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Introduction: Spontaneous intracerebral hemorrhage is the second most 
common subtype of stroke. Therefore, this study aimed to investigate the 
risk factors affecting the prognosis of patients with basal ganglia cerebral 
hemorrhage after neuroendoscopy.

Methods: Between January 2020 and January 2024, 130 patients with basal 
ganglia cerebral hemorrhage who underwent neuroendoscopy were recruited 
from two independent centers. We  split this dataset into training (n  =  79), 
internal validation (n  =  22), and external validation (n  =  29) sets. The least 
absolute shrinkage and selection operator-regression algorithm was used to 
select the top 10 important radiomic features of different regions (perioperative 
hemorrhage area [PRH], perioperative surround area [PRS], postoperative 
hemorrhage area [PSH], and postoperative edema area [PSE]). The black hole, 
island, blend, and swirl signs were evaluated. The top 10 radiomic features and 
4 radiological features were combined to construct the k-nearest neighbor 
classification (KNN), logistic regression (LR), and support vector machine 
(SVM) models. Finally, the performance of the perioperative hemorrhage and 
postoperative edema machine learning models was validated using another 
independent dataset (n  =  29). The primary outcome is mRS at 6  months after 
discharge. The mRS score greater than 3 defined as functional independence.

Results: A total of 12 models were built: PRH-KNN, PRH-LR, PRH-SVM, PRS-
KNN, PRS-LR, PRS-SVM, PSH-KNN, PSH-LR, PSH-SVM, PSE-KNN, PSE-LR, and 
PSE-SVM, with corresponding areas under the curve (AUC) values in the internal 
validation set of 0.95, 0.91, 0.94, 0.52, 0.91, 0.54, 0.67, 0.9, 0.72, 0.92, 0.92, and 
0.95, respectively. The AUC values of the PRH-KNN, PRH-LR, PRH-SVM, PSE-
KNN, PSE-LR, and PSE-SVM in the external validation were 0.9, 0.92, 0.89, 0.91, 
0.92, and 0.88, respectively.

Conclusion: The model built based on computed tomography images of 
different regions accurately predicted the prognosis of patients with basal ganglia 
cerebral hemorrhage treated with neuroendoscopy. The models built based 
on the preoperative hematoma area and postoperative edema area showed 
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excellent predictive efficacy in external verification, which has important clinical 
significance.

KEYWORDS

basal ganglia hemorrhage, machine learning model, radiomics, prognosis, 
neuroendoscopy

1 Introduction

Spontaneous intracerebral hemorrhage (ICH) is the second most 
common subtype of stroke, with a fatality rate of 35–52% within 
30 days of onset. The basal ganglia are the most common sites of ICH; 
more than 70% of patients with basal ganglia cerebral hemorrhage 
have functional dependence or even die (1, 2). Currently, the main 
surgical methods for treating basal ganglia cerebral hemorrhage are 
traditional craniotomy hematoma removal and minimally invasive 
neuroendoscopic hematoma removal. Multiple studies have shown 
that minimally invasive endoscopic hematoma evacuation offers 
greater prognostic benefits for patients than traditional craniotomy 
hematoma evacuation (3), and it is widely applied in clinical practice. 
However, analyzing the prognostic risk factors for endoscopic 
treatment of basal ganglia cerebral hemorrhage and constructing a 
prognostic prediction model to assist in clinical decision-making are 
of paramount importance.

The island (4), swirl (5), and blend signs (6, 7) are special radiological 
manifestations observed on computed tomography (CT) scans of 
patients with ICH. Their appearance can accurately predict hematoma 
expansion and a poor prognosis. Recent studies (8, 9) have shown that 
the volume of ICH and postoperative edema are closely related to the 
postoperative functional dependency of patients (modified Rankin Scale 
[mRS] score, >3). Heterogeneity exists in hematoma and edema, which 
contain a wealth of information that is closely related to patient prognosis.

