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method to predict the 3-month 
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Background and objectives: Upwards of 50% of acute ischemic stroke (AIS) 
survivors endure varying degrees of disability, with a recurrence rate of 17.7%. 
Thus, the prediction of outcomes in AIS may be useful for treatment decisions. 
This study aimed to determine the applicability of a machine learning approach 
for forecasting early outcomes in AIS patients.

Methods: A total of 659 patients with new-onset AIS admitted to the Department 
of Neurology of both the First and Second Affiliated Hospitals of Bengbu 
Medical University from January 2020 to October 2022 included in the study. 
The patient’ demographic information, medical history, Trial of Org 10,172  in 
Acute Stroke Treatment (TOAST), National Institute of Health Stroke Scale 
(NIHSS) and laboratory indicators at 24  h of admission data were collected. The 
Modified Rankine Scale (mRS) was used to assess the 3-mouth outcome of 
participants’ prognosis. We constructed nine machine learning models based 
on 18 parameters and compared their accuracies for outcome variables.

Results: Feature selection through the Least Absolute Shrinkage and Selection 
Operator cross-validation (Lasso CV) method identified the most critical 
predictors for early prognosis in AIS patients as white blood cell (WBC), 
homocysteine (HCY), D-Dimer, baseline NIHSS, fibrinogen degradation product 
(FDP), and glucose (GLU). Among the nine machine learning models evaluated, 
the Random Forest model exhibited superior performance in the test set, 
achieving an Area Under the Curve (AUC) of 0.852, an accuracy rate of 0.818, a 
sensitivity of 0.654, a specificity of 0.945, and a recall rate of 0.900.

Conclusion: These findings indicate that RF models utilizing general clinical and 
laboratory data from the initial 24  h of admission can effectively predict the early 
prognosis of AIS patients.
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Introduction

The 2019 Global Burden of Disease Study findings reveal that 
stroke continues to be the second leading cause of death and ranks 
third in causing disability worldwide (1). Since 2015, stroke has 
emerged as the preeminent cause of death and disability in China, 
significantly impacting the nation’s public health and exerting 
substantial pressure on its healthcare infrastructure (2). Acute 
ischemic stroke (AIS), constituting over 80% of stroke cases (3), 
remains the predominant type. Statistics indicate that upwards of 50% 
of stroke survivors endure varying degrees of disability, with a 
recurrence rate of 17.7% (4), thereby placing a considerable strain on 
both families and society at large. Consequently, the early detection 
and prognosis of individuals at elevated risk of AIS, coupled with 
prompt intervention and treatment, hold critical importance in 
enhancing the quality of life for AIS patients.

Presently, studies on clinical prediction of ischemic stroke 
outcomes predominantly employ established scales or conventional 
models, such as the Essen stroke risk score, RRE-90 score, Logistic 
regression, and Cox regression (5–7). These tools, however, are limited 
by their inclusion of only a select few traditional risk factors and an 
inability to capture complex nonlinear interactions among various 
prognostic elements. In contrast, Machine Learning (ML)—a field 
exploring the simulation of human learning processes by computer 
algorithms (8)—holds distinct advantages. ML eschews the 
prerequisite assumptions about variable relationships and model 
structures inherent to traditional statistics and can adeptly manage 
datasets with incomplete entries. Additionally, ML models offer 
explanatory insights that surpass classical statistical methods (9). With 
the advent of big data analytics in healthcare research, machine 
learning is integrating increasingly vast data arrays to more accurately 
reflect human physiological complexity and the unpredictable aspects 
of disease traits. This progression heralds an innovative trajectory for 
disease diagnosis, prognosis, and risk evaluation, offering substantial 
practical application potential (10–12).

In this study, we develop and validate a predictive model for the 
early prognosis of patients experiencing their first AIS using relevant 
medical data. We employ various ML algorithms to assess the efficacy 
of the model and compare the predictive utility of each to determine 
the optimal mathematical model for forecasting early outcomes in AIS 
patients. The goal is to facilitate the identification of high-risk 
individuals with potentially poor prognoses at an early stage, thereby 
providing a scientific basis for selecting appropriate clinical 
treatment strategies.

