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Smartphone tests quantify lower 
extremities dysfunction in 
multiple sclerosis
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Introduction: Increasing shortage of neurologists compounded by the global 
aging of the population have translated into suboptimal care of patients 
with chronic neurological diseases. While some patients might benefit from 
expanding telemedicine, monitoring neurological disability via telemedicine is 
challenging. Smartphone technologies represent an attractive tool for remote, 
self-administered neurological assessment. To address this need, we  have 
developed a suite of smartphone tests, called neurological functional test suite 
(NeuFun-TS), designed to replicate traditional neurological examination. The 
aim of this study was to assess the ability of two NeuFun-TS tests—short walk 
and foot tapping—to quantify motor functions of lower extremities as assessed 
by a neurologist.

Methods: A cohort of 108 multiple sclerosis (MS) patients received a full 
neurological examination, imaging of the brain, and completed the NeuFun-TS 
smartphone tests. The neurological exam was digitalized using the NeurEx™ 
platform, providing calculation of traditional disability scales, as well as 
quantification of lower extremities-specific disability. We  assessed unilateral 
correlations of 28 digital biomarkers generated from the NeuFun-TS tests with 
disability and MRI outcomes and developed machine learning models that 
predict physical disability. Model performance was tested in an independent 
validation cohort.

Results: NeuFun-TS-derived digital biomarkers correlated strongly with 
traditional outcomes related to gait and lower extremities functions (e.g., 
Spearman ρ > 0.8). As expected, the correlation with global disability outcomes 
was weaker, but still highly significant (e.g., ρ 0.46–0.65; p  <  0.001 for EDSS). Digital 
biomarkers also correlated with semi-quantitative imaging outcomes capturing 
locations that can affect lower extremity functions (e.g., ρ ~ 0.4 for atrophy of 
medulla). Reliable digital outcomes with high test-retest values showed stronger 
correlation with disability outcomes. Combining strong, reliable digital features 
using machine learning resulted in models that outperformed predictive power 
of best individual digital biomarkers in an independent validation cohort.

Discussion: NeuFun-TS tests provide reliable digital biomarkers of lower 
extremity motor functions.
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1 Introduction

For patients with neurologic disorders, optimal treatment 
depends on timely access to neurology specialists. However, 
accelerated demand due to an aging US population far outpaces 
neurologists supply. By 2025, this national shortfall of neurologists is 
predicted to reach 19% (1). Strategies to reduce mismatch include 
shaping efficient demand, training advanced practice providers, and 
engaging policy and law makers (2).

Telemedicine is another popular solution. The COVID-19 
pandemic has highlighted the power of telemedicine to expand 
healthcare, but it has also revealed certain limitations. To 
illustrate, a survey of neurologists in Norway revealed that 
providers treating multiple sclerosis (MS) or movement disorders 
were less satisfied with remote visits than those treating epilepsy 
or headaches (3). The physical nature of neurological exams 
makes telemedicine uniquely challenging and highlights the need 
for better remote assessment strategies.

Improved technology makes smartphones an attractive tool in 
remote neurological assessment. Indeed, multiple pharmaceutical 
and academic groups have developed smartphone-based tests of 
neurologic functions like gait and balance, such as Floodlight (4, 5), 
MS Sherpa® (6), ElevateMS (7), and others (8–13). Data acquisition 
can be passive (heart rate, daily steps) or active (instructed activity, 
survey). While design of health-monitoring applications may 
be technologically straightforward, confirming their clinical value 
remains challenging. Indeed, the psychometric properties of tests 
to assess gait and posture require further development. The gold 
standard method generally used for the evaluation of whole-body 
kinematics in healthy individuals (14) and individuals with MS (15) 
is 3D motion analysis.

There are several approaches to smartphone-based walk analysis 
that previous studies have shown to be valid and reliable compared 
to the gold standard methodologies (16). Some investigators 
standardize walk time, quantifying disability through GPS distance 
traveled (17) or step count with smartphone-embedded algorithms 
(18). Others standardize the distance traveled, capturing time like the 
traditional timed 25-foot walk (T25FW) (9). However, a digital 
walking test offers the unique opportunity to extract novel digital 
biomarkers from triaxial accelerometers and gyroscope data built 
into smartphones. Such features can be  extracted agnostically to 
human biology and successfully model clinically relevant outcomes 
such as fall risk (13) or distinguish patients with MS from healthy 
controls (19). We utilized accelerometer and gyroscope data in this 
study to investigate gait and posture.