Radiomics (10, 11) is a new image analysis technology that has 
emerged in recent years. It can transform images into high-throughput 
quantitative data, including first-order features and gray-level features, 
to reveal target information. Radiomics is expected to help explore 
new prognostic imaging markers to assist in clinical decision-making.

Machine learning is a crucial component within the realm of 
artificial intelligence. Its application is instrumental in facilitating the 
handling of high-throughput data, thereby enabling thorough analysis 
and discernment of patterns indicative of disease features.

Hence, this study employed radiomics techniques to extract CT 
imaging features from different regions of patients with basal ganglia 
cerebral hemorrhage to investigate the correlation between radiomics 
features and long-term functional dependency after discharge. In 
addition, a prognostic prediction model was developed to provide 
guidance for clinical practice.

2 Materials and methods

2.1 Ethics statement

This study was approved by the hospital’s Ethics Review 
Committee, and informed consent was obtained from all patients.

2.2 Study design and population

This study retrospectively included 230 patients with medium-
vessel occlusion treated endoscopically at Suzhou Municipal 
Hospital East District (n = 29) and Suzhou Municipal Hospital 
Headquarters (n = 101) between January 2020 and January 2024. The 
patients were divided into training (n = 22), internal validation 
(n = 79), and external validation (n = 29) sets. The inclusion criteria 
were as follows: (1) basal ganglia cerebral hemorrhage, (2) volume 
of hemorrhage >20 mL, and (3) minimally invasive surgery 
performed within 2 days of onset. The exclusion criteria were as 
follows: (1) use of anticoagulants or antiplatelet drugs; (2) ICH 
caused by ruptured aneurysms, arteriovenous malformations, tumor 
stroke, or trauma; (3) severe neurological impairment before onset 
(mRS score, >3); (4) history of previous cranial surgery; and (5) 
concomitant hemorrhage in other locations, e.g., the brainstem or 
thalamus. Figure 1 shows the study flow chart.

2.3 Minimally invasive endoscopic 
treatment of basal ganglia cerebral 
hemorrhage

All enrolled patients completed routine preoperative 
examinations, such as head CT (Philips Medical Systems, 
Cleveland), and head CT image data were reconstructed using 3D 
Slicer (version 4.9.0; National Institutes of Health) to delineate the 
hematoma. Pre-designed markers were placed on the patient’s scalp 
on the basis of the location and anatomical position of the 
hematoma. Depending on the requirement to minimize the distance 
between the hematoma and cortex and avoid functional areas, either 
the transcortical approach through the frontal lobe or the insular/
lateral sulcus approach was chosen. A 3-cm incision was made on 
the scalp by the surgeon, followed by exposure of the skin, 
subcutaneous tissue, and skull. A skull perforation was created using 
a pneumatic drill to create a small hole with a diameter of 2–3 cm. 
The endocranium was coagulated and cross-cut using bipolar 
electrocoagulation, and a puncture needle was used to puncture the 
hematoma cavity. After removing the needle core, the syringe was 
withdrawn to reduce the intracranial pressure. An endoport 
transparent sheath was placed, and a 0° endoscope was introduced 
into the sheath to provide a surgical field of view. Then, the 
hematoma was gradually aspirated from deep to shallow depths 
using a microsuction device. Hematoma removal was achieved 
using bipolar electrocoagulation and a gelatin sponge under 
endoscopic guidance. After clearing the hematoma under 
microscopy, the sheath was slowly withdrawn, the hematoma 
removal was completed, and the skull was closed layer-by-layer.
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2.4 ROI (region of interest) segementation, 
radiomics features extraction and selection

