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Background: Observational researches have suggested a connection between 
iron deficiency anemia (IDA) and an increased likelihood of ischemic stroke (IS), 
yet establishing causality is challenging owing to the inherent limitations of such 
studies, including their vulnerability to confounding factors and the potential 
for reverse causation. This study employs a bidirectional two-sample Mendelian 
randomization (MR) approach to assess the causal linkage between IDA and IS 
and its subtypes.

Methods: Identifiable single nucleotide polymorphisms (SNPs) with significant 
links to either IDA or IS and its subtypes were employed as instrumental 
variables (IVs). The relationship between IDA and any IS, small vessel stroke 
(SVS), cardioembolic stroke (CES), and large artery stroke (LAS), was quantified 
using the inverse variance weighted (IVW) method. Complementary analyses 
utilizing MR-Egger and weighted median methods further supplemented the 
IVW findings. Moreover, the leave-one-out analysis, MR-Egger intercept test, 
MR-PRESSO global test, and Cochrane’s Q test were conducted for sensitivity 
analyses.

Results: This study revealed no correlation between IDA and any IS (IVW method: 
OR [95% CI]  =  0.977 [0.863–1.106]; p  =  0.716), LAS (OR [95% CI]  =  1.158 [0.771–
1.740]; p  =  0.479), CES (OR [95% CI]  =  1.065 [0.882–1.285]; p  =  0.512), or SVS (OR 
[95% CI]  =  1.138 [0.865–1.498]; p  =  0.357). Conducting a reverse MR analysis, it 
was determined that there is no causal connection between any IS, LAS, CES, 
SVS, and IDA (all p  >  0.05). Sensitivity analysis indicated that heterogeneity was 
not significant and no evidence of horizontal pleiotropy was detected.

Conclusion: This MR study suggested no causal effect of IDA on IS, LAS, CES, 
and SVS. Through reverse MR analyses, it was determined that IS and its subtypes 
did not exert a causal impact on IDA.
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1 Introduction

Stroke represents a major global health challenge and a leading 
cause of mortality, affecting approximately 80 million people 
worldwide and representing the second greatest burden of disease 
globally (1). Of all stroke types, ischemic stroke (IS) accounts for 
approximately 87% (2), with the major causative categories being 
small vessel stroke (SVS), cardioembolic stroke (CES), and large 
artery stroke (LAS) (3). Characterized by high rates of mortality and 
disability, IS is a principal contributor to human disability and death, 
causing neurological impairments such as hemiplegia and aphasia 
that profoundly diminish individuals’ quality of life (4). Despite 
substantial progress in managing traditional contributing factors-
including diabetes mellitus, hyperlipidemia, and high blood 
pressure-through medical interventions, the incidence of IS 
continues to be  a paramount public health issue worldwide (5). 
Given complex etiology of IS and the involvement of multiple risk 
factors (6), the early detection and management of these risks are 
critical (7).

Anemia, designated as the fifth cardinal cardiovascular risk factor 
(8), exhibits a global prevalence of 32.9%, making it one of the most 
widespread medical conditions (9). It is typified by diminished levels 
of hemoglobin or hematocrit, leading to reduced oxygen transport 
capability of the red blood cells, with potential systemic effects (10). 
Among the various causes of anemia, iron deficiency anemia (IDA) 
emerges as a predominant factor worldwide (11). IDA has been 
documented as an infrequent etiological factor for IS. In certain case 
reports, instances of thrombosis in the carotid arteries have been 
documented, with aortic thrombosis being a rarer occurrence, in 
patients suffering from IDA (12, 13). Findings from case–control 
investigations suggested a notable correlation between IDA and the 
increased incidence of stroke, specifically IS (14, 15). An observational 
study revealed that the incidence of IS in patients with IDA was 24.4% 
(782/3199) (14). Several mechanisms may elucidate the potential link 
between IDA and increased IS risk. The reduction in hemoglobin 
levels associated with IDA compromises oxygen transport, potentially 
leading to tissue hypoxia, including in cerebral regions, thereby 
elevating stroke risk (16). Additionally, the body’s compensatory 
response to anemia may involve enhanced erythropoiesis, resulting in 
increased red blood cell production and higher blood viscosity, which 
could contribute to thrombotic events (17). However, observational 
research, while indicating a relationship of IDA and ischemic IS risk, 
may be  subject to biases from potential confounding factors and 
reverse causality. This underscores the limitations of these studies in 
conclusively establishing a causal association between IDA and 
IS risk.