To address the need for a better remote neurological 
examination, we developed a host of smartphone tests called the 
neurological functional test suite (NeuFun-TS). Unlike previously 
discussed applications, NeuFun-TS is designed to replicate a 
traditional neurological exam to quantify any motoric, cerebellar, 
sensory, and cognitive disability. As such, instead of general 
identification of abnormalities, NeuFun-TS tests map specifically to 
components of a traditional neurological exam. Where previous 
studies of NeuFun-TS tests measured motoric functions of upper 
extremities (20, 21) and cognition (22), this study evaluates two 
tests that measure motor functions of lower extremities: short walk 
and foot tapping.

2 Materials and methods

2.1 Participants

This study was approved by the Central Institutional Review 
Board of the National Institutes of Health (NIH). All participants gave 
written or digital informed consent in accordance with the Declaration 
of Helsinki.

Participants were enrolled in at least one of the following protocols: 
Comprehensive multimodal analysis of neuroimmunological diseases of 
the central nervous system (clinicaltrials.gov identifier NCT00794352) 
and Targeting residual activity by precision, biomarker-guided 
combination therapies of multiple sclerosis (TRAP-MS, NCT03109288).

A total of 123 multiple sclerosis (MS) patients were seen between 
5/1/2019 and 12/31/2021. Patients came to the NIH clinic to undergo 
neurological examination, brain magnetic resonance imaging (MRI), 
and complete NeuFun-TS smartphone tests. All participants had a 
diagnosis of MS based on the 2010, and later 2017, McDonald’s MS 
diagnostic criteria (23, 24). Seventy patients were able to walk without 
aid, 15 patients used unilateral support (e.g., cane), and 23 patients used 
bilateral support (e.g., two canes, two crutches, walker). 15 patients were 
unable or unwilling to complete the timed 25-foot walk or smartphone 
tests and were excluded. Participants were tested for COVID-19 prior 
their visit and no COVID-19 cases occurred during the study. 
Demographics and key clinical features of the remaining 108 MS patients 
included in this study are summarized in Table 1 and Figure 1. Fifty-two 
of these individuals were assigned to an independent validation cohort 
to evaluate models’ performance. 1:1 assignment was done randomly 
within MS sub-diagnosis groups: relapsing-remitting (RR-MS), primary 
progressive (PP-MS), and secondary progressive (SP-MS).

2.2 Clinical outcomes

Patients underwent a full neurological examination documented 
into the NeurEx™ application that automatically computes traditional 
clinical outcomes used in neuroimmunology research (25), such as the 
Expanded Disability Status Scale (EDSS; 37), Combinatorial weight-
adjusted disability score [CombiWISE (26)], and Hauser ambulation 
index (Hauser AI; 38). Additionally, because NeurEx™ digitalizes an 
entire neurological exam into a research database, it is easy to export 
quantitative data that correspond to anatomically defined systems 
such as cerebellar function, motor function, or sensory modality sub 
scores. This makes NeurEx data an excellent tool to evaluate the 
psychometric properties of smartphone tests. Additionally, a 
traditional T25FW was completed.

2.3 MRI outcomes

The details of acquisition and analyses of MRI data were 
described in detail previously (27). Briefly, MRIs were performed 
on 3 T Signa (General Electric, Milwaukee, WI) and 3 T Skyra 
(Siemens, Malvern PA) scanners equipped with standard clinical 
head imaging coils. T1- and T2-weighted images were reviewed by 
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a board-certified neurologist and graded for atrophy and lesion load 
in cerebellum and medulla/upper cervical spine. The semi-
quantitative grading levels of lesion load and atrophy consisted of 
“none,” “mild,” “moderate,” and “severe.” The details of grading, 

including visual representation of each grade, are freely available in 
the original publication (27).

2.4 NeuFun-TS tests

Development of any NeuFun-TS test proceeds in the following 
stages (Figure  2): (1) collection of NeurExTM, brain MRI, and 
NeuFun-TS data; (2) analysis of test-rest reliability of NeuFun-TS 
outcomes and filtering out unreliable digital biomarkers. Entire tests 
may be  removed given unreliable results (28); (3) assessment of 
univariate correlations between remaining digital biomarkers and 
relevant clinical and imaging outcomes; (4) aggregation of digital 
biomarkers to computational models of enhanced clinical value; (5) 
validation and quantification of the clinical value of models on a 
non-overlapping set of patients (independent validation cohort); (6) 
assessment of whether test modification may enhance usability and 
clinical value. Changes are guided by patient feedback and data 
analysis; (7) Finally, implementation of test modifications and 
repetition of data analysis.