All patients underwent at least one preoperative and 
postoperative head CT scan (Philips) with a slice thickness of 
5 mm. Using 3D Slicer software (version 4.9.0; National Institutes 
of Health), the preoperative hematoma area (PRH), perioperative 
surround area (PRS; a 5-mm region surrounding the hematoma 
with high-density shadows on the CT brain tissue window), 
postoperative edema area (PSE; appearing as low-density shadows 
on the CT brain tissue window), and postoperative hemorrhage 
area (PSH) were delineated layer-by-layer on CT transverse 
sections (Figure  2A). Subsequently, radiomics features were 
automatically extracted using pyradiomics (12) (Figure 2B) and 
maintained with voxel resampling at 1 × 1 × 1 mm. In total, 107 
features were extracted from each region, including histogram 
features, morphological features, gray-level co-occurrence 
matrices (GLCMs), gray-level size zone matrices (GLSZMs), gray-
level run length matrices (GLRLMs), neighboring gray-tone 
difference matrices (NGTDMs), and gray-level dependence 
matrices (GLDMs). The aforementioned procedures were 
independently repeated by two neurosurgeons with 10 years of 
experience. The intraclass correlation coefficient (ICC) was 
used  to assess the consistency of radiomic features. The least 
absolute shrinkage and selection operator (LASSO) regression 
algorithms were used to rank the importance of the variables 
(Figure 2C). The 10 most important variables were used to build 
the model.

2.5 Radiological feature evaluation

On the basis of head CT findings, the black hole (13), island (4), 
blend (6, 7), and swirl signs (5) were individually assessed by two 
neurosurgeons, each with 10 years of work experience. If there was a 
discrepancy, a third neurosurgeon with higher seniority made the 
final decision.

2.6 Clinical outcome

The mRS was used to assess functional outcomes at 6 months 
after discharge. An mRS score of >3 indicates functional 
dependency; otherwise, an mRS score of <3 indicates 
functional independence.

2.7 Training and validation of the machine 
learning models

Radiological and radiomic features of each region were used to 
construct machine learning models (k-nearest neighbor classification 
[KNN], logistic regression [LR], and support vector machine [SVM]). 
Twelve models were constructed: PRH-KNN, PRH-LR, PRH-SVM, 
PRS-KNN, PRS-LR, PRS-SVM, PSH-KNN, PSH-LR, PSH-SVM, 
PSE-KNN, PSE-LR, and PSE-SVM. The datasets from the Suzhou 
Municipal Hospital Headquarters (n = 101) were randomly divided 
into training and internal validation sets at a ratio of 7:3. The datasets 

FIGURE 1

Flowchart of study design showing selection of cases along with exclusion criteria.
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from the Suzhou Municipal Hospital East District were considered as 
the external validation set. The Receiver Operating Characteristic 
Curve (ROC) used to test the model.

2.8 Statistical analyses

Normally distributed continuous data are presented as 
mean ± standard deviation. The independent samples t-test was 
used to compare data between the groups. For non-normally 
distributed continuous data, the median, first quartile (Q1), and 
third quartile (Q3) are reported, and group comparisons were 
conducted using the Mann–Whitney U test. Count data are 
presented as frequency (percentage) [n, %], and group comparisons 
were assessed using the chi-square test. The Fisher exact test was 
used to determine between-group differences when the theoretical 
cell frequency was <5. Receiver operating characteristic curve 
analysis was used to evaluate the predictive performance of various 
models for postoperative functional dependency. The area under 
the curve (AUC), sensitivity, specificity, and accuracy values were 
calculated. Statistical analyses were performed using RStudio 
software (version 4.3.1; Posit). Statistical significance was defined 
as p < 0.05.

3 Results

3.1 Patients’ characteristics

Table 1 shows the baseline characteristics of patients with basal 
ganglia cerebral hemorrhage at the Suzhou Municipal Hospital 
Headquarters (n = 101). The baseline characteristics of the training 
and internal validation sets were not significantly different (p > 0.05).

3.2 Radiomics and radiological features 
selection

Out of the 428 radiomics features, 408 (95%) had ICCs larger than 
0.9, indicating good consistency of the data. The top 10 radiomic 
features were selected for each region using the LASSO regression 
algorithm (Figure 1). Table 2 lists the radiomics features used to build 
the model. Table 3 shows the patients’ radiological features.