Mendelian randomization (MR) serves as a statistical approach 
leveraging genetic variations as instrumental variables (IVs) for 
elucidating causative associations of exposure factors and outcomes 
(18). This model leverages the random allocation of genetic variants 
at conception, mitigating the influence of environmental confounders 
and the risk of reverse causation (19). Consequently, MR offers a 
robust alternative to traditional epidemiologic approaches (20). To 
date, the potential causal link between IDA and IS, along with its 
subtypes, has not been investigated through MR analysis. This study 
aimed to explore the causal relationship between IDA and IS and its 
subtype risk based on large-sample genome-wide association study 
(GWAS) databases through a bidirectional two-sample MR analysis.

2 Methods

2.1 Study design

In this research, we used a two-sample bidirectional MR approach 
to thoroughly evaluate the two-way causative link between IDA and 
IS and its subtypes. The research employed IVs, derived from genetic 
variances, particularly single nucleotide polymorphisms (SNPs), 
which show strong associations with IDA or IS and its subtypes. For 
the MR analysis to be deemed credible, it was imperative to satisfy 
three essential conditions: (1) A strong association existed between 
the IVs and exposure variables; (2) The selected SNPs had no links to 
any underlying confounders; (3) The IVs exclusively influenced the 
outcomes via the exposure mechanism (21). A brief overview of the 
bidirectional MR analysis was presented in Figure 1. Our methodology 
adhered to the guidelines outlined in the STROBE-MR for 
documenting our findings (22). Given that the data for our analysis 
were secondary data sourced from an existing study with prior ethical 
approval, the necessity for additional ethics approval and informed 
consent was circumvented in this case.

2.2 Data sources

Data from GWAS pertaining to IDA and SNPs were acquired 
from the FinnGen consortium,1 encompassing publicly accessible 
summary statistics for IDA and 21,306,290 SNPs from 408,837 
European descent individuals. IS-related information was derived 
from the MEGASTROKE consortium’s European cohort (23, 24), 
involving European ancestry participants. The principal endpoint 
analyzed was IS, contrasting 34,217 cases and 406,111 control subjects. 
Distinct subcategories of IS explored included LAS, with an analysis 
of 6,399 cases; CES, involving 7,193 cases; and SVS, assessing 5,386 
cases, against a control cohort of 1,234,808 for LAS, 192,662 for SVS 
and 406,111 for CES. Details of the GWAS are encapsulated in Table 1.

2.3 Instrumental variable selection

In the selection process for genetic variants related to exposures 
and outcomes, a standardized criterion was employed. Acknowledging 
the potential limitation in the number of SNPs reaching comprehensive 
genome-wide significance, we moderated the significance threshold 
to a p-value of less than 5 × 10−7 for LAS and SVS. Independent IVs 
were distinguished through a process of linkage disequilibrium (LD) 
clumping, applying an r2 threshold at 0.001 with a clumping distance 
of 10,000 kb, based on the LD reference derived from the 1,000 
Genomes Project. Variants presenting the lowest p-values were 
selected as independent instruments (25). Further, SNPs 
demonstrating significant associations with the exposure variables 
were evaluated using the F-statistic, identifying strong IVs by the 
criterion F > 10 (26). The GWAS catalog2 was then used to assess 
potential correlations between selected SNPs and confounding factors. 

1 https://r10.finngen.fi/

2 https://www.ebi.ac.uk/gwas/
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SNPs associated with exposures and directly linked to outcomes 
(p < 5 × 10−8) were excluded. Finally, the gathered data from exposure 
and outcome databases were merged, ensuring the elimination of 
palindromic sequences to maintain uniformity in effector alleles.