The development of the NeuFun-TS short walk and foot tapping 
tests follow this schema. All data was collected in person at the NIH 
clinic. The NeuFun-TS short walk test was completed as part of the 
traditional T25FW. Briefly, participants placed a smartphone in a 
fanny pack strapped firmly to the lumbar position (L2) of the lower 
spine. The smartphone counted down towards a start cue, after which 
patients walked a pre-marked 25-foot distance as quickly and safely as 
possible. They were instructed to halt movement promptly after 
completion. A supervising investigator used a stopwatch to time the 
T25FW. The walk test was immediately repeated and the T25FW was 
averaged from two trials. Next, patients completed the foot tapping 
test. Briefly, patients were instructed to sit, and the smartphone was 
placed on a non-slip pad within comfortable reach. The smartphone 
counted down towards a start cue, after which patients tapped the 
phone screen as quickly as possible using either the toes or ball of the 
foot. Patients had the ability to request a repeat test if there was a 
technical or positioning issue. The test was completed twice, and the 
resulting data was averaged for analysis.

All NeuFun-TS data were directly streamed to a secure online 
database under alphanumeric codes. The raw values were then 
downloaded, processed, and analyzed in Python.

2.5 GaitPy data

We integrated accelerometer data with knowledge of the human 
gait cycle (Figure  3). By connecting digital biomarkers to well-
characterized muscle movements, we  hoped to reduce noise and 
identify features with high psychometric properties. Using such 
“domain expertise” in analyses of digital health data often strengthens 
clinical value of derived models (21, 22).

The open-source computational algorithm GaitPy achieves these 
goals by extracting gait-cycle features from vertical acceleration signal 
(29). It integrates elements of two previously validated algorithms: (1) 
Gaussian continuous wavelet transformation that removes unimportant 
fluctuations while amplifying gait frequency variations (30) to identify 
initial and final foot contacts; (2) inverted pendulum model of the body’s 

TABLE 1 Demographic data.

Cohort Training Validation

Patients (N) 56 52

Diagnosis (%)

RR-MS 44.6% 48.1%

PP-MS 30.4% 28.8%

SP-MS 25.0% 23.1%

Sex (%)

F 64.3% 59.6%

M 35.7% 40.4%

Age (years)

Mean 53.8 54.2

SD 11.3 13

Range (min–max) 28.6–80.5 21.1–75.0

Disease duration (years)

Mean 16.7 16.5

SD 12.5 10.1

Range (min–max) 0.2–47.6 0.4–42.6

EDSS

Mean 4.7 4.9

SD 1.4 1.5

Range (min–max) 1.5–6.5 2.0–6.5

Timed 25 foot walk (s)

Median 5.9 6.8

Interquartile range 4.4 6.6

Range (min–max) 4.0–56.1 4.0–140.0

Height (m)

Mean 1.69 1.69

SD 0.09 0.11

Range (min–max) 1.50–1.86 1.42–1.89

Weight (kg)

Mean 84.9 80.7

SD 21.0 17.2

Range (min–max) 47.3–146.1 44.7–128.0

Body mass index

Mean 29.8 28.1

SD 6.7 5.3

Range (min–max) 16.8–46.0 17.0–39.6

N, number; RR-MS, relapsing-remitting multiple sclerosis; PP-MS, primary progressive 
multiple sclerosis; SP-MS, secondary progressive multiple sclerosis; F, female; M, male; 
EDSS, Expanded Disability Status Scale; SD, standard deviation; min, minimum; max, 
maximum.
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center of gravity to convert three-dimensional displacement of the lower 
trunk to gait cycle parameters (31). The cogency of these algorithms to 
correctly identify gait cycle features in individuals with neurological gait 
impairment has been previously demonstrated (32). Furthermore, 
previous studies have shown the validity of GaitPy algorithm compared 
to gold-standard gait assessment like 3D motion capture (33). See Figure 3 
for a summary of gait cycle features and Table 2 for a description of 
GaitPy outputs.