Objects and methods

Subjects

Our study encompassed 659 patients who experienced their first 
AIS and were admitted to the Department of Neurology at both the First 
and Second Affiliated Hospitals of Bengbu Medical University from 
January 2020 to October 2022. The inclusion criteria mandated that (1) 
the disease presented within 2 weeks of onset, and (2) all participants 
must conform to the ischemic stroke diagnostic guidelines as revised at 
the Fourth National Academic Conference on Cerebrovascular Disease, 
with this incident being their initial occurrence confirmed via CT scan. 

The exclusion criteria excluded patients with (1) incomplete medical 
records, (2) CT or MRI evidence of intracranial hemorrhage, expansive 
infarctions across multiple lobes, tumors, or vascular malformations, (3) 
severe concurrent conditions involving the cardiac, hepatic, or renal 
systems, along with malignancies, (4) a history of significant cranial 
trauma or neurosurgery, and (5) coexisting autoimmune diseases, 
hematologic disorders, or severe infectious diseases. Ethical endorsement 
for this research adhered to the Declaration of Helsinki and was secured 
from the Medical Ethics Committee of Bengbu Medical University. 
Informed consent was obtained from the patients for this study.

Data collection

Data on patients were gathered via an electronic case system, 
comprising (1) demographic information such as age and gender; (2) 
medical history, including high blood pressure, type II diabetes, coronary 
heart disease, atrial fibrillation; (3) TOAST etiologic classification of 
stroke; and (4) scores on the National Institute of Health Stroke Scale 
(NIHSS) (13) upon admission. Additionally, laboratory test results 
within 24 h of admission featured routine blood parameters like white 
blood cell (WBC), platelet (PLT), neutrophil (Neu), lymphocyte (Lym), 
monocyte (Mon), red blood cell (RBC) counts, and hemoglobin (HGB) 
concentration. Coagulation markers assessed were prothrombin time 
(PT), PT ratio (PTR), international normalized ratio (INR), activated 
partial thromboplastin time (APTT), clotting time (TT), fibrinogen 
(FIB), D-dimer, fibrinogen degradation product (FDP), and others. The 
analysis also included total cholesterol (CHOL), triacylglycerol (TG), 
low-density lipoprotein (LDL), high-density lipoprotein (HDL), uric 
acid (UA), C-reactive protein (CRP), homocysteine (HCY), glucose 
(GLU), and essential thyroid indices such as thyroid-stimulating 
hormone (TSH), free tri-iodothyronine (FT3), free thyroxine (FT4), 
total tri-iodothyronine (T3), and total thyroxine (T4). Calculations for 
the Neutrophil-to-lymphocyte ratio (NLR), Platelet-to-lymphocyte ratio 
(PLR), and Monocyte-to-lymphocyte ratio (MLR) were also included, 
defined, respectively, as Neu/Lym, PLT/Lym, and Mon/Lym ratios.

Prognostic assessment

Prognostic information on participants was collected via telephone 
or during outpatient follow-up 3-months post-treatment, employing 
the Modified Rankin Scale (mRS) to assess outcomes. The mRS scores 
range from 0 to 6, with 0 signifying no symptoms and 6 denoting 
death. Scores are detailed as follows: (1) reflects mild symptoms 
without significant disability, allowing independence in daily tasks; (2) 
represents slight disability, hindering the performance of previous 
tasks yet permitting self-managed daily activities; (3–5) indicate 
escalating levels of disability, requiring assistance to varying degrees, 
with 5 specifically denoting severe disability, paralysis, incontinence, 
and the need for constant care. A good prognosis is defined by an mRS 
score of ≤2, while scores >2 signal a poor prognosis (14).