2.4 MR analysis

The primary method for estimating the causal effect between IDA 
and IS was the inverse variance weighted (IVW) approach, which derives 
weighted summaries based on the inverse of the variance, presuming the 
validity of all instrumental variables. As a pivotal method within MR 
research, IVW synthesizes Wald ratios from individual SNPs to generate 
an overall causal estimate (27). To assess the robustness of the results and 
examine the presence of pleiotropy, additional analyses were conducted 
using the MR-Egger regression and weighted median method. The 
MR-Egger method is capable of identifying pleiotropic effects via its 
intercept, offering adjustments for pleiotropy in its estimates, albeit with 
reduced statistical power (28). The weighted median method integrates 
data across numerous genetic variants, providing a consolidated causal 
estimate (29). The findings reached statistical significance with the 
p-value below 0.0125 (0.05/4) following the application of the Bonferroni 

correction for multiple tests. A p-value within the range of 0.0125 to 0.05 
are considered indicative of potential statistical significance.

2.5 Sensitivity analysis

To assess the heterogeneity across individual genetic variance 
estimates, Cochran’s Q test was employed. A p-value from Cochran’s Q 
test less than 0.05 prompted the adoption of the random effects model 
for subsequent MR analysis, while a higher p-value warranted the use 
of a fixed-effects model (30). Assessment of horizontal pleiotropy relied 
on the Egger intercept, considering the absence of pleiotropy when 
p > 0.05 (28). To identify and mitigate the impact of outliers on causal 
inference, the MR pleiotropy residual sum and outlier (MR-PRESSO) 
approach was employed (31). The leave-one-out strategy was applied 
to identify IVs potentially impacting causal effect estimates, 
sequentially excluding each SNP to determine the meta-effect of the 
remaining SNPs. Visual representation of our findings was achieved 
through scatter and forest plots, elucidating the linkage between IDA 
and IS. Funnel plot analysis was conducted to verify the results’ 
stability. All statistical analyses were performed using R software 
(v4.3.1) with the TwoSampleMR and MRPRESSO packages (v0.5.7).

FIGURE 1

Study design diagram and three assumptions of Mendelian randomization. SNPs, single nucleotide polymorphisms.

TABLE 1 Detailed information of the GWAS included in Mendelian randomization analysis.

Exposures/
Outcomes

Consortium Cases/
Controls

nSNP Ethnicity PMID Data source Population Year

Iron deficiency 

anemia

FinnGen 15,153/393,684 21,306,290 European - finngen_R10_D3_ 

ANAEMIA_IRONDEF

- 2023

Ischemic stroke MEGASTROKE 34,217/406,111 8,338,157 European 29,531,354 GWAS catalog Adults 2018

Large artery stroke MEGASTROKE 6,399/1,234,808 5,774,938 European 36,180,795 GWAS catalog Adults 2022

Cardioembolic stroke MEGASTROKE 7,193/406,111 8,303,699 European 29,531,354 GWAS catalog Adults 2018

Small vessel stroke MEGASTROKE 5,386/192,662 8,311,897 European 29,531,354 GWAS catalog Adults 2018
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3 Results

3.1 Selection of instrumental variables

Using IDA as the exposure variable, we screened 7 SNPs as IVs, 
none of which were excluded because of their non-significant 
association with confounding variables. Consequently, 7 SNPs were 
used as IVs for causal effect analysis of IDA on IS, LAS, CES, and 
SVS. In the scenario where IDA served as the outcome variable, our 
research identified a total of 29 SNPs, segmented as 10 associated with 
IS, 9 with LAS, 4 with CES, and 6 with SVS. Among them, rs3184504 
was excluded due to its significant correlation with IS as well as red 
blood cell count and hemoglobin levels. We also eliminated any SNPs 
that were palindromic and held a moderate allele frequency. The 
robustness of our instruments was supported by F-statistics exceeding 
10 for all included SNPs, suggesting no weak instrument bias. Details 
about these SNPs was provided in Supplementary Tables S1–S13.

