 
patients with focal dystonia were evident in motor functions 
requiring multi-finger coordination, which is unnecessary in daily 
manual tasks (33). It is unclear whether the multi-finger coordination 
function was impaired due to focal dystonia or whether the innately 
unskilled multi-finger coordination function became a factor in the 
development of focal dystonia. However, abnormalities of 
generalized, not task-specific, biomechanical dysfunctions associated 
with task-specific dystonia have been described by Wilson (11) and 
Leijnse (34). These results emphasize the urgent need for longitudinal 
assessment of these functions to prevent the development of 
Musician’s dystonia.

This study has potential limitations. The MD and healthy control 
groups were not well-matched in terms of gender and age. The 
demographics of most MD group participants (elderly males with 
extensive piano training experience) made recruiting a better-matched 
healthy control group difficult. However, we believe that the kinematic 
and video parameters in these extremely overlearned and automated 
tasks in healthy, professional, fully trained pianists are independent of 
gender and do not alter until senescence (which we excluded). Indeed, 
we  have demonstrated remarkable stability of expert pianists in 
kinematic and acoustic parameters in scale-playing skills in earlier 
longitudinal studies (35). Furthermore, Gründahl et al. showed that 
the severity of symptoms is not age-dependent using video-rating 
conducted by expert pianists, indicating that the age of the pianists 
with MD does not affect their movement patterns (4). Additionally, 
the algorithm currently only discriminates the presence of symptoms 
and does not classify their severity. Future work will involve 
establishing the criteria of severity that combine audio criteria and the 
abnormality of finger kinematics. Creating a large performance dataset 
of audio and video recordings from a wide range of pianists, including 
both healthy individuals and patients across various ages and genders, 
would be  beneficial for developing a machine learning-based 
diagnostic system for MD and its early detection. Furthermore, the 
proposed algorithm does not provide the reason of the classification 
because of the lower explainability of the CNN architecture. Other 
non-parametric classification techniques, such as anomaly detection 
algorithms using tree structures like the Isolation Tree, may 
be potential candidates offering better explainability. However, tree-
structured algorithms require feature engineering for classification. 
The variability in the dystonic patterns of the participants, as presented 
in Table 1, made designing appropriate feature variables challenging. 
To address the issue of the lower explainability of CNN-based 
algorithms, techniques for visualizing the basis of image classification 
in CNN networks, such as Grad-CAM (36), may enhance the 
explainability of our anomaly detection algorithm. Although to 
identify the best classifier is out of scope of the present study, it can 
be significant to apply such classification techniques in future studies.
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SUPPLEMENTARY FIGURE S1

Schematic illustration of the hand biomechanical function 591 measurement. 
Finger strength, reduction rate of force exertion during simultaneous force 592 
exertion with all fingers, agility, and independence were measured using a 
custom-made 593 force sensor. Moving range in extension/flexion direction 
and abduction/adduction of each 594 digit are measured using a posture 

sensor consists of an accelerometer and a magnetic field 595 sensor. Time 
discrimination threshold was measured using a custom-made tactile 596 
stimulator consists of two solenoids. Two solenoids sequentially stimulate 
index and middle 597 finger of the participant with short time interval and the 
participant answer which finger 598 perceived tactile stimuli first. TOJT was 
defined as the time interval at which the correction 599 rate exceeded 75%.
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