Machine learning modeling

Random forests were initially employed to impute missing values, 
after which the data were split into a training set and a test set in a 7:3 
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ratio. The training set was utilized for parameter calculation and 
model construction, whereas the test set was used to assess prediction 
accuracy. Feature selection within the training set was conducted 
using the Least Absolute Shrinkage and Selection Operator cross-
validation (Lasso CV) method, enabling the inclusion of feature 
variables with non-zero coefficients into various algorithms—eXtreme 
Gradient Boosting (XGB), Logistic Regression (LR), LGBM Classifier, 
Random Forest Classifier (RF), Ada Boost Classifier (AdaBoost), 
Decision Tree Classifier (DT), Gradient Boosting Classifier (GBDT), 
Multi-layer Perceptron Classifier (MLP), and Support Vector Machine 
(SVM)—to develop prediction models for the early prognosis of AIS 
patients. Model parameters were refined through 10-fold cross-
validation, enhancing model optimization for performance evaluation 
on the training set. The most effective model was identified, and its 
classification efficacy on the test set was assessed using metrics 
including Area Under the Curve (AUC), accuracy, sensitivity, 
specificity, and recall.

Data filling was conducted utilizing the “missForest ()” function 
within the “missForest” package of R software version 4.2.3. Feature 
filtering was performed using the Python machine learning library 
“scikit-learn” version 1.1.3. For the modeling, we used the “XGBoost” 
(15) (version 2.0.1), “lightgbm” (16) (version 3.2.1) and “scikit-learn” 
(17) (version 1.1.3) Python Packages. All development and validation 
of machine learning models were carried out using Python 
version 3.11.4.

Statistical analysis

For measures that followed a normal distribution, information 
was presented as mean ± standard deviation (x̅ ± s), while for those that 
did not follow a normal distribution, information was presented as the 
median (interquartile range, IQR). Count data were expressed as 
frequency and percentage (%). The chi-square (χ2) test was utilized to 
compare count data between groups, whereas the t-test or Mann–
Whitney U test was applied for measured data comparisons. All 
statistical analyses were conducted using SPSS version 19.0, with a 
significance level set at α = 0.05.

Results

General conditions of the study population

This study encompassed 659 patients experiencing their first-ever 
AIS (AIS), comprising 370 males and 289 females, with an average age 
of 68.34 ± 12.36 years. Three-months post-treatment, 507 patients 
displayed a favorable prognosis (modified Rankin Scale, mRS ≤ 2), 
while 152 patients fell into the poor prognosis category (mRS > 2), 
marking an early poor prognosis incidence of 23.07%. Table 1 presents 
the detailed clinical data of the subjects categorized into these 
two groups.

Feature screening

In the training dataset, the Lasso CV identified 18 features with 
non-zero coefficients: NIHSS, APTT, TT, D-Dimer, FDP, GLU, UA, 

HCY, CRP, WBC, NEU, RBC, HGB, PLT, PLR, MLR, TSH, and FT4, 
optimizing the regularization parameter λ to 0.081. The absolute 
values of the coefficients were sorted in descending order, revealing 
WBC, HCY, D-Dimer, NIHSS, FDP, and GLU as the most significant 
variables. The coefficients of these features are visualized in Figure 1.

Diagnostic performance of the machine 
learning models

Nine machine learning models were developed using 18 
previously identified features, with their performance illustrated in 
Figure 2, which displays the AUC with 95% Confidence Interval (CI) 
from 10-fold cross-validation on the validation set. Notably, the RF 
model demonstrated the highest AUC (0.876 with a 95% CI of 0.754–
0.991). Calibration curves (Figure  3) revealed that the RF model 
exhibited the most accurate alignment between predicted and actual 
probabilities in assessing the early prognosis of AIS patients, achieving 
a Brier score of 0.113. This RF model, having shown promising results, 
underwent further evaluation on a test set, achieving an AUC of 0.852, 
an accuracy rate of 0.818, a sensitivity of 0.654, a specificity of 0.945, 
a recall rate of 0.900, and an F1-Score of 0.757. The Receiver Operating 
Characteristic (ROC) curves for the RF model across training, 
validation, and test sets are depicted in Figures 4A–C. Additionally, 
Figure 4D presents the decision curves for the RF model on the test 
set, highlighting its substantial net clinical benefit across a range of 
critical risk thresholds. Comprehensive performance metrics of the 
RF model, including AUC, accuracy, sensitivity, specificity, and recall 
for training, validation, and test sets, are detailed in Table 2.