3.2 Causal effects of IDA on IS and its 
subtypes

The correlation of IDA with IS and its various types was depicted 
in Figure  2. Utilizing the IVW approach, we  observed no causal 
relationships between IDA with the incidence of IS (OR [95% 
CI] = 0.977 [0.863–1.106]; p = 0.716), LAS (OR [95% CI] = 1.158 
[0.771–1.740]; p = 0.479), CES (OR [95% CI] = 1.065 [0.882–1.285]; 
p = 0.512), and SVS (OR [95% CI] = 1.138 [0.865–1.498]; p = 0.357). 
This observation was supported by both MR-Egger and weighted 
median analyses, with both of them showing no statistical significance 
(all p > 0.05). Forest plots in Figure 3 presented the estimates of causal 
effects between IDA and IS and its subtypes. Additionally, Figure 4 

displayed scatter plots with MR intercepts approaching zero, suggesting 
a minimal presence of horizontal pleiotropy across the analyses.

3.3 Causal effects of IS and its subtypes on 
IDA

In the analysis conducted through the IVW approach, our study 
found no causal relationships of IS (OR [95% CI] = 0.952 [0.835–
1.086]; p = 0.465), LAS (OR [95% CI] = 1.052 [0.975–1.134]; p = 0.191), 
CES (OR [95% CI] = 1.021 [0.950–1.098]; p = 0.564), and SVS (OR 
[95% CI] = 1.010 [0.926–1.103]; p = 0.815) with IDA (Figure  5). 
However, the MR-Egger method suggested that LAS may potentially 
increase the risk of IDA (OR [95% CI] = 1.391 [1.062–1.821]; 
p = 0.048). Additionally, no causal association between IS, CES, SVS, 
and IDA was found through MR-Egger and weighted median methods 
(all p > 0.05). The forest plots and scatter plots were shown in 
Supplementary Figures S1, S2.

3.4 Sensitivity analyses

The MR sensitivity analysis results are presented in Table 2. Upon 
conducting a heterogeneity test, all p-values derived from Cochrane’s 
Q statistics were found to be greater than 0.05, suggesting a lack of 
heterogeneity among the SNPs. Additionally, the MR-Egger regression 
intercept, used to assess horizontal pleiotropy, did not provide 
substantial evidence for the presence of pleiotropy. This lack of 
significant horizontal pleiotropy outliers was also corroborated by the 
MR-PRESSO results. The leave-one-out analysis did not indicate any 
significant influence of individual SNPs on the overall findings. The 
detailed outcomes of the leave-one-out analysis can be  found in 

FIGURE 2

MR analysis of the causal effect of iron deficiency anemia on ischemic stroke and its subtypes. IDA, iron deficiency anemia; IS, ischemic stroke; LAS, 
large artery stroke; CES, cardioembolic stroke; SVS, small vessel stroke.
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Supplementary Figures S3, S4. The funnel plots, depicted in 
Supplementary Figures S5, S6, did not reveal any significant bias, 
further corroborating the robustness of our results.

4 Discussion

Employing available GWAS datasets and bidirectional two-sample 
MR methodologies, this research probed the causal connections 
between IDA and IS, as well as its specific subtypes. The MR analysis 
was executed through the IVW approach, MR-Egger, and the weighted 
median estimation technique, accompanied by rigorous sensitivity 

analyses to mitigate confounding influences and solidify result 
validity. The results revealed no causal correlation between IDA and 
any IS, or its LAS, CES, and SVS subtypes. Furthermore, the 
exploration of reverse causality did not uphold a causal influence of IS 
and its subtypes on IDA. This study stands as the first effort to 
elucidate a potential causal relationship between IDA and SVS.

Earlier research has predominantly focused on the link between 
anemia and IS. These studies, particularly long-term observational 
follow-ups, have demonstrated that individuals with anemia were at 
approximately a 1.5 times greater risk of developing IS (32, 33). Further 
investigation has found that within the span of one to two years, 
anemia could heighten the risk of IS by 1.6 and 1.35 times, respectively 

FIGURE 3

Forest plots of iron deficiency anemia on ischemic stroke and its subtypes. (A) Ischemic stroke; (B) large artery stroke; (C) cardioembolic stroke; 
(D) small vessel stroke.
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FIGURE 4

MR analysis scatter plots of iron deficiency anemia on ischemic stroke and its subtypes. (A) Ischemic stroke; (B) large artery stroke; (C) cardioembolic 
stroke; (D) small vessel stroke.