3.3 Comprehensive radiological model 
constructed using the machine learning 
methods

In the internal validation set, the PRH-KNN, PRH-LR, and 
PRH-SVM models had AUC values of 0.95, 0.91, and 0.94, respectively 
(Figure 3A). The PRS-LR, PRS-KNN, and PRS-SVM models had AUC 
values of 0.91, 0.52, and 0.54, respectively (Figure 3B). The PSH-LR, 
PSH-KNN, and PSH-SVM models had AUC values of 0.90, 0.67, and 
0.72, respectively (Figure 3C). The PSE-LR, PSE-KNN, and PSE-SVM 
models had AUC values of 0.92, 0.92, and 0.95, respectively 
(Figure 3D). Figure 4 shows the comparison of AUC values between 
the different machine learning models. The data indicate that the 
models constructed based on the perioperative hemorrhage area or 
post-edema area exhibited stable and relatively high performance.

3.4 Machine learning model in the external 
validation set

In the external validation set, the PRH-LR, PRH-KNN, 
PRH-SVM, PSE-LR, PSE-KNN, and PSE-SVM models exhibited AUC 
values of 0.92, 0.90, 0.89, 0.92, 0.91, and 0.88, respectively. Table 4 
shows the AUC, sensitivity, specificity, and accuracy values of the 
machine learning model.

FIGURE 2

The workflow of the radiomics feature extraction, model building and evaluation process. (A) ROI (Region of Interest, PRH, PRS, PSH PSE) 
Segmentation (B) Radiomics Features Extraction (C) Feature Selection (D) Model building and evaluation (PRH-LR model in the validation set).
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4 Discussion

Hypertensive ICH predominantly occurs in the basal ganglia, and 
patients with basal ganglia cerebral hemorrhage have high disability 
and mortality rates. With the advancement of minimally invasive 
surgery, the application of endoscopy in ICH surgery has increased. 
Endoscopy has shown great advantages over traditional craniotomy, 
including less trauma and a shorter operative time. Multiple studies 
(14) have demonstrated the heterogeneity of hemorrhages, which can 
predict ICH expansion. Similarly, research has shown that 
postoperative edema significantly affects early postoperative 
functional recovery. Therefore, this study used pyradiomics to 
quantitatively extract radiomic features from CT scans of different 
regions in patients and constructed corresponding machine learning 

models to accurately predict patient prognosis. This approach aims to 
guide neuroendoscopic interventions for basal ganglia cerebral 
hemorrhage and has substantial clinical relevance.

Radiomics can capture features that are difficult to observe with 
the naked eye and provide quantitative data for subsequent analyses. 
Morphological features primarily represent parameters, such as the 
size of the region of interest. Histogram features reflect the distribution 
of gray-level values of the hemorrhage or edema. The GLCM captures 
spatial relationships between pixels or voxels with predefined distances 
in different directions, capturing pairs of pixels or voxels with 
predefined grayscale intensities. The GLRLM primarily reflects the 
spatial distribution of pixels with the same grayscale level in one or 
more directions in the two-dimensional or three-dimensional space. 
The GLSZM reflects the relationship between the number of groups 
of adjacent pixels or voxels with the same grayscale level. The NGTDM 

TABLE 1 Patient’s baseline characteristics.

Clinical 
characteristics

Functional independency 
(n  =  36)

Functional dependency 
(n  =  65)

Test value p-value

Sex 0.85 0.36

  Male 29 47

  Female 7 18

Smoke 0.43 0.51

  Yes 8 11

  No 28 54

Diabetes 2.4 0.12

  Yes 8 7

  No 28 58

Hypertension 0.02 0.89

  Yes 25 46

  No 11 19

Age, y 55.89 ± 13.76 58.13 ± 13.19 0.82 0.61

GCS score 11.72 ± 2.72 8.69 ± 3.04 4.97 0.19

GCS, Glasgow Coma Scale.

TABLE 2 Variations in the model.