2.6 GaitPy pre-processing steps

GaitPy is optimally given several gait cycles representing steady 
gait. However, gait cycles at initiation and termination of walking are 
not reflective of steady gait, and they represent a much higher 

proportion of a T25FW as compared to a longer 2-6 minute walk. 
Subsequently, we implemented a manual quality control (QC) step to 
exclude initiation and termination cycles. All walk data was quality 
controlled together in a blinded fashion using Label Studio,1 an open-
source data annotation tool. First, we labeled regions of fluctuating 
signal as “all” walking data. Within all walking data, “clean” walking 
data was defined as consistent, cyclic fluctuations. See 
Supplementary Figure S1 for a visualization of this process.

Furthermore, we  hypothesized that gait parameters might 
be influenced by lower extremity length, which depends on height. 
Because height would be a confounding variable unrelated to disability, 

1 https://labelstud.io

FIGURE 1

Demographic data. Before analysis, all MS patients were assigned to either a training (Npatient  =  56, Ntrial  =  102) or validation (Npatient  =  52, Ntrial  =  92) cohort. 
The two cohorts have similar diagnosis, sex, age, disease duration, EDSS, and timed 25 foot walk (25FW) distributions.
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FIGURE 2

Experimental design summary. (1) From 5/2019 to 12/2021, individuals of varying diagnostic status were seen. (2) Patients underwent a full neurological 
examination, yielding NeurEx and disability scale scores. (3) Patients also received brain and spinal cord MRI which were rated semi-quantitatively. (4) 
Patients completed digital tests, including the short walk and foot tapping tests. (5) Finally, patients completed a timed 25-foot walk. (6) and (7) MS 
patients were assigned to either a training cohort or validation cohort. (8) Digital biomarkers were extracted from the short walk and foot tapping tests. 
(9) Only biomarkers with test-retest reliability were kept. (10) These reliable biomarkers were correlated against clinical and imaging outcomes. (11) and 
(12) These features were next used to build elastic net models of relevant clinical outcomes. (13) Finally, the performance of these models was 
evaluated in the independent validation cohort.

FIGURE 3

Summary of the gait cycle and terminology. The gait cycle consists of two main phases: stance phase, representing 60% of the cycle, with some 
contact of the foot with the ground, and the swing phase, occupying 40% of the cycle, with no contact of the foot with the ground. Each step consists 
of period of double and single limb support. Completion of two steps results in one stride.
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TABLE 2 Description and reliability of raw digital biomarkers.

Digital biomarker Description Spearman’s ρ ICC

Reliable (Spearman’s ρ and ICC ≥0.75) Gait cycles Total # gait cycles detected 0.86** 0.91

Steps Total # steps detected 0.87** 0.90

Cadence # Steps per minute 0.88** 0.90

Gait speed Step length/step time 0.92** 0.90

Step length Average step length 0.83** 0.83

Stride length Average stride length 0.82** 0.82

Step duration Average step duration (sec) 0.91** 0.92

Stride duration Average stride duration (sec) 0.91** 0.90

Stance Average time in stance (typically 60% of 

cycle)

0.81** 0.80

Swing Average time in swing (typically 40% of cycle) 0.90** 0.75

Initial double support Average time in initial double support 0.81** 0.70

Single limb support Average time in single limb support 0.89** 0.80

Taps/s (combined) # Foot taps per sec (left + right average) 0.89** 0.90

Unreliable Taps/s asymmetry (Left − right foot taps)/combined foot taps 0.55** 0.52

Stride duration asymmetry Variance of all stride durations 0.43* 0.65

Step duration asymmetry Average step duration (left − right) 0.47* 0.45

Step length asymmetry Average step length (left − right) 0.14 0.02

Stride length asymmetry Variance of all stride lengths 0.20 0.29

Initial double support asymmetry Average initial double support time (left 

− right)

0.29 0.08

Terminal double support Average time spent in terminal double 

support

0.57** 0.29

Terminal double support asym Average terminal double support (left − right) 0.40 0.21

Double support Average (initial + terminal) double support 0.62** 0.36

Double support asymmetry Average double support (left − right) 0.19 0.07

Single limb support asymmetry Average single limb support (left − right) 0.43* 0.59

Stance asymmetry Average stance time (left − right) 0.52** 0.37

Swing asymmetry Average swing time (left − right) 0.49* 0.42

Tap variance (left) Variance of time between foot taps (left) 0.65** 0.19

Tap variance (right) Variance of time between foot taps (right) 0.78** 0.05

ICC, intraclass correlation coefficient, p-values: *p < 0.05 and **p < 0.005.
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we assessed and regressed out unilateral correlations between height 
and GaitPy outputs. Only step and stride length required height-
adjustment in this pre-processing step (Supplementary Figure S2).