FIGURE 5

MR analysis of the causal effect of ischemic stroke and its subtypes on iron deficiency anemia. IS, ischemic stroke; IDA, iron deficiency anemia; LAS, 
large artery stroke; CES, cardioembolic stroke; SVS, small vessel stroke.
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(34). Additionally, individuals with chronic kidney disease who also 
suffer from anemia have been identified as having a heightened risk for 
stroke (35). Despite these associations, a recent MR study examining 
anemia and cardiovascular disease has concluded that anemia did not 
causally impact IS (36). On this basis, the discoveries from our 
investigation contribute novel evidence supporting the non-causal 
associations between IDA and IS, inclusive of its various subtypes.

While the majority of preceding experimental and observational 
research pointed toward a possible association between IDA and IS, 
the precise mechanism through which IDA contributes to IS remains 
partially understood. Several hypotheses have been advanced, positing 
that IDA may lead to IS through the formation of a hypercoagulable 
state, a direct consequence of iron deficiency or anemia itself. 
Secondary thrombocytosis due to IDA and the resultant anemia-
induced hypoxia can create a disparity between the supply and 
demand of oxygen in end-arteries, precipitating ischemia and 
infarction (15). Anemia is known to cause hyperdynamic circulation, 
which in turn increases molecular adhesion expression on vascular 
endothelial cells (37), triggering an inflammatory response that may 
result in thrombosis, akin to atherosclerotic processes (38). In the 
context of IDA, there is an increase in erythropoietin secretion, which 
not only augments red blood cell count but also stimulates platelet 
production, thereby inducing thrombocytosis and thrombus 
formation (39). On the cellular level, diminished hemoglobin levels 
impair oxygen delivery to tissues, potentially leading to hypoxia. 
Exposure of arteries to hypoxic conditions initiates signaling in 
monocytes/macrophages and T lymphocytes via endothelial cells, 
smooth muscle cells, and fibroblasts, which may hasten atheroma 
development (40, 41). Hypoxia can also disrupt the mitochondrial 
respiratory chain, severely affecting energy production. Given the high 
oxygen demands of neurons, they are particularly vulnerable to 
hypoxic conditions. Research by Akins et  al. has indicated that 
turbulent blood flow, a common occurrence in severe anemia, can 
damage vascular endothelium and promote platelet aggregation and 
clot formation (12). Consequently, while our study did not substantiate 
a direct elevation in IS risk attributable to IDA, the possibility of 
anemia contributing to thrombosis warrants attention.

Additionally, the potential link between iron deficiency and IS was 
also a research focus that cannot be  ignored. Sequential research 
following the First National Health and Nutrition Examination Survey 
(NHANES I) unveiled a pronounced U-shaped correlation between 
transferrin saturation levels and stroke incidence among Caucasian 
females aged 45–74 (42), indicating heightened stroke risks at both 

deficient and excessive iron levels in the bloodstream. Similarly, 
Ekblom et  al. found an elevated risk of stroke within the highest 
quartile of total iron binding capacity-a metric that escalates with iron 
deficiency (43). The correlation between iron deficiency and 
thrombophilia has gained increasing recognition over recent years 
(44–46). Iron deficiency is linked to a spectrum of thrombotic 
conditions, including cerebral venous sinus thrombosis (47) and 
carotid artery thrombosis (12), as well as numerous cases of embolic 
stroke (48) and IS (14, 49). Epidemiological research also delineated a 
higher prevalence of IDA among individuals with cerebral venous 
thrombosis compared to a control group (50). Diverging from earlier 
research, our bidirectional MR analysis revealed no causal link between 
IDA and (IS), including its various subtypes. Nonetheless, prior 
investigations suggested that the combined impact of anemia and iron 
deficiency may have a higher propensity for promoting blood clot 
formation (51). Evidence suggests that IDA can precipitate IS through 
a triad of mechanisms: (i) Reduced hemoglobin levels precipitate a 
hypoxic condition; (ii) Hypoxia induces transferrin production via 
hypoxia-inducible factor-1, which then activates and interacts with 
thrombin/factor XIIa, impairing the activity of anticoagulant proteases, 
thus leading to a hypercoagulable state; (iii) IDA stimulates thrombin 
generation by platelets, resulting in thrombocytosis (51). These 
interconnected mechanisms collectively exacerbate cerebral ischemic 
damage, elevating the risk of IS in the context of IDA.