Discussion

In this study, we developed several machine learning models to 
predict the early prognosis of AIS patients using general clinical and 
laboratory data collected within 24 h of admission. Feature selection 
through the Lasso CV method identified the most critical predictors 
for early prognosis in AIS patients as WBC, HCY, D-Dimer, baseline 
NIHSS, FDP, and GLU. Among the nine machine learning models 
evaluated, the Random Forest model exhibited superior performance 
in the test set, achieving an AUC of 0.852, an accuracy rate of 0.818, a 
sensitivity of 0.654, a specificity of 0.945, and a recall rate of 0.900. 
These findings indicate that RF models utilizing general clinical and 
laboratory data from the initial 24 h of admission can effectively 
predict the early prognosis of AIS patients.

ML predictive models leverage algorithms to analyze data and 
forecast future occurrences or trends. These models have the capability 
to discern patterns in vast, complex datasets and integrate these 
patterns in a non-linear and highly interactive fashion (18). The 
application of machine learning in the medical domain, particularly 
in identifying risk factors and developing prognostic models for AIS 
patients, has seen significant growth in recent years, with notable 
contributions from researchers like Veerbeek et al. (19, 20), Xie et al. 
(12), Lin et al. (21), Ramos et al. (10), Su et al. (11), and Chen M et al. 
(22). These studies primarily derive their data from hospital records 
and publicly accessible databases. For instance, Lin et al. (21) assessed 
the capabilities of various ML models (SVM, RF, ANN, HANN) in 
predicting the 90-day mRS outcomes for stroke patients within the 
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TABLE 1 Clinical feature comparison between the two outcome groups.

Variants mRS  ≤  2 (n  =  507) mRS  >  2 (n  =  152) p-value

Demographic features

Age (year), median (IQR) 69.00 (58.00–77.00) 71.00 (61.00–80.75) 0.026

Sex 0.030

Female, n (%) 234 (46.15) 55 (36.18)

Male, n (%) 273 (53.85) 97 (63.82)

History of previous illnesses

High blood pressure, n (%) 0.259

Yes 229 (64.89) 73 (59.87)

No 278 (35.11) 79 (40.13)

T2MD 0.535

Yes 229 (45.17) 73 (48.03)

No 278 (54.83) 79 (51.97)

Coronary heart disease, n (%)

Yes 148 (29.19) 45 (29.61)

No 359 (70.81) 107 (70.39)

Atrial fibrillation, n (%) 0.556

Yes 128 (25.25) 42 (27.63)

No 379 (74.75) 110 (72.37)

Toast, n (%) 0.011

Atherosclerosis 128 (25.25) 51 (33.55)

Cardiac thrombosis 25 (4.93) 10 (6.58)

Small-artery occlusion type 116 (22.88) 35 (23.03)

Other etiologies 38 (7.50) 1 (0.66)

Unknown cause 200 (39.45) 55 (36.18)