2.7 Test-retest reproducibility

The short walk and foot tapping tests require participants to 
complete two trials. This allowed us to assess test-retest reproducibility 
using two metrics: (1) trial 1 versus trial 2 Spearman’s ρ (scipy.stats.
spearmanr method) and (2) intraclass correlation coefficient (ICC) 
(pingouin.intraclass_corr method, ICC2, 95% confidence interval). 
The ICC quantifies the level of variance within an individual against 
variance between individuals. ICC reflects measurement 
reproducibility and can be  interpreted according to published 
guidelines (34): <0.5 = “poor,” ≥0.5 but <0.75 = “moderate,” ≥0.75 but 
<0.9 = “good” and ≥ 0.9 = “excellent.” To focus our modeling on 
reproducible digital biomarkers, we  defined NeuFun-TS derived 
biomarkers as reliable if they reached Spearman’s ρ ≥ 0.75 and 
ICC ≥ 0.75  in test-retest reliability assessment. These digital 
biomarkers were compared with date-matched clinical and MRI 
scores via a Spearman’s ρ correlation matrix (pingouin.rcorr method).

2.8 Aggregating functional outcomes to 
machine learning models of clinical value

To assess whether combination of several digital biomarkers may 
outperform the psychometric properties of individual ones, we chose 
multiple linear regression algorithms that perform both variable 
selection and regularization to enhance reproducibility: elastic net 
(EN; sklearn.ElasticNetCV method) and least absolute shrinkage and 
selection operator (Lasso; sklearn.LassoCV method). Although both 
algorithms can handle the high collinearity we observed amongst 
inputs (Supplementary Figure S3), we  still explored collinearity 
reduction via principal component analysis (PCA) and exclusion of 
high variance inflation factor (VIF) inputs. We assessed performance 
of these models using 15 random 2:1 cross-validation (CV) splits of 
the training cohort. Based on the cross-validation results, we selected 
EN models for independent validation, as they achieved comparable 
average performance with PCA-based models but with lower 
performance variance (Supplementary Table S1).

The final EN models were trained on the full training cohort. The 
performance of these models was evaluated in the non-overlapping 
validation cohort consisting of patients whose data did not contribute 
in any way to the development or optimization of models. Ultimately, 
26 models were validated, so we  utilized a stricter Bonferroni-
corrected significance value of p ≤ 0.001 to consider validation results 
statistically significant.

3 Results

3.1 Test-retest reliability of digital 
biomarkers assessing lower extremity 
neurological functions

Each participant completed the short walk and foot tapping 
NeuFun-TS tests twice, which allowed calculation of test-retest 

variance for all extracted biomarkers. As described in the methods 
section, we defined “reliable” digital biomarkers as those where 
trial 1 and 2 reached Spearman’s ρ ≥ 0.75 and ICC ≥0.75  
(Table 2).

Six walk (number of steps and gait cycles, cadence, step and 
stride duration, and gait speed) and one foot tapping biomarkers 
[number of foot taps per second (left + right average)] achieved an 
excellent reproducibility with an ICC ≥ 0.9. An additional six walk 
biomarkers achieved good reproducibility with an ICC ≥ 0.75. These 
13 reliable digital biomarkers were then used for modeling 
of outcomes.

3.2 Univariate correlations between digital 
biomarkers with relevant clinical and 
imaging outcomes

Recognizing that height may influence digital gait outcomes, 
we investigated correlations of biomarkers with height. Indeed, step 
and stride length had positive correlation with height (ρ = 0.37 and 
0.40 respectively, p < 0.001). Subsequently, we regressed out the effects 
of height from both digital biomarkers (Supplementary Figure S2).

Next, we assessed correlation of reliable digital biomarkers from 
the short walk and foot tapping NeuFun-TS tests with relevant 
clinical and imaging outcomes. First, we selected traditional lower 
extremity-specific outcomes for comparison: traditional T25FW [in 
seconds (s), average of 2 trials with maximum limited to 180 s], 
Hauser ambulation index (Hauser AI; ordinal scale 0–9), and 
NeurEx gait-specific subpanel (NeurEx™ Panel 16; continuous 
scale 0–59). Next, we  selected outcomes reflecting neurological 
disability of the entire body: EDSS (ordinal scale, 0–10), 
CombiWISE (continuous scale, 0–100), and NeurEx (continuous 
scale, theoretical maximum of 1,349). Finally, we selected semi-
quantitative brain MRI outcomes that reflect central nervous system 
tissue injury in topographic locations that can affect lower 
extremities functions, such as level of atrophy and T2 lesion load in 
the medulla/upper cervical spinal cord and the cerebellum. The 
clinical value of these semi-quantitative outcomes was previously 
validated (27).