Model Radiomics features Respective importance 
value

PRH-KNN, PRH-LR, 

PRH-SVM

gldmLowGrayLevelEmphasis, glcmMCC, shapeFlatness, shapeElongation, glcmImc1, 

firstorderEntropy, glcmJointEnergy, shapeSurfaceVolumeRatio, glcmDifferenceEntropy, 

glszmSizeZoneNonUniformityNormalized

20.44, 9.99, 6.00, 5.97, 4.77, 3.99, 3.52, 

3.36, 2.68, 2.39

PRS-KNN, PRS-LR, 

PRS-SVM

glrlmLongRunLowGrayLevelEmphasis, firstorderInterquartileRange, ngtdmComplexity, 

firstorder10Percentile, shapeMaximum2DDiameterColumn, firstorderMedian, 

glszmSmallAreaHighGrayLevelEmphasis, shapeMaximum2DDiameterRow, 

glrlmLongRunHighGrayLevelEmphasis, shapeMaximum3DDiameter

0.22, 0.07, 0.03, 0.03, 0.03, 0.03, 0.02, 

0.02, 0.01, 0.01

PSH-KNN, PSH-LR, 

PSH-SVM

glszmZoneEntropy, firstorder90Percentile, firstorderMedian, glrlmLongRunLowGrayLevelEmphasis, 

firstorderKurtosis, firstorderInterquartileRange, firstorder10Percentile, glrlmLongRunEmphasis, 

glszmHighGrayLevelZoneEmphasis, shapeMaximum2DDiameterSlice

0.16, 0.11, 0.06, 0.06, 0.06, 0.03, 0.03, 

0.03, 0.02, 0.02, 0.02

PSE-KNN, PSE-LR, 

PSE-SVM

gldmSmallDependenceLowGrayLevelEmphasis, glcmDifferenceVariance, gldmGrayLevelVariance, 

glrlmGrayLevelNonUniformityNormalized, glcmCorrelation, 

glrlmRunLengthNonUniformityNormalized, ngtdmCoarseness, glcmImc2, 

glrlmShortRunLowGrayLevelEmphasis, glcmIdn

128.41, 11.85, 10.65, 10.60, 8.69, 8.27, 

6.70, 5.61, 5.55, 5.07

PRH, perioperative hemorrhage area; PRS, perioperative surround area; PSH, postoperative hemorrhage area; PSE, postoperative edema area; KNN, k-nearest neighbor classification; LR, 
logistic regression; SVM, support vector machine.

https://doi.org/10.3389/fneur.2024.1406271
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hu et al. 10.3389/fneur.2024.1406271

Frontiers in Neurology 06 frontiersin.org

FIGURE 3

The AUC of different models evaluated in internal validation data (A) perioperative model (B) perioperative surround model (C) postoperative 
hemorrhage model (D) postoperative edema model. This figure illustrates the Area Under the Curve (AUC) for different machine learning models, 
including KNN, SVM, and LR, evaluated on internal validation datasets. The AUC is calculated for each model based on features extracted from distinct 
anatomical regions. Notably, KNN and SVM models exhibit substantial variability in their AUC values across different regions, indicating their sensitivity 
to regional feature sets. In contrast, the LR model demonstrates a more consistent performance, maintaining relatively stable AUC values regardless of 
the region from which features are derived. This suggests that LR may be more robust in handling varying feature distributions across different regions.

TABLE 3 Patients’ radiological features.

Radiological 
features

Functional independency (n  =  36) Functional dependency (n  =  65) Test value p-value

Island sign 35.47 <0.01

  Yes 9 55

  No 27 10

Black hole 28.97 <0.01

  Yes 13 57

  No 23 8

Blend sign 24.77 <0.01

  Yes 13 55

  No 23 10

Swirl sign 28.97 <0.01

  Yes 13 57

  No 23 8
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quantifies the sum of the differences between the grayscale levels of 
pixels or voxels and their neighboring pixels or voxels within a 
predefined distance. The GLDM represents the grayscale relationships 
between the central pixels or voxels and their surroundings. Previous 
studies have suggested that the heterogeneity of hemorrhage and 
edema greatly affects prognosis. Therefore, we used pyradiomics to 
extract quantitative data on hemorrhage and edema. Our study 
provided a more comprehensive, accurate, and objective assessment 
of the impact of hemorrhage and edema on prognosis.