NIHSS score, median (IQR) 4.00 (3.00–7.00) 7.00 (3.25–12.00) <0.001

Laboratory features at 24 h after admission

Routine blood tests

WBC (×109/L), median (IQR) 6.41 (5.30–7.44) 7.07 (6.11–9.01) <0.001

PLT (×109/L), median (IQR) 204.00 (170.00–237.00) 200.50 (167.50–249.75) 0.577

Neu (×109/L), median (IQR) 4.17 (3.34–5.40) 5.48 (3.74–7.46) <0.001

Lym (×109/L), median (IQR) 1.66 (1.31–2.09) 1.29 (0.91–1.88) <0.001

Mon (×109/L), median (IQR) 0.42 (0.34–0.53) 0.43 (0.32–0.56) 0.851

RBC (×1012/L), median (IQR) 4.51 (4.18–4.88) 4.50 (4.01–4.82) 0.038

HGB (g/L), median (IQR) 137.00 (125.00–150.00) 135.50 (121.00–146.00) 0.031

CRP (mg/L), median (IQR) 1.89 (0.80–3.40) 2.70 (0.93–6.82) 0.002

Coagulation indicators

PT (s), median (IQR) 11.10 (10.60–11.70) 11.00 (10.60–11.60) 0.179

PTR (%), median (IQR) 0.96 (0.91–1.00) 0.94 (0.91–0.99) 0.159

INR, median (IQR) 0.96 (0.90–1.00) 0.94 (0.91–0.99) 0.434

APTT(s), median (IQR) 27.20 (25.80–28.60) 26.65 (25.13–28.10) 0.018

TT(s), median (IQR) 17.60 (17.00–18.10) 17.35 (16.70–17.91) 0.023

FBG (g/L), median (IQR) 2.84 (2.35–3.37) 3.15 (2.64–3.91) <0.001

D-dimer (mg/L), median (IQR) 0.35 (0.23–0.65) 0.70 (0.33–1.60) <0.001

FDP (ug/mL), median (IQR) 1.34 (0.80–2.30) 2.20 (1.15–4.66) <0.001

(Continued)
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Taiwan Stroke Registry. Similarly, Su et  al. (11) investigated the 
predictive performance of 4 ML models (SVM, RF, LGBM, DNN) in 
forecasting mRS scores and hospitalization outcomes at discharge 

among 2,780 AIS patients registered in the Chang Gung Healthcare 
System. Public databases offer vast data volume, broad coverage, and 
access ease, beneficial for swiftly compiling data required for 

FIGURE 1

Coefficients in the Lasso model.

TABLE 1 (Continued)

Variants mRS  ≤  2 (n  =  507) mRS  >  2 (n  =  152) p-value

Biochemical indicators

CHOL (mmol/L), median (IQR) 4.50 (3.73–5.20) 4.52 (3.78–5.45) 0.438

TG (mmol/L), median (IQR) 1.43 (1.12–1.83) 1.39 (1.03–1.81) 0.303

LDL (mmol/L), median (IQR) 2.44 (2.00–2.99) 2.45 (1.97–3.43) 0.330

HDL (mmol/L), median (IQR) 1.23 (1.04–1.40) 1.18 (0.94–1.40) 0.122

UA (umol/L), median (IQR) 280.54 (248.00–328.71) 285.50 (222.50–349.00) 0.957

HCY (umol/L), median (IQR) 14.00 (11.46–17.00) 16.00 (13.00–22.15) <0.001

GLU (mmol/L), median (IQR) 6.01 (5.10–7.60) 6.50 (5.20–6.50) 0.006

Thyroxine test indicators

TSH (uIU/mL), median (IQR) 2.74 (1.90–3.55) 2.94 (1.89–3.48) 0.726

FT3 (pmol/L), median (IQR) 2.79 (2.64–3.26) 2.79 (2.59–3.21) 0.257

FT4 (pmol/L), median (IQR) 8.72 (8.20–9.89) 8.80 (8.26–11.12) 0.346

T3 (ng/mL), median (IQR) 1.04 (0.90–1.11) 1.045 (0.91–1.12) 0.829

T4 (ng/mL), median (IQR) 67.30 (58.50–72.63) 67.99 (55.33–75.43) 0.517

NLR, median (IQR) 2.46 (1.76–3.52) 4.25 (2.39–6.45) <0.001

PLR, median (IQR) 121.77 (94.84–151.69) 153.56 (106.25–229.68) <0.001

MLR, median (IQR) 0.28 (0.21–0.55) 0.43 (0.28–1.08) <0.001
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predictive modeling. Nonetheless, ensuring the quality of data from 
these sources presents challenges, including risks of inconsistent 
patient assessment and treatment, incomplete records, and lost 
follow-up data (22). Predominantly, hospital data-driven studies 
incorporate imaging, demographic, and clinical information. For 
instance, Xie et al. (12) utilized imaging data and NIHSS scores to 
develop prediction models, while Ramos et al. (10) employed imaging 
and clinical baseline data for AIS prognosis. Common clinical 

assessments, like routine blood, coagulation, and biochemical tests, 
serve as conventional, accessible, and cost-effective diagnostics for 
AIS patients. Yet, the construction of an ML predictive model 
encompassing demographic, clinical, and 24-h admission blood test 
data for forecasting 3-month AIS patient outcomes lacks 
representation in the Chinese population. This study aims to fill this 
research void.