Digital biomarkers with the highest ICCs also had stronger 
correlations with clinical outcomes (Figure 4). Furthermore, digital 
biomarkers correlated with clinical outcomes (up to ρ = 0.82; 
R2 = 0.67; p < 0.001) more strongly than with imaging outcomes (up 
to ρ = 0.51; R2 = 0.26; p < 0.001). The strongest correlations were with 
the traditional T25FW, particularly for total time-dependent digital 
biomarkers like gait cycles and steps. Of the global disability scales, 
smartphone-derived lower extremity biomarkers correlated the 
strongest with CombiWISE, which is a composite scale that includes 
the T25FW (up to ρ = 0.67; R2 = 0.45; p < 0.001).

For imaging scores, atrophy of the medulla/upper cervical spinal 
cord correlated moderately with most digital biomarkers (up to 
ρ = 0.51, R2 = 0.26, p < 0.001) whereas atrophy of cerebellum correlated 
better with foot taps (ρ = −0.47, R2 = 0.22, p < 0.001) than walk 
biomarkers (up to ρ = 0.38, R2 = 0.14, p < 0.001). Interestingly, foot tap 
asymmetry had a unique, moderate correlation with cerebellar 
atrophy (ρ = 0.45, R2 = 0.20, p < 0.001). In contrast to atrophy, T2 lesion 
load in identical anatomical locations did not achieve statistically 
significant correlations with smartphone tests.
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FIGURE 4

Correlation matrix of reliable digital biomarkers with date-matched clinical/MRI scores. Along with digital biomarkers extracted from the short walk and 
foot tapping tests, patients have date-matched MRI, disability scale, and gait-specific clinical scores. The Spearman’s ρ of reliable digital biomarkers and 
these scores are shown. All data is from the training cohort (Npatient  =  56, Ntrial  =  102). *p  ≤  0.01 and **p  ≤  0.001.

3.3 Aggregating digital biomarkers to 
computational models of higher clinical 
value, and optimizing models via 
exploratory cross-validation

We asked whether digital biomarkers can be  aggregated into 
models of stronger clinical value. By design, short walk and foot 
tapping NeuFun-TS tests assess overlapping lower extremity 
functions; unsurprisingly, we observed strong collinearity between 
digital biomarkers. Subsequently, we selected EN regression because 
it generates models that handle collinearity, are interpretable, and have 
a lower tendency to overfit than complex machine learning algorithms 
(Supplementary Table S1).

We defined six model outcomes. The first three (EDSS, 
CombiWISE, and NeurEx™ total) capture neurological function of 
the entire body. The last three [T25FW time (log scale), Hauser AI, and 
NeurEx™ gait subpanel] target walking disability. We hypothesized 
that outcomes targeting walking disability would be better modeled by 
lower extremity digital biomarkers. Models were given all 13 digital 
features showing good test-retest reliability (Table 2). To assess the 
generalizability of models, we performed 15x CV within the training 
cohort as described in the methods section. Briefly, the training cohort 
was treated like its own dataset, and it was split 2:1 into a temporary 
CV training and CV validation cohort. A CV model was generated 
using the CV training data and the performance was tested on the CV 
validation cohort. This was repeated 15 times, and the performances 

are summarized by violin plots in Figure 5. While each CV model 
differs from the final model, the performance of these models suggests 
how the final model may perform on novel data. The good CV model 
average R2 values, particularly for T25FW (>0.8), motivated us to then 
generate final EN regression models using the entire training cohort. 
The performance of these final models in the training cohort are 
depicted as dashed lines in Figure 5.