Currently, there are many prognostic models for intracerebral 
hemorrhage, such as the ICH (15), max-ICH (16), modified ICH 
(17), ICH-FOS (18), and MIS scores (19). Among these, the MIS 
score was the only prognostic model for patients who underwent 
minimally invasive surgery. The MIS score, initially developed using 
only 104 patients, showed poor performance in predicting prognosis 
at 1 month after discharge, with an AUC of <0.7. Machine learning 
methods can be used to explore disease patterns from complex data. 
Multiple studies (20, 21) attempted to use machine learning methods 
to construct models that can accurately predict the prognosis of 

patients with ICH. In this study, we constructed 12 models based on 
radiological and radiomic features from different regions, most of 
which can accurately predict the prognosis of patients with basal 
ganglia cerebral hemorrhage. The models constructed based on the 
perioperative hemorrhage area or postoperative edema area exhibited 
an overall higher predictive performance than the other models, such 
as ICH score and FUNC score model. Study had demonstrated that 
the ICH score. The study (22) showed that the highest AUC of ICH 
score model and FUNC model in predicting the functional outcome 
at 6 months after discharge was 0.87 and 0.8, respectively. 
Furthermore, they were consistently validated in the external 
validation set, which accurately predicted the prognosis of patients 
with basal ganglia cerebral hemorrhage. This study also demonstrated 
a close correlation between perioperative hemorrhage, postoperative 
edema, and the prognosis of patients with basal ganglia 
cerebral hemorrhage.

The differing performance of models based on different brain 
regions (PRH, PRS, PSH, PSE) can be attributed to several factors, such 
as anatomical, functional and pathological variability. Different brain 

FIGURE 4

The AUC of models in internal validation.

TABLE 4 AUC values of different models in the external validation set.

Model AUC Sensitivity Specificity Accuracy

PRH-LR 0.92 0.70 1 0.72

PRH-KNN 0.90 0.70 0.95 0.79

PRH-SVM 0.89 0.7 1 0.55

PSE-LR1 0.92 0.7 1 0.79

PSE-KNN1 0.91 0.70 0.95 0.79

PSE-SVM1 0.88 1 0.63 0.72

AUC, area under the curve; PRH, perioperative hemorrhage area; PSE, postoperative edema area; KNN, k-nearest neighbor classification; LR, logistic regression; SVM, support vector 
machine.
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regions serve unique anatomical characteristics, distinct functions and 
pathology, which can lead to variations in imaging features. For 
example, perihematomal edema (PHE) following ICH may contribute 
to the blood–brain barrier dysfunction (23), ion pump dysfunction in 
endothelial cells (24), and hemoglobin cytotoxicity (25). PHE can be the 
new biomarker for predicting the brain injury in patients with ICH. In 
summary, the varying performance of models based on different brain 
regions reflects both anatomical and functional differences that impact 
feature extraction and predictive accuracy. Gaining insight into these 
differences improves the clinical interpretation of model outcomes and 
could aid in advancing personalized medicine, as well as in the discovery 
of novel therapeutic targets.

In summary, the prognostic prediction model developed in this 
study, which was based on radiomics and radiological features 
from different regions, showed high prognostic prediction 
performance for patients with basal ganglia cerebral hemorrhage 
who underwent neuroendoscopy. This model can serve as a 
valuable tool for doctors to evaluate patient prognoses and guide 
treatment decisions.

5 Limitations

Firstly, the study is the small sample size used for external 
validation, which raises the possibility that the model might 
be overfitted to the data. Expanding the sample size across multiple 
centers could further bolster the study’s conclusions. Secondly, this 
study does not compare the machine learning model to established 
prognostic scores for ICH patients.
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