Previous research primarily focused on the prognostic impact of 
age (19, 20), atrial fibrillation (4, 23, 24), NIHSS scores at admission 
(25–27), D-dimer (28, 29), HCY (30–32), and GLU (33–35) on AIS 
outcomes. In the current study, we employed Lasso CV for feature 
selection, identifying WBC, HCY, D-dimer, NIHSS, FDP, and GLU as 
critical variables for developing prognostic models for AIS patients. 
Notably, WBC and FDP, indicators of the body’s inflammatory 
response and the fibrinolytic system’s activity, respectively, have been 
under-explored in AIS prognostication. While WBC has been 
associated with stroke prognosis and an increased risk of disability at 
discharge following every 1 × 109/L increment at stroke onset (36), its 
independent predictive value remains unclear, potentially due to 
limited sample sizes in previous studies. Similarly, FDP and D-dimer 
serve as markers for hypercoagulability and hyper-fibrinolysis, pivotal 
for early diagnosis, monitoring treatment efficacy, and prognosticating 
thrombogenic conditions. Our findings underscore the importance of 
including D-dimer and FDP in early prognostic assessments for AIS 
patients, highlighting their significant role in predicting outcomes.

In this study, we  utilized nine machine learning models for 
analysis, based on selected variables. Of these, the RF model 
demonstrated superior performance on the test set, achieving an 
AUC of 0.876 (95% CI, 0.754–0.991). This model provided a 
significantly better prediction capability. The RF algorithm, known 
for its robust noise resistance and low susceptibility to overfitting, 
has found extensive application in healthcare (37). Moreover, 
several studies employing the RF model for predicting stroke 
patient outcomes have affirmed its effective predictive power (10, 
38, 39).

The current study is constrained by several limitations. 
Primarily, the modest sample size, despite being derived from two 
different centers, necessitates a larger dataset for robust validation. 
Also, this study lacked external validation. In the future, we will 
conduct a validation study with an external cohort. Moreover, 
while the study encompasses demographic information, past 
medical history, blood counts within 24 h of admission, and 
biochemical assays of AIS patients, it lacks imaging data pertaining 
to the location and extent of cerebral infarctions. The absence of 
these imaging details could potentially impact the predictive 
accuracy of the model. Finally, treatment decision-making is a 
complex process involving multiple considerations. Our model is 
just one of many aids whose results should be considered along 
with clinical judgment and other patient-specific factors, and is 
intended to provide additional information to support the 
decision-making process, not to replace professional 
medical judgment.

Conclusion

In conclusion, our study illustrates that utilizing demographic 
data, past medical histories, and 24-h laboratory information upon 

FIGURE 2

Receiver operating characteristic curve (ROC) for 9 ML models on 
the validation set.

FIGURE 3

Calibration curves for the 9 ML models on the validation set. The 
dotted line represents the perfect calibration curve, i.e., the predicted 
probability matches the true probability perfectly. The numbers in 
the legend represent the Brier scores of the ML models; the smaller 
the Brier score, the closer the predicted probability of the ML model 
is to the true probability.
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admission for ML modeling is a feasible approach to predicting the 
short-term prognosis of patients experiencing their first AIS. Notably, 
it reveals that the RF model could serve as an effective predictive tool. 
This finding is crucial for the early identification and prediction of 

individuals at elevated risk of developing AIS with an unfavorable 
prognosis. It underscores the importance of prompt and early 
intervention and treatment to enhance the quality of life for 
AIS patients.

FIGURE 4

Receiver operating characteristic (ROC) curves of the RF model on the training set (A), validation set (B), test set (C), and the decision curve on the test 
set (D).

TABLE 2 Predictive metrics of RF model on training set, validation set and test set.

Data set AUC Accuracy Sensitivity Specificity Recall

Training 1.000 0.997 1.000 1.000 1.000

Validation 0.871 0.833 0.880 0.773 0.867

Test 0.887 0.818 0.654 0.945 0.900
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