3.4 Validation of final models in the 
independent cohort

Next, we evaluated the performance of these final models on an 
unseen set of participant data (independent validation cohort). As 
expected, the performance of the models in the independent 
validation cohort lay within the CV performance spectrum but were 
lower than model performance on the training cohort. Each EN 
model validated with Bonferroni-corrected p < 0.001, and the model 
performances are summarized by stars in Figure 5. The strongest EN 
model was the one predicting T25FW (R2 = 0.745), followed by models 
of walk-focused outcomes [Hauser AI R2 (0.669) >NeurEx™ gait 
subpanel R2 (0.626)], outperforming models of global disability 
outcomes [CombiWISE R2 (0.531) >NeurEx R2 (0.415) >EDSS R2 
(0.346)]. Noticeably, models of CombiWISE and NeurEx, representing 
more granular scales with a broader dynamic range than EDSS, 
achieved stronger validation performance than the model of EDSS.
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3.5 Final model features and comparison 
with single predictors

The final models selected up to four separate features (Figure 6A). 
The absolute value of a feature coefficient reflects how heavily it is 
weighed within a regression model, with a higher absolute value 
indicating more importance. While EN models of T25FW and EDSS 
selected only two features—steps and cadence—all other EN models 
also included combined taps per second and gave this predictor far 
greater importance. This suggests that foot taps may provide an 
important, non-overlapping insight into lower extremity health from 
gait-related inputs. This conclusion is further supported by only a 
moderate correlation (ρ between 0.52–0.55, p < 0.001) between 
combined taps per second and other predictors within the training 
cohort (Figure 6B). Other correlations between predictors were of a 
similar range (ρ between 0.53–0.53, p < 0.001), except for steps and 
gait cycles which were highly correlated (ρ = 0.995, p < 0.001). Despite 
the high collinearity between steps and gait cycles, half of the 
regression models selected both steps and gait cycles.

Finally, we asked whether these aggregate models predict relevant 
clinical outcomes better than the best single digital biomarker. Within 
the training cohort, we generated single predictor models (simple 

linear model) and the previously described final EN models. Next, 
we  compared the R2 of these models in the validation cohort 
(Table 3). While all EN models showed stronger predictive value than 

TABLE 3 Prediction power (R2) of the best single predictors and elastic 
net models.

Model 
outcome

Best training 
cohort 
single 
predictor

Validation cohort R2

Single 
predictor

Elastic 
net 

model

T25FW time (log) Steps 0.738 0.746

EDSS Cadence 0.301 0.346

CombiWISE Step duration 0.254 0.531

Hauser AI Step duration 0.333 0.669

NeurEx total Cadence 0.306 0.415

NeurEx gait 

subpanel

Cadence 0.444 0.626

T25FW, timed 25-foot walk; EDSS, Expanded Disability Status Scale; CombiWISE, 
combinatorial weight-adjusted disability score, AI, ambulation index, NeurEx, neurological 
exam score. All R2 are significant with Bonferroni adjusted p < 0.001.

FIGURE 5

Exploratory cross-validation models and final model performance on an independent dataset. Elastic net models given all reliable digital biomarkers 
were generated for clinical outcomes. To explore model potential, 15 cross-validation models were trained on two thirds of the training cohort and 
evaluated on the remaining third (violin plots). Next, a final elastic net model was built in the entire training cohort. This model’s performance was 
evaluated on the data it was trained on (dashed line, Npatient  =  56, Ntrial  =  102) and on an independent validation cohort (yellow stars, Npatient  =  52, 
Ntrial  =  92).
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the best single digital biomarkers, the increase in effect size for some 
was marginal: for example, T25FW (model R2 = 0.746, steps 
R2 = 0.738) and EDSS (model R2 = 0.346, cadence R2 = 0.301). For 
others, the gain was highly meaningful: for example, the Hauser AI 
EN model enhanced effect size by almost 100% (model R2 = 0.669, 
step duration R2 = 0.333), and the CombiWISE EN model enhanced 
effect size by more than 100% (model R2 = 0.531, step duration 
R2 = 0.254).

4 Discussion

4.1 Patient autonomous digital biomarkers 
show test-retest reliability and correlate 
with granular clinical outcomes

To be of value to patients, a smartphone health test must be both 
reliable and clinically meaningful. We  identified digitally derived 
biomarkers with domain specificity that were consistent across trials, 
indicating good reliability (Table 2). Furthermore, taken individually, 
these reliable digital biomarkers correlated with not only gait-specific 
clinical scores but also global disability scales and MRI semi-
quantitative scores of regional (medulla/upper cervical spine and 
cerebellum) central nervous system (CNS) atrophy (Figure 4). Given 
the relative simplicity of a smartphone short walk and foot tapping 
task, these digitized tests can provide clinically relevant insight into 
much less accessible scores.