A recent two-sample bidirectional MR study has elucidated that 
IS increases the risk of anemia (36). Our findings further delineate 
that IS does not augment the risk for IDA, hinting at a potential 
causative linkage between IS and other anemia subtypes, warranting 
additional scrutiny. In addition, the relatively extensive 95% CI in our 
MR-Egger analysis signals instability in the causal effect of IS on IDA, 
possibly due to the scarce IVs employed in the analysis. Hence, the 
conclusions drawn regarding the causal effect of IS on IDA necessitate 
further empirical corroboration upon the refreshment of the GWAS 
database. Nonetheless, our study is distinguished by several strengths. 
First, MR analysis sidesteps issues like reverse causation and 
confounding variables common in observational research, offering a 
more time-and resource-efficient approach to dissecting complex 
disease etiologies. Second, the deployment of summary-level data 
from individuals of European ancestry, encompassing a vast array of 
IS subtype cases and controls, minimizes the risk of bias from 
population stratification. Third, leveraging publicly accessible GWAS 
summary statistics capitalizes on a broad sample size, ensuring more 
accurate estimates and stronger statistical power, thereby reducing 

TABLE 2 Sensitivity analysis of the MR analysis results of iron deficiency anemia and ischemic stroke and its subtypes.

Exposures Outcomes Heterogeneity test Pleiotropy test MR-PRESSO

Cochran’s Q Test p Egger Intercept p Global Test (p)

Iron deficiency anemia Ischemic stroke 7.933 0.160 0.008 0.681 0.214

Large artery stroke 0.070 0.966 0.0003 0.998 NA

Cardioembolic stroke 5.600 0.469 −0.018 0.544 0.441

Small vessel stroke 6.803 0.236 0.034 0.416 0.255

Ischemic stroke Iron deficiency anemia 3.345 0.764 −0.037 0.369 0.764

Large artery stroke 10.302 0.244 −0.050 0.074 0.274

Cardioembolic stroke 1.321 0.724 0.010 0.650 0.669

Small vessel stroke 3.586 0.465 −0.014 0.708 0.485

NA, not available.
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research expenses, enhancing bioinformatics use, and bolstering the 
credibility of our findings.

Our study inevitably encounters certain limitations. First, the 
GWAS summary statistics utilized herein are exclusively sourced from 
European cohorts, casting uncertainty on the generalizability of our 
conclusions across diverse ethnicities. The necessity for future 
corroboration of our results with large-scale GWAS summary statistics 
encompassing varied populations is paramount. Second, the aggregate 
data used in our analysis restricts access to detailed individual-level 
information. Third, akin to all MR studies, our study is unable to 
completely exclude the influence of unobserved pleiotropy, potentially 
introducing bias into our results. This underscores the need for 
extensive further research to elucidate the relationship between IDA 
and IS. Fourth, the study failed to identify a causal effect of IDA on 
LAS, with the MR-Egger analysis displaying broad 95% CIs, indicating 
the potential instability of these outcomes and the necessity for 
further inquiry.

5 Conclusion

In summary, our research furnished evidence advocating for no 
causative influence of IDA on the susceptibility to IS, LAS, CES or 
SVS. Bidirectional MR analysis yielded no evidence of a causal 
relationship between IDA and any IS, LAS, CES and SVS. Future 
studies should employ well-conducted clinical trials, featuring robust 
methodologies and substantial numbers of participants, to delve 
deeper into the mechanisms connecting IDA to IS and its 
various subtypes.
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