4.2 Combining test results can enhance 
models of neurological health

To explore whether combining biomarkers provided any 
additional insight, we generated EN models of clinically useful scores. 
Despite high collinearity across input biomarkers, these models 
selected up to four different biomarkers (Figure 6). Models selecting 

both short walk-derived biomarkers (gait cycles, steps, cadence) and 
foot tapping biomarkers (combined taps/s) exhibited the greatest 
increases in prediction over single predictors (Table 3). We originally 
hypothesized that the short walk and foot tapping task supply 
non-overlapping insight into lower extremity neurological health, and 
the observed model improvement supports the value of combinatorial 
models. These results also indicate potential benefits to combining 
lower extremity test results with other digital tests results, such as 
finger strength and dexterity.

4.3 Contributions to existing literature

To address the challenges of remote neurological examination, 
we developed NeuFun-TS to provide detailed and clinically meaningful 
insight into neurological health. Other smartphone tests of neurological 
function have previously demonstrated meaningful outcomes, such as 
diagnostic group differences, correlations with patient reported quality 
of life scores, or various imaging biomarkers (35). This study goes a step 
further to leverage CNS imaging, comprehensive clinical exam data, 
and gait-specific subscores to assess the psychometric properties of 
digital biomarkers. Furthermore, previous studies focus solely on 
walking data, but we combined results from both a walk and tap test. 
The improved performance of models incorporating combined foot 
taps/s show how aggregating digital biomarkers can greatly enhance 
clinical value. Finally, we  rigorously validated our models in an 
independent validation cohort and found them reliable; this ensures 
we did not overestimate the value of digital biomarkers and models. 
Independent validation is critically important, as only 8% of published 
studies predicting MS clinical features employed independent 
validation, which generally yields lower scores than cross-validation 
(36). Significantly, we  did not find any smartphone-derived gait 
assessment showing independent validation. Taken together, the 
granular clinical data, integration of two lower extremity tests, and 
careful validation make this study’s results a strong contribution to 

FIGURE 6

Elastic net models selected diverse features for improved prediction of clinical scores. (A) Bar graphs summarizing which features were selected by 
elastic net models and their coefficients. (B). A Spearman’s ρ correlation matrix of the selected features in the training cohort (N  =  102). *p  ≤  0.01 and 
**p  ≤  0.001.
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literature showing that smartphone-derived lower extremity biomarkers 
can provided clinically meaningful value to patients and providers.

4.4 A digital T25FW is a non-optimal walk 
test

We originally designed the NeuFun-TS short walk test to replace 
the investigator-administered T25FW, which serves as an essential 
outcome collected longitudinally in MS clinical trials. However, this 
study reveals various limitations of a smartphone test emulating the 
T25FW: (1) it requires marking of a 25-foot distance, which 
complicates self-administration outside of a clinical environment; (2) 
self-determined start and end were often imprecise, and manual QC 
was required to identify true walk start and end; (3) the test is too 
short for minimally disabled individuals. To illustrate, a tall, athletic 
patient may cover the 25-foot distance with as few of 5 steps in 3 s. 
The potential of certain gait cycle parameters is lost due to limited 
number of cycles to calculate them from; (4) on the other hand, the 
test is too long for highly disabled patients. While able to walk, these 
individuals may fail to cover 25-feet in under 3 minutes. Important 
clinical information is lost when patients unable to walk are scored 
the same as those who need longer than 3 minutes.

As discussed in the methods section, the development of NeuFun-TS 
involves data-driven revision and reassessment of individual tests for ease 
of use and clinical utility. Previously discussed limitations, only 
appreciated during data analysis, motivates test modification. Future 
iterations of the NeuFun-TS short walk test will eliminate the need for 
distance in favor of a 2 minute time limit. Instead of manually removing 
initiation and termination cycles, the first and last 10 seconds of the test 
can be disregarded in analysis. Furthermore, a set time ensures individuals 
with no or little disability generate enough gait cycles for analysis, while 
those with moderate or worse disability can complete the test.

4.5 Study limitations and future directions

Non-optimal test design limits our walk data quality, potentially 
causing underestimation of discussed digital biomarkers to capture 
lower extremity health. For example, step length asymmetry showed 
poor test-retest reliability, but this could be due to insufficient gait 
cycles available to calculate asymmetry as opposed to it being a truly 
non-meaningful biomarker. Additionally, due to COVID-19 
restrictions, we were unable to bring healthy volunteers to the NIH 
clinical center over the study duration. As such, we were unable to 
complete group comparisons and assess the physiological effects of 
aging on digital biomarkers. Future directions include redesign and 
evaluation of a 2  minute walk test and integration with other 
NeuFun-TS tests (21, 22).
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